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Abstract: We introduced a random symmetric Gauss-Seidel (RSGS) method, which was designed to
handle large scale linear least squares problems involving tall coefficient matrices. This RSGS method
projected the approximate residual onto the subspace spanned by two symmetric columns at each
iteration. These columns were sampled from the coefficient matrix based on an effective probability
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column rank. Furthermore, numerical experiments demonstrated that RSGS outperformed the baseline
algorithms in terms of iteration steps and CPU time.
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1. Introduction

We consider solving the linear least squares problems given by

min
x∈Rn
‖Ax − b‖2, (1.1)

where A ∈ Rm×n has full column rank and m ≥ n. Problem (1.1) is prevalent in several fields,
including ridge regression, machine learning, optimal control, and others. To address this problem
in a resourceful and efficient manner, a substantial body of research has been conducted on iterative
methods [1–3]. Notably, the randomized Kaczmarz method [4] and the randomized Gauss-Seidel
method [5–9] have amassed considerable interest due to their capacity to handle large volumes of data.

Strohmer and Vershynin [4] put forth a randomized version of the Kaczmarz method. This method
uniquely selects a row in proportion to the squared Euclidean norm, resulting in a fast convergence.
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Inspired by this, Leventhal and Lewis [10] developed a randomized Gauss-Seidel (RGS) method that
samples a column of A based on an appropriately chosen probability. Subsequently, Ma et al. [11]
established a comprehensive convergence theory.

To expedite convergence, researchers have extensively investigated the two-step Gauss-Seidel
method. Liu et al. [12] proposed the 2SGS method, a deterministic iteration scheme based on the
maximum residual rule. Liao et al. [13] introduced RGS2, a method that merges two single-step
iterations into one, sampling two distinct indices simultaneously. In the same literature, the TRGS
method, an enhanced two-step approach, projects the approximate solution onto the solution space
using two random columns. Mustafa and Saha [14] devised D2RGS, a two-dimensional coordinate
descent method employing uniform sampling to randomly select two distinct columns of the coefficient
matrix in each iteration.

In this paper, we concentrate on the result found by Niu and Zheng [8], which presents a novel
randomized Gauss-Seidel (NRGS) method as follows:

xk+1 = xk +
A>ik (b − Axk)

‖Aik‖
2
2

eik , k = 0, 1, 2, . . . ,

where Aik is the ik-th column of A, eik is the ik-th column of the n × n identity matrix, rk = b − Axk, and

the column index is chosen with probability pik =
|A>ik rk |

2

‖A>rk‖
2
2
. The convergence result was given by

E‖xk+1 − A†b‖
2
A>A ≤

(
1 −

λmin(A>A)
‖A‖2F

) (
1 −

λmin(A>A)
β

)k−1

‖x0 − A†b‖2A>A, k = 0, 1, 2, . . . , (1.2)

where β = ‖A‖2F − min1≤i≤n ‖Ai‖
2
2, A† is the Moore-Penrose pseudoinverse of A, and A†b is the unique

solution of (1.1).
For solving (1.1) more efficiently, we consider projecting the update residual to two random

symmetric columns. Borrowing the idea of the probability criterion given by NRGS in [8], we
introduce Random Symmetric Gauss-Seidel (RSGS) method.

The organization of this paper is as follows. In Section 2, we present the related work. The RSGS
method and its convergence analysis are presented in Section 3. Several numerical examples are
displayed in Section 4 to show that our proposed RSGS method performs better than NRGS and other
methods compared. Finally, the conclusion is drawn in Section 5.

2. Related work

A large number of methods have been designed to solve linear least squares problems. Here, we
review only the most relevant and recent research works.

Niu and Zheng [8] proposed a single-step Gauss-Seidel method, namely NRGS. This algorithm
adopts an effective probabilistic criterion, allowing it to efficiently capture the larger elements within
the residual vector. Inspired by its probabilistic criterion, we extend this algorithm to the two-
dimensional scenario. While ensuring the simplification of the sampling method, we achieve faster
convergence rates.

