
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(7): 17305–17318.
DOI: 10.3934/math.2024841
Received: 20 March 2024
Revised: 02 May 2024
Accepted: 10 May 2024
Published: 20 May 2024

Research article

Two-dimensional array grammars in palindromic languages

Hannah Blasiyus and D. K. Sheena Christy*

Department of Mathematics, SRM Institute of Science and Technology, Faculty of Engineering and
Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India

* Correspondence: Email: sheena.lesley@gmail.com.

Abstract: In this paper, we put forward models that generate two-dimensional palindromic languages
with array-rewriting rules. The rewriting rules are of either regular or context-free type with terminals
being arrays. The derivation lengths are managed by the array concatenation conditions. These
grammars give rise to an extensive variety of palindromic pictures. Different hierarchies that exist
between the classes defined are demonstrated. The closure properties have also been evaluated.
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1. Introduction

The area of mathematics which concentrates on the combinatorial features used in computation
theory is generally known as “combinatorics on words”. The work of Axel Thue [1, 2] gave rise
to the subject of study. Lothaire’s combinatorics on words [3] touched on the algebraic aspects of
combinatorics extensively. Combinatorics on words, on the other hand, is intimately related to the
study of formal languages because both fields are concerned with words.

Recent research has focused on many combinatorial properties of words, such as tandem repeats,
having a square-free property, primitive words, complexity, morphisms on words, borderness,
periodicity, and so on. For example, Kari and Mahalingam investigated involutively bordered words
in [4], Czeizler et al. concentrated on the primitivity property based on the action of molecules in
DNA in [5], Yu studied the borderness property of words in [6], and so on. The study has now been
expanded to include two-dimensional words and their combinatorial features.

The field of computer science that deals with the generation and analysis of pictures has been
referred to as “picture processing”. Rosenfeld [7] had examined the necessity for array-rewriting rules
for picture languages in order to generate isometric arrays. Narasimhan [8] did groundbreaking work
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by proposing and implementing a language paradigm for the resolution of nontrivial picture processing
problems. A linguistic model was presented by Siromoney et al. for the formation of matrices, or
rectangular arrays of terminals, through the replacement of regular language families with well-known
formal language families [9]. Later, by altering the type of rewriting rules, new language families
were introduced [10]. The idea of rewriting rules in string grammars has been extended by authors to
array-rewriting rules for matrix grammars; thus, at present, the rules are either regular (Reg), context-
free (CoFree), or context-sensitive (CoS en). However, the row and column concatenation condition
limits how the production rules can be used. Applications include the production of two-dimensional
crystallography [11,12]. Two-dimensional CoFree grammars were introduced by Tomita in 1989 [13].

Amir and Benson [14] investigated periodicity in two-dimensional arrays. Various scholars explored
the occurrence of palindromes in two-dimensional arrays [15–18]. Various formal models for creating
or recognizing two-dimensional images have been published in the literature. These studies were
driven by image processing and pattern identification problems [19, 20], but two-dimensional patterns
have also emerged in studies related to numerous parallel computing models, including combinatorics.

Many methods have been developed to study these features. For examples, Knuth et al. [21] studied
pattern matching in words, Cole et al. [22] provided an algorithm for pattern matching in words and
arrays, and Geizhals and Sokol [23] presented an approach for finding the maximal two-dimensional
palindromes.

In this study, we aimed to generate palindromic picture languages by using array grammars and
prove some of their properties.

This paper is organized as follows. Section 2 recalls several definitions from the literature that were
required for our study. In Section 3, we define two-dimensional palindromic array languages (PALs)
and discuss a few examples. In Section 4, we study some of the results from the perspective of the PALs
and their closure properties. Finally, in Section 5, we discuss their application to a kolam pattern.

2. Preliminaries

Here, we recall a few definitions that were required for our study. For basic definitions, we refer the
reader to [10, 15, 24].

2.1. One-dimensional words

Definition 2.1. ([24]) A finite and non-empty collection of symbols called letters is known as an
alphabet, denoted byA. |A| represents the total number of elements present inA.

