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Abstract: In this paper, we considered the two-dimensional fractional-order Black-Scholes model in
the Liouville-Caputo sense. The Black-Scholes model was an important tool in the financial market,
used for determining option prices in the European-style market. However, finding a closed-form
analytical solution for the fractional-order partial differential equation was challenging. To address
this, we introduced an improved finite difference method for approximating the solution of the two-
dimensional fractional-order Black-Scholes model in the Liouville-Caputo sense, based on the Crank-
Nicolson finite difference method. This method combined the concepts of the finite difference method
for solving the multidimensional Black-Scholes model and the finite difference method for solving the
fractional-order heat equation. We analyzed the conditional stability and the order of convergence.
Furthermore, numerical examples were provided to illustrate the determination of option prices.
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1. Introduction

The fractional-order differential equations have become a powerful tool for explaining real
phenomena in the last decades after they were introduced more than three hundred years ago.
Fractional calculus has the ability to describe the real situation more adequately than traditional
calculus [1].

There are many mathematical models that have been used for fractional calculus in various areas
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such as finance, engineering, control systems, epidemiology, etc. For example, Kumar et al. [2] studied
the time-fractional Navier-Stokes equation and presented the technique to find the approximation
analytical solution of the equation. Huang and Zhdanov [3] used group analysis to analyze the
time-fractional Harry-Dym equation in the sense of the Riemann-Liouville fractional derivative.
Chen et al. [4] studied the time-fractional Black-Scholes equation for pricing double barriers. The
analytical solution was carried out using the eigenfunction expansion method composed with the
Laplace transform. Senol et al. [5] investigated the time fractional order of the Burgers equation and
its family. The approximate solutions of the equations were carried out using the residual power series
method (RPSM). The obtained solutions can be compared to the exact solution. Mathur et al. [6]
studied the space-time fractional-order diffusion equation and found its solution. The solution could
express the behavior of the diffusion process. Bonyah et al. [7] proposed the mathematical model for
dengue fever in the sense of the Caputo-Fabrizio derivative. They found the steady-state solutions and
studied their stability. Mandal [8] constructed the fractional-order epidemic model with fear effect.
They found the condition of the control parameter to control the disease. Chen [9] improved the
mathematical model for the financial system from the integer-order system of differential equations
to the fractional order model with incommensurate-order in the sense of the Caputo-type derivative.
The chaotic behavior was found in the fractional-order model. Xu et al. [10] proposed an improved
financial model with fractional order. They also applied the time-delayed to the proposed model to
study the chaotic behavior. The sufficient conditions for the existence and stability of Hopf bifurcation
were investigated. He et al. [11] proposed the fractional-order financial model and studied its dynamic
behaviors. They found that the chaos exists in their model and the numerical simulations confirm
the theoretical results. Gao and Baskonus [12] analyzed the fractional-order financial model. They
proved that the solution of the model exists and found some impact of the parameters on the financial
components.

It is known that the financial markets have affected people around the world. The mathematical
model is a good choice for understanding financial market behavior. In 1973, Black, Merton, and
Scholes [13] proposed the mathematical model based on the partial differential equation to describe
the option price in the financial market. The major components of the Black-Scholes model are strike
price, volatility, expiration time, risk-free rate, and underlying asset price. The Black-Scholes model
is widely used to find the option price in the market. In the beginning, the model can only fit the
European-style options. Recently, this model can compute the option price not only for European style
options but it can also be used to compute option price for American [14] and Asian [15] style options.

The time fractional-order calculus has been used to improve the Black-Scholes model for getting
the different results when applied with recent parameters. There is plenty of research that has been
studied for the improved fractional-order Black-Scholes model [16-21]. Jamarie et al. [22] presented
the derivation of fractional-order Black-Scholes model in one dimension. The time-fractional Black-
Scholes model was also derived to find the numerical solution [23]. The fractional-order can provide
the different values of the option price when the fractional-order changes. This is the main feature of
the fractional calculus.