To accelerate the convergence, numerous researchers have conducted studies on the two-step Gauss-
Seidel method. Liu et al. [12] proposed a two-step iteration Gauss-Seidel deterministic method named
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the 2SGS method, which is based on the maximum residual rule. As a deterministic algorithm, 2SGS
is particularly suitable for medium-sized problems. However, for large-scale datasets, it is necessary
to investigate stochastic algorithms. 2SGS is a highly effective deterministic approach, serving as an
inspiring foundation for our subsequent design of efficient stochastic algorithms in large-scale datasets.

Liao et al. [13] introduced the two-step iteration method RGS2, which effectively combines two
single-step iterations into one step, where two different indices are sampled simultaneously. The
advantage of this approach is the avoidance of the possibility of repeating the same index in two
consecutive single-step iterations, thereby improving convergence efficiency. In the same literature,
the TRGS is the improved two-step method that projects the approximate solution onto the solution
space by two random columns. Differently, each iteration of our method employs a stochastic two-
dimensional coordinate space least squares approach. Intuitively, under the same conditions, the two-
dimensional minimization method outperforms two-step minimization approach (i.e., the combination
of two separated singe steps).

Mustafa and Saha [14] developed a two-dimensional coordinate descent method D2RGS, which
employs uniform sampling to randomly select two different columns of the coefficient matrix in each
iteration. While two-dimensional uniform sampling can save time compared to non-uniform sampling,
it fails to consider the importance of different columns. The challenge lies in balancing the fast
convergence of the algorithm with the efficiency of sampling. We aim to achieve local minimization
in the two-dimensional coordinate space through symmetric sampling. Our method requires only non-
uniform sampling of one index at a time while obtaining two indices. This approach is both simple to
implement and efficient.

3. The randomized symmetric Gauss-Seidel method

In this section, we introduce the randomized symmetric Gauss-Seidel method (RSGS), which can
also be explained as the randomized symmetric coordinate projection method. The iteration scheme is
given by

xk+1 = xk + αkeik + βken−ik+1, (3.1)

where αk and βk are parameters which are chosen dynamically such that

A>ik rk+1 = A>n−ik+1rk+1 = 0, (3.2)

where rk+1 = b − Axk+1. Substituting (3.1) into (3.2), we have αk‖Aik‖
2
2 + βkA>ik An−ik+1 = A>ik rk,

αkA>n−ik+1Aik + βk‖An−ik+1‖
2
2 = A>n−ik+1rk.

(3.3)

Thus,

αk =


A>ik rk

2‖Aik‖
2 , if ik = n − ik + 1,

A>ik rk‖An−ik+1‖
2
2 − A>ik An−ik+1A>n−ik+1rk

‖Aik‖
2
2‖An−ik+1‖

2
2 − (A>ik An−ik+1)2

, if ik , n − ik + 1,
(3.4)
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and

βk =


A>ik rk

2‖Aik‖
2 , if ik = n − ik + 1,

‖Aik‖
2
2A>n−ik+1rk − A>ik rkA>n−ik+1Aik

‖Aik‖
2
2‖An−ik+1‖

2
2 − (A>ik An−ik+1)2

, if ik , n − ik + 1.
(3.5)

Here, A j and e j are the j-th column of A, and the identity matrix In, respectively. The sampled index
ik ∈ [n] , {1, 2, · · · , n} is chosen with the probability

P(i = ik) =
|A>ik rk|

2 + |A>n−ik+1rk|
2

2‖A>rk‖
2
2

. (3.6)

Based on this construction and criterion, we give Algorithm 1.

Algorithm 1 Randomized Symmetric Gauss-Seidel (RSGS)
Input: A, b, x0 and r0 = b − Ax0;
Output:xk.
for k = 0, 1, 2, . . . do

Pick the index ik ∈ [n] with probability (3.6).
Choose αk, βk as (3.4) and (3.5).
Update the approximate solution and residual,

xk+1 = xk + αkeik + βken−ik+1,

rk+1 = rk − αkAik − βkAn−ik+1,

until termination criterion is satisfied.
end for

To discuss the convergence, we first give two Lemmas.