Definition 2.2. ([24]) A finite or infinite sequence of letters from the alphabet is known as a string or
word.

If A is an alphabet, then A∗ represents the collection of strings created by joining together zero or
more letters fromA. A subset ofA∗ is usually known as one-dimensional language.

Definition 2.3. ([24]) If s and t are two strings fromA∗, then word concatenation of s and t is realized
by appending letters of t to the right end of s. We denote this by s • t, or simply, st; if

s = s1s2 · · · sm

and
t = t1t2 · · · tn,
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where
s1, s2, · · · sm, t1, t2, · · · tn ∈ A,

then
st = s • t = s1s2 · · · smt1t2 · · · tn.

Definition 2.4. ([24]) Length of a string s is the total number of characters that it contains, denoted by
|s|. If |s| = 0, we say that w is an empty word, usually denoted by λ.

Note that
A∗ \

{
λ
}
= A+,

whereA+ is the collection of all non-empty strings overA.

Definition 2.5. ([24]) If s is a string overA which is given by

s = s1s2 · · · sn,

then the reversal of the string s is defined as a rewriting of s from right to left, denoted by sR:

sR = sn · · · s2s1,

where si ∈ A, i = 1, 2, · · · , n.

Definition 2.6. ([24]) String s is said to be palindromic, or we say s is a palindrome if s = sR, i.e., if

s = s1s2 · · · sn

and
si = sn−(i−1), i = 1, 2, · · · , n,

where si ∈ A.

Definition 2.7. ([24]) If s ∈ A∗, then sk is obtained by appending s to the right end of s itself k − 1
times, i.e.,

s • s • s • · · · s (k − times),

for all k ≥ 1. If k = 0, then
sk = s0 = λ,

which is an empty string.

2.2. Two-dimensional words

Definition 2.8. ([15]) A rectangular array of letters over a finite alphabet A is known as a picture or
matrix overA.

A collection of pictures is denoted by A∗∗. A subset of A∗∗ is usually known as picture language
(or two-dimensional language) overA.
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Definition 2.9. ([10]) If

MA =

u11 . . . u1n

. . . . . . . . .

. . . . . . . . .

um1 . . . umn

, MB =

v11 . . . v1n′

. . . . . . . . .

. . . . . . . . .

vm′1 . . . vm′n′

,

then the vertical concatenation of MA and MB is defined as follows:

MA V MB =

u11 . . . u1n v11 . . . v1n′

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

um1 . . . umn vm′1 . . . vm′n′

, provided m = m′,

and the horizontal concatenation of MA and MB is defined as follows:

MA ⊖ MB =

u11 . . . u1n

. . . . . . . . .

. . . . . . . . .

um1 . . . umn

v11 . . . v1n′

. . . . . . . . .

. . . . . . . . .

vm′1 . . . vm′n′

, provided n = n′.

We use ⊕ to denote that the concatenation is either V or ⊖.

Definition 2.10. ([10]) If

MA =

u11 . . . u1n

. . . . . . . . .

. . . . . . . . .

um1 . . . umn

,

then the half-turn of MA (also called the reversal of MA), denoted by MR
A, is given by

MR
A =

umn . . . um1

. . . . . . . . .

. . . . . . . . .

u1n . . . u11

.

Definition 2.11. ([15]) An array MA is said to be palindromic, or, we say that MA is a palindrome if
MA = MR

A.

Definition 2.12. ([15]) The order or size of an array with r rows and s columns is denoted by r × s,
provided that r, s ≥ 1. The arrays of order r×0 or 0× s are undefined. An array of order 0×0 is known
as an empty array, denoted by Λ.