There are several methods that have been improved to solve the Black-Scholes model numerically
and analytically. For example, Gulka [24] applied the homotopy perturbation method to find the
analytical approximate solution for the Black-Scholes equation which was represented in the form
of a convergence power series. Elbeleze et al. [25] combined the homotopy perturbation method and
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Sumudu transform to obtain the solution of the fractional Black-Scholes equation in Caputo sense. The
obtained solution could be written as a convergence power series. They also compared the result to the
Laplace homotopy perturbation method. Saratha et al. [26] solved the fractional Black-Scholes type
equations in one dimension by using the fractional generalized homotopy analysis method (FGHAM).
This method provided analytical solutions that were faster and more accurate than other numerical
methods. Achdou and Pironneau [27] investigated the finite element method and finite difference
method to obtain the solution of the Black-Scholes equation. Bungartz et al. [28] introduced the
sparse grids to discretize the Black-Scholes equation and found the numerical solution using the finite
element method. They also presented the algorithm to compute the solution in the multi-core CPU to
reduce the computationl time. By proposing the weights of the radial basis function generated finite
difference (RBF-FD) formulas, Soleymani and Zhu [29] found the solution of the Black-Scholes model
which was in the form of a partial integro-differential equation composed of stochastic volatility with
contemporaneous jumps. Chen et al. [30] combined two methods, which are the neural network model
and the finite element method (FEM) for solving the Black-Scholes-Merton equation in European-
style and American-style markets. Fei et al. [31] applied the RBF and Crank-Nicholson scheme to
find the approximate solution of the Black-Scholes equation. The obtained solution agreed with the
theoretical statement. Ravi Kanth and Aruna [16] found the solution of the time-fractional Black-
Scholes equation for the European style option using the modified fractional differential transform
method (MFDTM). This method gave the analytical solution, which was simpler to compute the option
price. Zhou et al. [32] proposed a direct finite difference scheme for solving a time-fractional tempered
Black-Scholes model by combining two methods. The convergence of this method is unconditionally
stable.

In the last two decades, the multidimensional Black-Scholes models have been investigated to
find the option price that depends on more than one asset. The concept of the multidimensional
model is based on the option price that cannot depend on only one asset. A number of researchers
studied the methods that can solve the multidimensional Black-Scholes equation, especially the two-
dimensional Black-Scholes equation. Guillaume [33] studied the multidimensional Black-Scholes
partial differential equation and its properties. The equation could be transformed into a standard heat
equation. He also found the fundamental solution. Chacon-Acosta and Salas [34] applied Zwanwig’s
projection method to reduce the dimension of the two-dimensional Black-Scholes equation to one
dimension. They also studied the effects of parameters on the option price. Chen and Wang [35]
improved a second-order Crank-Nicolson alternating direction implicit method to solve the two-
dimensional fractional Black-Scholes equation. Wang et al. [36] used a practical finite difference
method to find the solution of the multidimensional Black-Scholes model with fractional order.
Heo et al. [37] proposed the explicit finite difference method for solving the Black-Scholes equation
with a hybrid boundary condition in two dimensions. Their method reduced the domain by eliminating
some boundary conditions. Soleymani and Zhu [38] presented a (2-@)-order discretization scheme for
solving the fractional-order Black-Scholes model based on the meshless RBF-FD method.

As mentioned above, fractional-order differential equations serve as powerful tools for enhancing
mathematical models. The Black-Scholes model, which is widely used for determining option prices,
traditionally relies on a single asset. However, in real-world scenarios, option prices are influenced
by multiple assets. By integrating the key aspects of each concept, we investigate the fractional-
order multidimensional Black-Scholes model, enabling the determination of option prices through
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the model’s solution. The method that can solve the model is the essential tool. Due to the
complexity of the model, exact solutions for the fractional-order multidimensional Black-Scholes
model are unattainable. Therefore, this paper focuses on studying numerical methods capable of
solving the model.

There are various numerical methods that have been proposed to find its solution, one of which is
the finite difference method (FDM). FDM is favored due to its ease of implementation compared to
other numerical techniques. It can accommodate complex geometries and boundary conditions and
is efficient for domains with regular grids. These are the advantages of FDM. However, traditional
FDM cannot handle fractional-order partial differential equations. Therefore, improving FDM to solve
fractional-order problems is important for solving the multidimensional fractional-order Black-Scholes
equation.

In this work, we introduce a numerical method based on the Crank-Nicolson finite difference
method to obtain the numerical solution of the time fractional-order Black-Scholes model with two
assets in the Liouville-Caputo sense. This method combines a difference scheme for the time-
fractional heat equation [39] and a Crank-Nicolson scheme for multidimensional Black-Scholes partial
differential equations [40].

The modified method is derived from two primary aspects of each method: the capability to
solve time-fractional partial differential equations and the ability to obtain numerical solutions for
multidimensional partial differential equations. The Black-Scholes equation can be expressed as a
heat-like equation. The stability condition of the modified method is investigated in the subsequent
section. Additionally, we conduct a study on the convergence of the proposed method.