Lemma 1. Let αk, βk satisfy (3.4), (3.5) and (3.3). Then it holds that

α2
k‖Aik‖

2
2 + 2αkβkA>ik An−ik+1 + β2

k‖An−ik+1‖
2
2 ≥

(A>ik rk)2

‖Aik‖
2
2

, (3.7)

and

α2
k‖Aik‖

2
2 + 2αkβkA>ik An−ik+1 + β2

k‖An−ik+1‖
2
2 ≥

(A>n−ik+1rk)2

‖An−ik+1‖
2
2

, (3.8)

where if ik = n − ik + 1, equalities hold in (3.7) and (3.8).

Proof. Substituting the first equality of (3.3) into the right-hand side of (3.7), we obtain

(A>ik rk)2

‖Aik‖
2
2

= α2
k‖Aik‖

2
2 + 2αkβkA>ik An−ik+1 + β2

k

(A>ik An−ik+1)2

‖Aik‖
2
2

.
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According to Cauchy-Schwarz inequality A>ik An−ik+1 ≤ ‖Aik‖2‖An−ik+1‖2, (3.7) is proved.
Similarly, substituting the second inequality of (3.3) into the right-hand side of (3.8) and by Cauchy-

Schwarz inequality, (3.8) is proved.
Note that if ik = n − ik + 1, then Aik = An−ik+1 and A>ik An−ik+1 = ‖Aik‖2‖An−ik+1‖2, then equalities hold

in (3.7) and (3.8).
The proof is finished. �

Lemma 2. [15] The following inequality holds

n∑
i=1

xl+1
i

yl
i

≥

(
n∑

i=1
xi

)l+1

(
n∑

i=1
yi

)l ,

for xi ≥ 0, yi > 0, l > 0, i = 1, 2, . . . , n. The equality holds if and only if x1
y1

= · · · = xn
yn

.

The convergence of Algorithm 1 is given in the following theorem.

Theorem 1. Let A ∈ Rm×n be of full column rank, and m ≥ n. For the linear least squares
problems (1.1), the iteration series {xk}

∞
k=0 generated by Algorithm 1 converges in expectation to the

unique solution x∗ = A†b. Furthermore, we have the following results:

• If n is even, for k ≥ 0, we have

E‖xk+1 − A†b‖2A>A ≤

(
1 −

λmin(A>A)
γ2

)k (
1 −

λmin(A>A)
‖A‖2F

)
‖x0 − A†b‖2A>A.

• If n is odd, we have

E‖xk+1 − A†b‖2A>A

≤


(
1 − λmin(A>A)

γ2

) k
2
(
1 − λmin(A>A)

γ1

) k
2
(
1 − λmin(A>A)

‖A‖2F

)
‖x0 − A†b‖2A>A, if k is even and k ≥ 0,(

1 − λmin(A>A)
γ2

) k−1
2

(
1 − λmin(A>A)

γ1

) k+1
2

(
1 − λmin(A>A)

‖A‖2F

)
‖x0 − A†b‖2A>A, if k is odd and k ≥ 1,

where γ1 = ‖A‖2F −min1≤i≤n ‖Ai‖
2
2, and γ2 = ‖A‖2F − 2 min1≤i≤n ‖Ai‖

2
2.

Proof. According to Algorithm 1, the k + 1-th (k ≥ 0) iteration can be represented as the
optimization problem:

xk+1 = argminx−xk∈span{eik ,en−ik+1}
‖b − Ax‖22,

which is equivalent to the following orthogonal projection,

b − Axk+1⊥span{Aeik , Aen−ik+1}, xk+1 ∈ xk + span{eik , en−ik+1}, k ≥ 0. (3.9)

Then, according to (3.3)–(3.5), for k ≥ 0, we have

‖xk+1 − A†b‖2A>A − ‖xk − A†b‖2A>A
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= ‖b − Axk+1‖
2
2 − ‖b − Axk‖