Note that
A∗∗ \

{
Λ
}
= A++,

whereA++ represents the collection of all non-empty arrays overA.
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Definition 2.13. ([10]) The array-rewriting grammar G is defined as follows:

G = (Vr, I, Pr, S ),

which denotes the array grammar, where

Vr = Vr1 ∪ Vr2,

where Vr1 is a finite collection of nonterminals, Vr2 is a finite collection of intermediates, I is a finite
collection of terminals;

Pr = Pr1 ∪ Pr2 ∪ Pr3,

where Pr1 is a finite collection of ordered pairs (u, v) (written u→ v), and u and v are contained within
(Vr1 ∪ Vr2)+ or (Vr1 ∪ Vr2)+, classified as follows:

• Pr1 is CoS en if there is a (u, v) in Pr1 such that v = u1βv1 and u = u1S 1v1, where S 1 ∈ Vr1 and
u1, v1, β are all contained within (Vr1 ∪ Vr2)+ or (Vr1 ∪ Vr2)+ .
• Pr1 is CoFree, if in Pr1, for all (u, v) in Pr1, we find that v ∈ (Vr1 ∪ Vr2)+ or v ∈ (Vr1 ∪ Vr2)+

and u ∈ Vr1

• Pr1 is Reg if v is of the form U ⊕ V , given that U ∈ Vr1 and V ∈ Vr2 or U ∈ Vr2 and V ∈ Vr1

with u ∈ Vr1.

Pr2 is the finite collection of intermediate rules which are ordered pairs denoted by (u, v), where u
and v in (

Vr2 ∪
{
x1, · · · , xp

})
+

or (
Vr2 ∪

{
x1, · · · , xp

})+
: x1, . . . , xp ∈ I++

have the same number of columns and rows in the first and second cases, respectively, classified as
Reg, CoFree, or CoS en according to the intermediate matrix languages generated.

Pr3, the finite collection of terminal rules, is represented by ordered pairs denoted by (u, v), where
u ∈ (Vr1 ∪ Vr2) and v ∈ I++; S ∈ Vr1 is the start symbol.

Definition 2.14. ( [10]) An array grammar is referred to as follows:

• (Reg: Reg)AG if all intermediate languages are Reg and the nonterminal rules are Reg.
• (Reg: CoFree)AG if none of the intermediate languages is Reg and the nonterminal rules are Reg.
• (Reg: CoS en)AG if there exists an intermediate language which is not CoFree and the

nonterminal rules are Reg.
• The remaining six types, i.e., (CoS en: CoS en)AG, (CoS en: CoFree)AG, (CoS en: Reg)AG,

(CoFree: CoS en)AG, (CoFree: CoFree)AG and (CoFree: Reg)AG, can be defined similarly.

3. Two-dimensional PALs

In this section, we define two-dimensional palindromic array grammars (PAGs) and the PALs that
are generated by them.
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Definition 3.1. The PAG G is defined as follows:

G = (Vr, I, Pr, S ),

where
V = Vr1 ∪ Vr2,

where Vr1 is a finite collection of nonterminals, Vr2 is a finite collection of intermediates and I is a
finite collection of terminals;

Pr = Pr1 ∪ Pr2 ∪ Pr3,

where Pr1 is a finite collection of ordered pairs denoted by (µ, ν) (written µ → ν), given that µ and ν
are contained within (Vr1 ∪ Vr2)+ or (Vr1 ∪ Vr2)+, classified as follows:

• Pr1 is CoFree, if for all (µ, ν) in Pr1, we find that µ ∈ Vr1 and ν is expressed as µ1 ⊕ µ2 ⊕ · · · ⊕ µk,
where µi ∈ (Vr1 ∪ Vr2)+ or µi ∈ (Vr1 ∪ Vr2)+ for all i = 1, 2, · · · , k.
• Pr1 is Reg, if for all (µ,ν) in Pr1, we find that µ ∈ Vr1 and ν being expressed as U ⊕ V , where

U ∈ Vr1 and V ∈ Vr2 or U ∈ Vr2 and V ∈ Vr1.

Pr2 is the finite collection of intermediate rules which are ordered pairs denoted by (µ, ν), where µ
and ν in (

Vr2 ∪
{
x1, · · · , xp

})
+

or (
Vr2 ∪

{
x1, · · · , xp

})+
: x1, . . . , xp ∈ I++

have the same number of columns and rows in the first and second cases, respectively, classified as Reg
or CoFree according to the intermediate matrix languages generated.