Furthermore, numerical simulations of the fractional-order Black-Scholes equation with two
assets are provided to illustrate the determination of option prices. The comparison between the
proposed method and analytical approximation method, that is, the Laplace homotopy perturbation
method (LHPM), is studied.

The organization of the rest of this paper is as follows. Section 2 presents the two-dimensional
time fractional-order Black-Scholes model and provides preliminaries about fractional calculus. The
fractional derivative considered in this paper is the Liouville-Caputo fractional derivative. Section 3
introduces the discretization of the time fractional-order Black-Scholes model, along with stability
and convergence analyses. Numerical examples and discussions are provided in Section 4. Finally,
Section 5 presents the conclusions.

2. The fractional-order Black-Scholes model with two assets

In this section, we first introduce some definitions of fractional derivatives that are mentioned in
this work. Second, the fractional-order Black-Scholes model investigated in this work is presented.

2.1. Preliminaries on fractional calculus

There are many definition-types of the fractional-order derivative, for example, Riemann-
Liouville [41], Liouville-Caputo [42], Jaumarie [22], tempered [43], Caputo-Fabrizio [44], and
Atangana-Baleanu [45] derivatives. In this work, we use the Liouville-Caputo type derivative because
its initial condition satisfies the integer-order derivative [46].

Definition 2.1. The a-order Liouville-Caputo [42] fractional derivative for a function U : R — R is
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defined by the formula

N _ 1 " uw(T)
DiU(t) = o) Jo (t—T)“dT’ for0<a< 1. 2.1

2.2. The mathematical model

The mathematical model is based on the Black-Scholes model, applicable to European options
under certain assumptions: no arbitrage, no dividends, borrowing and lending at the risk-free rate,
no fees, and no transaction costs [47,48]. Initially, the Black-Scholes model was a one-dimensional
equation. However, it has recently evolved into a multidimensional model, assuming that the option
price cannot depend solely on one asset.

The fractional-order Black-Scholes partial differential equation with two assets for European-style
options, which can be derived from the integer-order equation, is investigated. We aim to find an
approximate solution using a modified finite difference method, as presented in the next section.

The model parameters and variables are defined as follows:

U the option price depending on the underlying asset prices S, S, at time ¢,
S1,S, the underlying asset price,
01,0, the volatility of the underlying asset S| and S ,, respectively,

ol the correlation between the underlying asset prices S| and S, ,

Bi the coefficient so that all risky asset prices are at the same level S; fori =1, 2,
K the strike price of the underlying stock,

r the risk-free interest rate to expiration,

T the expiration date.

The fractional-order Black-Scholes model with two assets in Liouville-Caputo sense for the time
forward can be represented as

o 1 2 282U(Sl,52,7') 1 2 202U(SlaSZ9T)
DTU(Sl,Sz,T)+§U151T+§Uz 2_8S§

82U(SI’SZ’T) (9U(S],S2,T) aU(ShSZ’T)
SIS0 —mMmmMMM+r§——+r§p—m—— = —
e e TV T Y TR B TN

(2.2)
rU =0,

for §1,5, € [0,00),7 € [0,T], with the terminal conditions and boundary conditions define as the
following equations.
For the European call option, the terminal condition is

U(S],SQ,T) = max(ﬁlSl +ﬂ2S2 - K,O)
The boundary conditions for the call option are defined by

U(0,S,,7) = max(8,S, — Ke""™,0),
U(S1,0,7) = max(8,S; — KeT™,0),
U(S1,S5,7) =max((8:1S1 + B.5,) — Ke"T70,0), S| — 00,8, — oo,

For the European put option, the terminal condition is

U(§1,52,T) = max(K = (8151 +252),0).
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The boundary conditions for the put option are defined by
U(0,82,7) = max(Ke "™ = ,5,,0),
U(S1,0,7) = max(Ke "™ = S 1,0)),
U(S1,S2,7) = max(Ke "™ — (8,5 | + B,5>),0), S| — 0,5, — oo,

The fractional-order Black-Scholes model can be rewritten in the initial boundary value problem by
changing it to a forward time 7. Let t = T — 7. Equation (2.2) becomes

1 UGS LS»T) 1, 82Uy, S,
DRUS,, S0, 7) — co2g2 UG LS2 D) L a0 UGS 1)
2 08} 2 352 .
S8 PUS 52 7) S AU(S 1,52, 7) oU(S 1,82, 7) 4 U =0 .
—poo e S, s, U = 0.
PO10295 192 05 19S5 1 as 2 T