2
2

= ‖rk − αkAik − βkAn−ik+1‖
2
2 − r>k rk

= −2αkA>ik rk − 2βkr>k An−ik+1 + α2
k‖Aik‖

2
2 + β2

k‖An−ik+1‖
2
2 + 2αkβkA>ik An−ik+1

= −α2
k‖Aik‖

2
2 − β

2
k‖An−ik+1‖

2
2 − 2αkβkA>ik An−ik+1

≤ −α2
k‖Aik‖

2
2 − β

2
k‖An−ik+1‖

2
2 + 2|αk| · |βk| · |A>ik An−ik+1|

≤ −α2
k‖Aik‖

2
2 − β

2
k‖An−ik+1‖

2
2 + 2|αk| · |βk| · ‖Aik‖2‖An−ik+1‖2

= −(|αk|‖Aik‖2 − |βk|‖An−ik+1‖2)2

≤ 0,

where the second inequality is due to the fact that, for k ≥ 0, |A>ik An−ik+1| ≤ ‖Aik‖2‖An−ik+1‖2. Taking the
conditional expectation and according to (3.9), for k ≥ 0, it holds that

Ek‖xk+1 − A†b‖2A>A

= ‖xk − A†b‖2A>A − Ek‖A(xk+1 − xk)‖22
= ‖xk − A†b‖2A>A − Ek(α2

k‖Aik‖
2
2 + 2αkβkA>ik An−ik+1 + β2

k‖An−ik+1‖
2
2).

Now, we estimate the lower bound of the second term in the above last equality. By (3.3)–(3.5), for
k ≥ 1, we have

Ek(α2
k‖Aik‖

2
2 + 2αkβkA>ik An−ik+1 + β2

k‖An−ik+1‖
2
2)

=

n∑
ik=1

1
2

(A>ik rk)2

‖A>rk‖
2
2

+
1
2

(A>n−ik+1rk)2

‖A>rk‖
2
2

 (α2
k‖Aik‖

2
2 + 2αkβkA>ik An−ik+1 + β2

k‖An−ik+1‖
2
2)

=
1
2

n∑
ik=1

(A>ik rk)2

‖A>rk‖
2
2

 (A>ik rk)2

‖Aik‖
2
2

−
(A>ik rk)2

‖Aik‖
2
2

+ α2
k‖Aik‖

2
2 + 2αkβkA>ik An−ik+1 + β2

k‖An−ik+1‖
2
2


+

1
2

n∑
ik=1

(A>n−ik+1rk)2

‖A>rk‖
2
2

( (A>n−ik+1rk)2

‖An−ik+1‖
2
2

−
(A>n−ik+1rk)2

‖An−ik+1‖
2
2

+ α2
k‖Aik‖

2
2 + 2αkβkA>ik An−ik+1 + β2

k‖An−ik+1‖
2
2

)
≥

1
2

n∑
ik=1

(A>ik rk)2

‖A>rk‖
2
2

(A>ik rk)2

‖Aik‖
2
2

+
1
2

n∑
ik=1

(A>n−ik+1rk)2

‖A>rk‖
2
2

(A>n−ik+1rk)2

‖An−ik+1‖
2
2

=
1

‖A>rk‖
2
2

1
2

n∑
ik=1

(A>ik rk)4

‖Aik‖
2
2

+
1
2

n∑
ik=1

(A>n−ik+1rk)4

‖An−ik+1‖
2
2


=

1
‖A>rk‖

2
2

∑
ik∈[n]�{ik−1,n−ik−1+1}

1
2

(A>ik rk)4

‖Aik‖
2
2

+
1
2

(A>n−ik+1rk)4

‖An−ik+1‖
2
2


≥

1
‖A>rk‖

2
2

1
2

(∑
ik∈[n]�{ik−1,n−ik−1+1}(A>ik rk)2

)2∑
ik∈[n]�{ik−1,n−ik−1+1} ‖Aik‖

2
2

+
1
2

(∑
ik∈[n]�{ik−1,n−ik−1+1}(A>n−ik+1rk)2

)2∑
ik∈[n]�{ik−1,n−ik−1+1} ‖An−ik+1‖

2
2


≥


‖A>rk‖

2
2

‖A‖2F−2 min{‖Ai‖
2
2,i∈[n]} if ik−1 , n − ik−1 + 1,

‖A>rk‖
2
2

‖A‖2F−min{‖Ai‖
2
2,i∈[n]} if ik−1 = n − ik−1 + 1,
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≥