Pr3, the finite collection of terminal rules, are ordered pairs denoted by (µ, ν), where µ ∈ (Vr1 ∪ Vr2)
and ν ∈ I++; S ∈ Vr1 is the start symbol.

Definition 3.2. A PAG is referred to as follows:

• (Reg: Reg)PAG if all intermediate languages are Reg and the nonterminal rules are Reg.
• (Reg: CoFree)PAG if none of the intermediate languages is Reg and the nonterminal rules are

Reg.
• The remaining two PAGs, i.e., (CoFree: CoFree)PAG, (CoFree: Reg)PAG, can be defined

similarly.

Example 3.1. The PAL
L =

{
(r)++

}
is generated by the PAG

G = (Vr, I, Pr, S ),

where
Vr = Vr1 ∪ Vr2, Vr1 = {S } ,Vr2 = {A1, A2} , I = {r} ,

Pr1 = {S → S ⊖ A1, S → S V A2} , Pr3 = {S → r} , LA1 = {(r)n : n ≥ 1} , LA2 = {(r)m : m ≥ 1} .

This grammar is of type (Reg: Reg)PAG.
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For instance, one of the arrays generated by this grammar is as follows:

S =⇒ S ⊖ A1 =⇒ (S V A2) ⊖ A1 =⇒ ((S V A2) V A2) ⊖ A1 =⇒
r r r
r r r

Example 3.2. The PAL given by

L =
{(

r s
s r

)+
+

}
is generated by the PAG

G = (Vr, I, Pr, S ),

where

Vr = Vr1 ∪ Vr2, Vr1 = {S } , Vr2 = {A, B} , I = {r, s} ,

Pr1 = {S → S ⊖ A, S → S V B} ,

Pr3 =

{
S →

r s
s r

}
, LA =

{(
r s
s r

)n

: n ≥ 1
}
,

LB =

{(
r s
s r

)
m

: m ≥ 1
}
.

This grammar is of type (Reg: Reg)PAG.
For instance, one of the arrays generated by the above grammar is as follows:

S =⇒ S ⊖ A =⇒ (S V B) ⊖ A =⇒

r s r s
s r s r
r s r s
s r s r

Example 3.3. The PAL given by

L =
{
Collection of all hv-palindromes which are bordered by x’s

}
is generated by the PAG

G = (Vr, I, Pr, S ),

where
Vr = Vr1 ∪ Vr2, Vr1 = {S , S 1, S 2, S 3, S 4,C,D} , Vr2 = {X,Y} , I = {x, y} .

Pr1 has the following production rules:

S → X V S 1 V X, S 1 → X V S 1 V X,
S 1 → S 3 V S 1 V S 3, S 1 → X ⊖ D ⊖ X,

S 1 → (X ⊖ D ⊖ X) V S 4, S 4 → X ⊖ D ⊖ X
S 3 → C ⊖ D ⊖C S 3 → D ⊖C ⊖ D

C → ((Y) ⊖ (X)m ⊖ (Y)) : m = 0, 1, 2, · · · , D→ ((X) ⊖ (Y)m ⊖ (X)) : m = 0, 1, 2, · · · .
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Pr3 has the following rules:

S → (x V x)n, n ≥ 1; S 1 → (x V x)n, n ≥ 1; S 1 → (x)n, n ≥ 1.

It also has the following intermediate languages:

LX = {(x)n : n ≥ 1} , LY = {(y)m : m ≥ 1} .

This grammar is of type (CF: CF)PAG.
For instance, one of the arrays generated by the above grammar is as follows:

S =⇒ X V S 1 V X =⇒ X V (X ⊖ D ⊖ X) V X =⇒
x x x
x Y x
x x x

=⇒

x x x
x y x
x x x

.

Example 3.4. The PAL given by

L =
{
Collection of all hv- square palindromes of odd order

}
is generated by the PAG

G = (Vr, I, Pr, S ),

where

Vr = Vr1 ∪ Vr2, Vr1 = {S , S 1, S 2, · · · , S n} , I = {x, y} ,

Vr2 =
{
S ∗i ,T

∗
i ,U

∗
i ,V

∗
i ,W

∗
i : i = 1, 2, · · · , n + 1

}
.