Equation (2.3) can be expressed as the following equation when S| and S, are specified to be x and
y, respectively. We obtain

1 ’U(x,y,1) 1 PU(x,y,t
DYU(x,y,1) - Eaﬁxzw _ 1 220Uy D

Ox? 27 0y? 2.4)
UKy Uy, t)  dU(x,y,1) '
— PO 102Xy —rx —ry +rU =0.
0x0y 0x ay

3. Discretization of the time fractional order Black-Scholes model with two assets

In this section, we present the concept for solving the time fractional-order Black-Scholes model
with two assets by applying the Crank-Nicolson technique. This method is a combination of two
methods, which are the Crank-Nicolson method for Black-Scholes multi-dimensions [40] and a new
difference scheme for the time fractional heat equations based on the Crack-Nicholson method [39]. By
this technique, we define M, as the grid size in the space of asset one, M, as the grid size in the space
of asset two, and N as the grid size in the time. To divide the domain, we let x; € [0, X],y; € [0,Y],
and 7 € [0, T']. The grid points are defined as follows:

0:X0<X1<X2<...<XMX:X, hi:xi—xi_l, i=1,2,...,M,,
0:)’0<}’1<)’2<'~<yMy:Y, kj:yj_yj—l’ j:1,2,...,My,
O=fy<ti<thh<...<ty=T, t,=nt, n=0,1,2,...,N.

In this work, the time step is the uniform grid size, i.e., 7 = T/N.

Let U}, be the value of the option price, which is the function of the underlying asset price x;, y; and
time ¢,,.

By the Crank-Nicolson discritization, we use the following scheme [40].

1
n+3

0V h(UD,+ UL (= hed (U + U UL, + UG, ) o
0x 2hi_1(hi-y + hy) 2hi_1h; 2hi(hioy + hy) .
n+y n n n n n n
ou; - kUt + U7 ) N (kj = kiU + UL N ki (UL + UL 52)
oy 2k (ki + kj) 2k 1k; 2ki(kj_y + kj) ’
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n+i

2 n+1 n n+1 n n+1 n
al]i,j2 Ul+lj+Ut]]_Ui,}— +Ui,j+Uz:]]+Uz+1] (33)
ox? hioy(hizy + hy) hi_1h; hihizy + hy) .
2 ”+ n+1 n n+1 n n+1 n
0 Ui,j Uzj1+Utj 1 _ Ui,; +Ui,j " Ul;+1+Ulj+1 (3 4)
(9y2 ,_1(k i—1 +k) kj_lk' k'(k'_l +kj)
n+3 n n n n n n n n
52 Ui,j Ul++1]j+1 Uz++11] 1 Ul +11]+1 Ul +1]] 1 Uz+1 g+l Uz+l ,J—1 Ul 1,j+1 Uijll,jfl (3 5)
oxdy 2(hi-y + h)(kj_y + k) 2(hi—y + h)(kj_ + kj) ’ '
urtt + Ur,
n+i T i,j
U’ = (3.6)
The fractional Liouville-Caputo derivative for the option price can also be written as follows [39]:

+1
st - ur)

DU(Xi, Yjstye1) = [wlU" + Z(wn w1 = W)Uy = 0, U + 0 ”21_ +0("™), (37

wmmU@uﬂeOﬂ&ﬂLa—rQ o ;and w; = o ((j+ 1/2)'7 = (j — 1/2)'7).

By substituting Eq (3.7) and Egs (3.1)—(3.6) into Eq (2.4), the two-dimensional fractional-order
Black Scholes model, we obtain

l st -um] 1 U+ ULy,
[wlUn + Z(wn m+1 — Wp— m)Um - wnUO t+0o 7l-a ! } - EO’%X?( 1(;2 + h;
=1 1— i—1

n+1 n n+1 n n+1 n n+l1 n n+1 n
_ Ui,}— + Ui,j " Ul++1 J + UH—I J 1 2y2 Uz;- 1 + Ul[ 1 _ Ui,}— + Ui,j " Ul ;+1 + UL j+1
I’ll‘_ll’ll‘ ]’l(l’ll 1+ h) 2 72); j l(kj 1+ k) kj—lkj kj(kj—l + k)

U;Tllﬁl - U:Z++11] 1 Uzn+11]+1 Uzn+11] 1 Uf+1 Jj+1 U?+l,j—] - U?—l,j+l + Uz 1,j-1
— PO 102Xy +
2(hi-y + hi)(kj_y + kj) 2(hi-y + hi)(kj_y + k)
. —h; (Ul’”l]] + U} Y ) s (h; — hi_l)(Uf,’;1 + UZJ.) . hi_l(Ul”:l]] + Uz”+1j)
' 2h;,_1(hi-y + hy) 2h;_1h; 2h;(hi-1 + )
(B A UL ke U U (U U
/ Zk]—l(k]—l +k]) 2kj_1k] 2kj(kj_1 +kj)
Ut + ur,
ij i.j
+r]|—=|=0.