λmin(A>A)‖rk‖

2
2

‖A‖2F−2 min{‖Ai‖
2
2,i∈[n]} if ik−1 , n − ik−1 + 1,

λmin(A>A)‖rk‖
2
2

‖A‖2F−min{‖Ai‖
2
2,i∈[n]} if ik−1 = n − ik−1 + 1,

where the first inequality is obtained by Lemma 1, the second inequality is due to Lemma 2 and
span{Aik−1 , Ain−ik−1+1} ⊥ rk. Thus,

Ek‖xk+1 − A†b‖2A>A ≤

(
1 −

λmin(A>A)
γ̃k

)
‖xk − A†b‖2A>A, k ≥ 1, (3.10)

where

γ̃k =

 ‖A‖2F −min{‖Ai‖
2
2, i ∈ [n]} , γ1, if ik−1 = n − ik−1 + 1,

‖A‖2F − 2 min{‖Ai‖
2
2, i ∈ [n]} , γ2, if ik−1 , n − ik−1 + 1.

(3.11)

Note that, if n is odd and k ≥ 2, we have

Ek−1‖xk+1 − A†b‖2A>A

≤ Ek−1

((
1 −

λmin(A>A)
γ̃k

)
‖xk − A†b‖2A>A

)
=

∑
ik−1,

n+1
2

(1 − λmin(A>A)
γ̃k

)
‖xk − A†b‖2A>A

1
2

 (A>ik−1
rk−1)2

‖A>rk−1‖
2
2

+
(A>n−ik−1+1rk−1)2

‖A>rk−1‖
2
2


+

(A>n+1
2

rk−1)2

‖A>rk−1‖
2
2

(
1 −

λmin(A>A)
γ1

)
‖xk − A†b‖2A>A

≤


(
1 − λmin(A>A)

γ2

) n∑
ik−1=1

(
‖xk − A†b‖2A>A

1
2

(
(A>ik−1

rk−1)2

‖A>rk−1‖
2
2

+
(A>n−ik−1+1rk−1)2

‖A>rk−1‖
2
2

))
if ik−2 = n − ik−2 + 1 = n+1

2 ,(
1 − λmin(A>A)

γ1

)
Ek−1‖xk − A†b‖2A>A if ik−2 , n − ik−2 + 1,

≤


(
1 − λmin(A>A)

γ2

)
Ek−1‖xk − A†b‖2A>A if ik−2 = n − ik−2 + 1 = n+1

2 ,(
1 − λmin(A>A)

γ1

)
Ek−1‖xk − A†b‖2A>A if ik−2 , n − ik−2 + 1,

≤

(
1 −

λmin(A>A)
γ1

) (
1 −

λmin(A>A)
γ2

)
‖xk−1 − A†b‖2A>A,

where the two inequalities next to the last are due to that rk−1⊥A n+1
2

, while the last inequality is obtained
by (3.11). If n is even, then

Ek−1‖xk+1 − A†b‖2A>A ≤

(
1 −

λmin(A>A)
γ2

)2

‖xk−1 − A†b‖2A>A, k ≥ 2.

By taking the full expectation on both sides of (3.10), for k ≥ 2, we get that

E‖xk+1 − A†b‖2A>A

≤


(
1 − λmin(A>A)

γ2

)2
E‖xk−1 − A†b‖2A>A, if n is even,(

1 − λmin(A>A)
γ1

) (
1 − λmin(A>A)

γ2

)
E‖xk−1 − A†b‖2A>A, if n is odd.
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Note that

E‖x1 − A†b‖2A>A

=

n∑
i0=1

 min
x1−x0∈span{ei0 ,en−i0+1}

‖x1 − A†b‖2A>A
1
2

 (A>i0r0)2

‖A>r0‖
2 +

(A>n−i0+1r0)2

‖A>r0‖
2


≤

1
2

n∑
i0=1

 min
x1−x0∈span{ei0 }

‖x1 − A†b‖2A>A

(A>i0r0)2

‖A>r0‖
2 + min

x1−x0∈span{en−i0+1}
‖x1 − A†b‖2A>A

(A>n−i0+1r0)2

‖A>r0‖
2


≤

(
1 −

λmin(A>A)
‖A‖2F

)
‖x0 − A†b‖2A>A,

where the last inequality is obtained by Theorem 2.2 in [8].