Pr1 has the following production rules:

S → S ∗1 V S 1 V S ∗1 /T ∗1 V S 1 V T ∗1 /U
∗
1 V S 1 V U∗1 /V

∗
1 V S 1 V V∗1 /W

∗
1 V S 1 VW∗

1
S 1 → S ∗2 V S 2 V S ∗2 /T ∗2 V S 2 V T ∗2 /U

∗
2 V S 2 V U∗2 /V

∗
2 V S 2 V V∗2 /W

∗
2 V S 2 VW∗

2
...

S n−1 → S ∗n V S n V S ∗n /T
∗
n V S n V T ∗n /U

∗
n V S n V U∗n /V

∗
n V S n V V∗n /W

∗
n V S n VW∗

n

S n → S ∗n+1/T
∗
n+1/U

∗
n+1/V

∗
n+1/W

∗
n+1.

Pr3 has the following rules:

S → a, S → b.
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It also has the following intermediate languages:

LS ∗i = {(a)2n+1 : n ≥ 1} , LT ∗i = {(b)2n+1 : n ≥ 1} ,

LU∗i =

{ (a)k

(b) j

(a)k

: k, j ≥ 0, 2k + j = 2n + 1, n ≥ 1
}
,

LV∗i =

{ (b)m

(a)p

(b)m

: m, p ≥ 0, 2m + p = 2n + 1, n ≥ 1
}
,

LW∗i =



(a)q

(b)r

(a)s

(b)t
...

(b)t

(a)s

(b)r

(a)q

: q, r, s, t, · · · ≥ 0, 2q + 2r + 2s + 2t + · · · = 2n + 1, n ≥ 1



.

This grammar is of type (CF: CF)PAG.

4. Results on PAGs

In this section, we study some of the results on PAGs.

Theorem 4.1. Let
{Mn : n ≥ 1}

be a sequence of palindromic matrices such that Mn has any one of the following forms:

Mn = (A ⊖ Mn−1) V B or B V (Mn−1 ⊖ A) or (Mn−1 ⊖ A) V B or B V (A ⊖ Mn−1),

where A and B are taken from intermediate matrix language LA and LB for n ≥ 1. Then, the sequence
{Mn} is generated by regular nonterminal rules. Further, if the recursive way of defining Mn is unique,
then {Mn} is a (Reg: Reg)PAL or (Reg: CoFree)PAL.

Proof. If we use the nonterminal rules that are given in the form of S → (X ⊖ S ) V Y , terminal rules
that are given in the form of S → M1 and the intermediate rules to generate LX and LY will yield the
following language: (Reg: Reg)PAL. We can similarly prove the other cases. □

Theorem 4.2. Let
{Mn : n ≥ 1}

be a sequence of palindromic matrices such that Mn has any one of the following forms:

Mn = X1 V (Y1 ⊖ Mn−1 ⊖ Y2) V X2 or Mn = X1 ⊖ (Y1 V Mn−1 V Y2) ⊖ X2,
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where X1, X2,Y1, and Y2 are taken from intermediate matrix languages LX1 , LX2 , LY1 , and LY2 for n ≥ 1
such that at least Y1 and Y2 or X1 and X2 are non-empty. Then, the sequence {Mn} is generated by
CoFree nonterminal rules. Further, if the recursive way of defining Mn is unique, then {Mn} is a
(CoFree: Reg)PAL or (CoFree: CoFree)PAL.

Proof. We find that, in the grammars which generate the above-mentioned type of palindromic arrays,
there exists at least one self-embedding nonterminal rule. Since the self-embedding nonterminals
cannot generate Reg PALs, we say that the nonterminal rules are CoFree. Thus, the array language
will be either (CoFree: Reg)PAL or (CoFree: CoFree)PAL. □

Next, we shall discuss the closure properties satisfied by PAGs.