By rearranging the above equation, we get

n+1
i-1,j

—PO102X;Y I rx;h; — a'2x
2t + h)(kjy + k) T 2R (i + hy)

( PO 102Xy ) n+l [ry] O-Zyj ) !
r
2

2hizy + i)k +kj)) T 2k (kg + k) )

oix; = rxi(h; — hi_y) N o3y; = ryilk; = kj- 1) yr
2hz—lhz 2k] 1k
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—ryjkj-1 - Ugyi] - ( PO102XY; ) el

+ Ui i1 T i+1,j-1

2ki(k;—y + k;) "/ 2(hiy + hi)(kjy + k) N

—rx;hi—y — U?ﬁ el —PO 102Xy n+l

i 2hi(hi—1 + hy) ) o (2(hi—1 +hi)(kj-y + kj)) S
—PO102X;Y i rxih; — U%xiz n

=20 + )+ kj)) =Lj-1 (2hi_1(hi_1 + hi)) o
PO 102X,y ) . [ ryjkj — o3y, ] n

2y + h(koy + kj)) T 2k (kg k) )

B U%x2_rxi(hi_hi—l)+O-%y2_ryj(kj_kj—l) N ur
2hiihi 2k 1k, 2) 7
—I’ykj_l - O%yi " PO 102Xy n
2kj(kj_1 + kj) i+l 2(1’11'_1 + l’l,’)(kj_l + kj) il.j=1

vl 2.2
B rxihi_ oy U —PO 102Xy 0
i+1,j

2hi(hi—y + hy) 2hizy + hi)(kjy +kj)) B
- n—1 (Uln+1 _ U,n )
—|w U" + Z(wn_m+1 — Wy U™ — wnUO + U# )
m=1

We investigate the equaled step size of the underlying asset. Let h;_; = h;, k;_; = k;, then the grid point
of the underlying asset can be written as x; = ih,y; = jk, where h = X/M, and k = Y/M,. This means
that we use the uniform grid size. We then obtain

1 n+1 2 n+1 3 n+1 4 n+1 5 n+1 6 n+1
AijUZ o+ " AGUD + NGUD i + 78U + 70U + PG U

i-1,j
3 n+1 7 n+1 1 n+1
+OAGUG o+ AU+ AU
_ 1 n+1 2 n+1 3 n+1 4 n+1 5 n+1 6 n+1 3 n+1
== N;UZ o = "NGUS =AU — AU = NGUS =P U =AU
n—1 (U(H-—I —_yr )
7 n+l1 1 n+1 n m 0 L] L]
— Ai,jUi+l,j - Al',jUi+1,j+1 — | U" + Z(a)n_,m.] - wn—m)U - w,U" + O'T ,
m=1
(3.8)
where
2.2 Vi — o2y
A o PO, TN 0NN POIORNY) g, Vi~ 0%
Lj = _T’ ij = T’ Lj = T’ Lj = T’
2.2 2.2 vy 2402 2.2
P P 5 o) I R P =
hy=— + ty M= s
Equation (3.8) can be written in matrix form as follows:
Case j=2,3,...,.My—2andi=1,2,..., M, - 1:
1 n+l 2 Fn+l | 3 In+l _ 1 n 2 7n3 n I-n , 2 3-n n170 n.
AjUj—l + AJU] + AjUj+] = BjUj—l B]U] BjUj+1+ Cj+ CJ-+ CJ+DJU]+EJ, (39)

Case j=landi=1,2,...,M,-1:
1 Sn+l |, 2 n+l | 3 n 2 3 7 2 3 n 770 n.
A CH L+ 2A U AU = 'BUY PBiUYBUY, + 18+ 28 +°C + DIUY + E, (3.10)
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Case j=M,-landi=1,2,...,.M, - 1:

1 In+l 2 n+l |, 3 Sn+l 1 2 n3 =n 1n , 2:m , 3-m n170 n
AU +7°AU7 +°A;C5 = BU_“BjUB;Cly + ¢ +7°C +°C + DU + EY, (3.11)
where
Ay Ay 0 0
1 4 3 :
A2,j A2,j Az,j :
lA _ . . .
i=1 o .. .. .. E
1 4 3
: Ame-2j "Ame-2j "Ame-2j
1 4
Y 0 Am-1j “"Am-1]
5 g 7
Al,j+ DIET Al,j 0 0
2 5 o 7 .
Az,j AZ,]‘ + 21-a AZ,j .
2 _ . . .
AI - 0 t. S S O ’
2 5 o 7
: Ay—2j Ay + 5= Ap,—2j
2 5 o
| 0 e 0 Ay Ap,1,j + 50
°A; Ay 0 0
3 6 ! :
Ayj "Noj Ay :
3A _ . . .
=l o - g .. 0o |
3 6 i
: Ame2j "Ame2j Amc,
3 6
| 0 0 Am-1j °Am-1]
(—*A1; —A 0 0
1 4 3 :
— Ny Ly Ay :
lB _ . . .
= 0 5 .. .. 0o |
: 1 4 3
: —Ame2j —Au-2j —Am-2;
1 4
| O e O - AMX—],j - AMX—],j‘
>—5A1,]~+2%—w1 —7[\1']' 0 0
Ay M+ —wr Ay
2 —
BJ = 0 0 )
A2 Ay + 55 - wi ~TAp,-2,j
| 0 cee 0 —ZAMX_LJ' _SAMX—I,j + 21% — w1 |
_6A1,j lALj 0 0 |
3 6 ! :
Ayj "Ny Ay :
3B _ . . .
i=1 0 - " . o |
3 6 i
: Ame2j "Ame2j Am2,
3 6
o .- 0 Am-1,j Ayl
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1,j Lj
n+1 n
ﬁn+l — Uz’j i — Uz’j
J : T : ’
n+1 n
UM);_Lj UMx_lvj‘
_1 (TTNn n+1 _3 (TTNn n
Al,J(Uo,j—l + UO,j—l Al,J(Uo,j + Uo,j)
0 0
1zn _ 2= _
C} — : ) Cj - N )
0 0
_3 . n n+1 _7 (TTn n
! AMx,.I(UMx,j—l + UMx,j—l)- L AMx,J(UMx,j + UMX,j)-
_3 (TN n 7 [7n ]
A1’</(U0,j+1 + UO,j+1) Uj—l Uj—l
0 0
3zn _ ~n
Cj - . ’ ;l - . )
0 0
_1 . n n n n+l1
L AMX’J(UMx,j+1 + UMx,j+1)_ ,UMy - UMy |
[ n-—1
m
(wn—m+1 - wn—m)ULj
m=1
w, 0 0 0 =)
m
D 0 w, O En = Z(wn—mﬂ - wn—m)Uz,j
. . > i T m=1
: 0
0 0 Wy el
m
Z(wn—m+l - wn—m)U —1,j
m=1

From Egs (3.9)—(3.11), we can rewrite it in the following matrix form:

AU™! = [BU" + C"], n =0,
AU™! = [BU" + C" + D"U"], n=1, (3.12)
AU™ = [BU"+C"+D'U°+E", n=2,3,..,N,
fori=1,2,...,My—1and j=1,2,...,M, — 1, where
24, 3A, 0 0
1A2 2A2 3A2 .
A=|0o - 0
"Ap,— ZAMy—Z 3A/wy—z
0 0 Ay Ay
2B, 3B, 0 . 0
'B, 2B, 3B, :
B=|o0 0
'By,—2 *Bu,—» By,
0 0 'By,—1 *Bu,—
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Crll + C’f+1 + ]Crll + 2C’11 + 3Cr1z
Mo an o n
165 + 26, + 3C,
Mo oo on
o 165 + 2035 + 3C3

ch 1+2CM 1+3CM -1
n n+1
C +C +1CM +2CM +3CM

In Eq (3.12), A and B are triangular block matrices of dimension [(M,—1)(M,—1)]x[(M,—1)(M,—1)].