E‖x2 − A†b‖2A>A

≤


(
1 − λmin(A>A)

γ2

) (
1 − λmin(A>A)

‖A‖2F

)
‖x0 − A†b‖2A>A, if n is even,(

1 − λmin(A>A)
γ1

) (
1 − λmin(A>A)

‖A‖2F

)
E‖x0 − A†b‖2A>A, if n is odd.

By induction on k, if n is even, for k ≥ 0, we have

E‖xk+1 − A†b‖2A>A ≤

(
1 −

λmin(A>A)
γ2

)k (
1 −

λmin(A>A)
‖A‖2F

)
‖x0 − A†b‖2A>A,

if n is odd, we have

E‖xk+1 − A†b‖2A>A

≤


(
1 − λmin(A>A)

γ2

) k
2
(
1 − λmin(A>A)

γ1

) k
2
(
1 − λmin(A>A)

‖A‖2F

)
‖x0 − A†b‖2A>A, if k is even and k ≥ 0,(

1 − λmin(A>A)
γ2

) k−1
2

(
1 − λmin(A>A)

γ1

) k+1
2

(
1 − λmin(A>A)

‖A‖2F

)
‖x0 − A†b‖2A>A, if k is odd and k ≥ 1,

the proof is completed. �

Remark 1. Since ‖A‖2F − 2 min{‖Ai‖
2
2, i ∈ [n]} < ‖A‖2F − min{‖Ai‖

2
2, i ∈ [n]}, our method is superior to

NRGS in theory.

4. Numerical examples

In this section, we present several examples that utilize two groups of real coefficient matrices.
These examples are designed to compare the effectiveness of RSGS and NRGS, RGS2 [13],
TRGS [13], and D2RGS [14] methods when solving Problem (1.1). The first group of matrices is
chosen from the Florida sparse matrix collection [16] and is listed in Table 1, where for the matrices
nemsafm, df2177 and bibd 16 8, we set A as their transpose. The second group consists of randomly
generated dense matrices, produced using MATLAB’s randn function. The inconsistent linear system
is constructed by setting b = Ax + r, where x is a vector with entries generated from a standard normal
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distribution, and the residual r belongs to the null space of A>, which is derived using the null function
in MATLAB. For all computations, the initial point is set as x0 = 0, and the stopping criterion is:

err =
‖xk − x∗‖2
‖x∗‖2

≤ 10−6, where x∗ = A†b.

Table 1. The properties of different sparse matrices.

Name ash958 nemsafm df2177 bibd 16 8
m × n 958 × 292 334 × 2348 630 × 10358 120 × 12870
rank 292 334 630 120

Density 0.68% 0.36% 0.34% 23.33%
Condition number 3.20 4.77 2.01 9.54

In order to evaluate and compare the performance of RSGS, NRGS and other baseline algorithms,
we graph the relative error (err) against the metrics of IT and CPU times. These graphs are depicted in
Figures 1 and 2, respectively. As can be observed from the figures, RSGS demonstrates more efficiency
than the NRGS, RGS2 [13], TRGS [13], and D2RGS [14] methods.
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Figure 1. Compasions of different baselines in terms of iteration and running time on Florida
sparse matrices.
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Figure 2. Compasions of different baselines in terms of iteration and running time on
dense matrices.

5. Conclusions

We proposed a randomized symmetric Gauss-Seidel method for solving linear least squares
problems with the nonuniform sampling on the probability criterion (3.6). Our theoretical analysis
indicates that RSGS converges when the coefficient matrix has full column rank. Furthermore,
numerical experiments demonstrate that RSGS outperform the baseline algorithms.
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