Theorem 4.3. All families of palindromic matrix languages are closed under union, homomorphic,
and reflect about the base.

Proof. • If L1 and L2 are two palindromic matrix languages generated by the following (Reg:
Reg)PAG:

H1 = (Vr1, I, Pr1, S 1) and H2 = (Vr2, I, Pr2, S 2),

then
L = L1 ∪ L2

generated by the grammar
H = (Vr, I, Pr, S ),

where
V = Vr1 ∪ Vr2, P = Pr1 ∪ Pr2, S = S 1 ∪ S 2

will also be (Reg: Reg)PAL because of the restrictions of the production rule, it is similar for the
other families of PALs.
• Let H be the PAG that generates the PAL of type (Reg: Reg)PAL. Let H′ be a PAG obtained by

retaining the nonterminal rules of H, putting h(a) in the place of a in the terminal rules and in the
intermediate language of H, where a ∈ I and h is a homomorphism. Then, we observe that H′

itself is a (Reg: Reg)PAG. We can similarly prove this for the other families of PALs.
• Let H be the PAG (Reg: Reg)PAG and M = M(H). Let H′ be the grammar which generates

the languages of arrays that are obtained by reflecting the language generated by H about the
base. Then, H′ can be derived as follows: all nonterminal rules in H that involve V only are to be
retained in H′. Corresponding to the nonterminal rule S 1 → D⊖E in H, we have that S 1 → E⊖D
in H′. If S 1 → X is a terminal rule in H, then S 1 → XE is a terminal rule in H′, where XE is the
reflection of X about its base. If LD is an intermediate language generated by D in H, then LE

D is
the intermediate language generated by D in H′. Then, we find H′ to be a (Reg: Reg)PAG. We
can similarly prove this for the other families of PALs.

□

5. Palindromic kolams-an overview

Every morning, South Indian villagers draw kolams on the courtyard in front of each house. Young
women use specks of rice flour to artistically decorate the floor with kolam. Celebrations require more
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intricate kolam patterns. A small design can be enlarged immediately to cover a wide floor space, but
this is rarely done. Different designs have names, and larger variants of the same kolam use more
sophisticated designs. For each kolam pattern, a grammar can build a two-dimensional language.

In this section, we will discuss a palindromic kolam pattern existing in the literature and generate it
by using PAGs.

Vilvathalam kolam (see Figure 1):

Figure 1. Vilvathalam kolam.

The kolam in Figure 1 can be generated by the grammar introduced in [25], which is a (CoFree:
Reg)AG given by

M =


P
Q
˜P

 R


P̃
Q̃
˜P̃

 ,
where

LQ = {T T ( T T C)n
} ∪ {T T ( T T T )n

T T : n ≥ 1} ,

LR =





T T

T

T T

T

T T

T


n

⊖


T T

T

T T

 : n ≥ 1


,

and P is generated by the (Reg: Reg)AG labeled as G, which is defined as follows:

G = (Vr, I, Pr, S ),

where

V = Vr1 ∪ Vr2, Vr1 = {S } , Vr2 = {A, B} , I = {T , , , } , Pr1 = {S → (B V S ) ⊖ A} ,

LA =



T T T T

T T

T T


T T T

T ▲ T T

T T T


n
T

T

: n ≥ 0



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∪



T T T T

T T

T T


T T T

T ▲ T T

T T T


n
T T

T T

T T

: n ≥ 0


 ,

LB =
{(
T T T

)
n

: n ≥ 1
}
,

Pr3 =

S →

T T T T T

T T T T T

T T

T T T

 .
Clearly, the picture derived from M is palindromic and the production rules adhere to the nature of

PALs. Hence, we found that G was a (Reg : Reg)PAG and M was generated by (CoFree: Reg)PAG.

6. Conclusions

In this paper, we have defined PAGs as an extension of array-rewriting grammars and evaluate a
few examples for various PAG. Further, we studied a few results on PAG and explored how they can
facilitate the generation of kolam patterns. Future works will be focused on proving/disproving the
other combinatorial properties of PAG and the study of their other applications.
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