3.1. Stability of the modification finite difference method

The stability of the investigated scheme is analyzed by using a Fourier analysis. The uniform spatial
grid nodes are introduced. Define x; = ih,,y; = jh, where h, = X/M,, h, = Y/M,. This means that this
part is available for the scheme with uniform meshes. Let U}, be the approximate solution and define
ﬁ;fj = ”Z,-‘Ufja forn=0,1,...,N,i=0,1,...,M,,and j = 0,1,..., M,. The round-off error equation
can be written as

2.2
p0'10'2x,y, 9 4 rXi — 07X Ul PT102X;Yj g+
j-1 4 i-1,j 3 i—1,j+1
2.2 2.,2
ﬂnH + ox; 99); + r + 9!
e 2 2 2 2 )W
2.2
n+l PO1O2Xi Y\ onit X T ORX ) sl PO1T2XYj\ onit
]ﬂl j+1 ( ) ﬁH—l J—1 + 4 ﬁi+l,j +\ - 8 ﬁt+l J+1
P0'10'2xzyj n rXi 0' x . PO102XYi\ o
01 1,j-1 — ﬂl 1,j 19i—l,j+1

4 8

—O'y 0_2x_2 0'2y2» o
[ 21) l’j_l_[ll_i_ 2 r 9"

2 2 27 o

rx; — O'fxl.2 ;
IR Sl DY

ﬁl’l

_‘72)’1 g _ (PI1T2XD,
< Vi1

8

B (_P0'10'2Xiy])

n—1
8 07+1 L+l |:w1ﬂn + Z(wn—m+l - wn—m)ﬂm - wnﬂol .
m=1

The grid function is defined by 97 ,(r, x,y) = ¥}, when Xin < X < Xpn,yin <y < Y, and
& (1, x,y)=0when0<x<40<y<forL-f<x<LL-%<y<L
The Fourier series of ﬁl’fj(t, X,y) can be represented in the form

[ee)

9"(t, x,y) = Z Z (L, &)@t

{1==00 H=—00

where [ is the imaginary unit. The Fourier coefficients 1"({;, {>) are given by
1 L L
A, 8) = 2 f f 0" (x, y)e_z’”({'x/l+{2y/l)dxdy.
0o Jo
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Introduce the norm of 9" as

1197, = Z]MZ]hhlﬁ (f f 19! zdxdy)

Then, apply the Parseval’s equality

f f 97 Pdxdy = > TG OP,
{1=—00 {H=—00
to obtain
oo i 1/2
Wl =| > > @GP
{i1=—00 {r=—00

Let 9, = Arel ity o =212, /1, v, = 2, /1, and [ = 1. Equation (3.12) becomes

pras [(‘pm"zxiyf DGk [T ~ o =Dt Gyyzhy)
8 4

2.2
(pmazx,y]) IG=Vy1 et Gi+Dyahy) (ry U ) A OVhHG=1721y)
4

_I_
2 ; ry; — o2y?
7i X TV O ety | 2T T ity
2 2 2l 4
010X, rx; — o2y’
+(p 192 ,y]) 1D G=1y2hy) +( LV G Dyt Giyahy)
4
+ (_p(rl‘fzx’y j ) 1((i+1>y1hx+(j+1>yzhy)]
—p(r Oy rx; — o2x?
102X J) 1=y 1he+(=Dy2hy) _ Dt Gyaiy)
4
102X ry; — o3y?
('0 1724y ) I(=UyihtGityyahy _ | 220 7270 ) 1@y e+ (=Dy2hy)
4
O T2 T T by
2 2 2 2l
242
| P9 Oy G yahy) _ (pa 102XiYj )el((i+1)71hx+(j_l)72h)’)
4 8
2.2
i I+ Dyihe+(yahy) _ DT\ G+ Dy 1+ (+1)yahy)
rx g1 X; PO 102Xy !
_( T, ) _ 0
4 8
[ n—1
- wlel((l)ﬂhx-'—(”nhy) + Z(wn—m+1 - wn—m)Um — Wy UO ’
m=1
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or
e [( —palggxiyj)e_mhx o Tl ( rX; 40-2)52)6_1%}” N (PO’]Oézxi)’j)e_mhx 5 72y
+ (M_TO%] e~ 4 [# + 0-52)% + % + 2?_ ) + (—W_TO%) elrh
(BTN g g [_$) i (LTI g |
(- 0'2] s (0‘2)62 o3Y; r_ o ]
2 2 2l
I IR _40-2); j ] oy _ (p 0'—108'2351‘)7 J )e’whx oIk _ (_ X 4‘7%)62) Iyih,
- (M) Iyihe o e”zhy] —|w + nz_i(wn_mﬂ — Wpe) U™ — w,U°].
m=1
So, we get
(PR ) costyi + yahy) + (B2 | cos(=yihe + o)
_ (_”“" ‘4f’%xl'2)1sin(y1hx) - [—yj = 2)151n(7’2hy) ¥ ‘722”2 + Giy i . ;J
=2 | (B2 ) costyiy + y2hy) - (B2 ) cos(=yih + yahy)
+ fal _4 i iz)lsm()q ) +( Y=o 2]]51n()/2hy) - O-Txlz - 273’] - % 2?;,]
L m=1
or
P [( _po'lg'inyJ) oI s g~Irhy (r Xi _40'%9‘1'2) o (pa'l";xi)’j) oIk s vy
. (r)’j _4<T§y§)e_1y2h, + [@ + @ + % + 2?: )
+ (_ i _4(T§y 3] oy (p—mo;x,-y ] )elwhx % o=l 4 (_—rxi 40-%)92) Iyihs
4 (—Pﬂ'lg'zxiy]) ke 5 e’”h«V]
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8

4 2 2

8

e (M) o Iy _ (L) s _ (M) o g72h

2.,2 2.0 2
ry; — o2y? o2y?
Yim Vi o, | 91% Vi r o
— e + t5 " 5

2.2
ry. — O - o RV
_ _]—zyf Iyzhy _ /ﬂ Iyihy —Iyhy, _ | _
4 e e X e

2,2

4 8

(3.13)
4

)
rx; — OX; )elwhx

n—1
—PO 102Xy Z
m=1

8

The next proposition is an essential tool for helping us consider the stability of the proposed scheme.

3
Proposition 3.1. Ifi < 3% then |A"| < |A°%,n=1,2,...

Proof Let ¥, =
(P ) sintyano. s = (P

(PO'lexiyj

ryj=

: )cos(ylh + Yahy). o
)I sin(yzhy).

, N where A" is the solution of Eq (3.13).

_ (PUlo'zxiyJ'

& )COS(—%hx + yohy), Y3 =

To prove this proposition, we will use the mathematical induction.

Start with n = 0, then

LAY A
Y - l//2+l//3+lﬁ4———2——- e
1 2 2 21-a 0 0
| = T ] < 12°]
Y1+ =Y —Yst+ + 5+ 55
So, |4 < 12°).
Now, assume that |2 < [2°), fork = 1,2,...,n. We need to prove this for k = n + 1.
Consider
22 22
ol 05 r
Radl ¢’1—§02+¢3+¢4—T—T—§+2m w1
< Uzj
—Y Y — s — Y+ -+ B L4 5T
1
0
+ o2 022 Z(wn—m Wy, m+l) Wy, |/l |
Y1+ Y3 —Yut+ -+ 5+ 5+ 5 L=l
2,2 o2 .
¥ - ¢2+l//3+l//4———7—§+2170w] w1
- 20
Y+ —Ys — Y+ S+ B+ 45
+ 7 o |A7].
Y+ -3 —Yu+ -+ B+ L+ s
(r%i2 0'%]'2 r
Ifwl_l//2+'7[’3+l//4_T_T__+21a w; > 0, then
‘T%jz r o
) < Y — $2+¢3+W4———T—5+21—_a—w1+w1 I
< 02],2
Y+ — U3 -+ -+ B+ L4 5T
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W Yo + U3 + U ot o3 ry o
1= V2 3 4_T_T_§ 21
= LI 4] < 1.
—Y1 + Y — Y — Y + T + 5 +5+ 3%
2:2 22
If ) — Yo+ s + by — - — B — § + 5% —w; <0, then
o | o) r o
] < O e i i sl St =l 7Sl U B ol 5 Rl VA B 1 )
- i2
—¢1+l//2—l/’3—'//4+m %/+ 5+ 3
0'212 o2 2
(2ot TS sE s e — Y P
—¢1+l//2—¢’%—%//4+m 02/ +5+ 5%
Here, |A"*!| < |A°], then
(7%12 o%j2 r
2w1+T+T+2 210“#4‘%"“/’2—% |
<
Y1+ -y w+a§lz+agﬁ+r+(r
P = Ys = Yat — > DI
or
it o2
1 93
2w1+7+ > t5 - 2“, —Ya— Y3+ — Y
P ¢+0'z+a'zj+r+0'
1 2 3 4 2 2 21—&/'
20 - 1-a 1 3.
So,wehaveZwlsﬂ,then(l+§) (1——) Szl , that is, §<3 i

The following theorem can tell us about the stability of the method, which is conditionally stable.
This means that the proposed scheme is stable for some condition of fractional order a.

3
Theorem 3.2. The Crank-Nicolson finite difference scheme (3.8) is stable if 3 < 37

Proof. Suppose that % < 3“. By applying Proposition 3.1 and using the Parseval equality, we consider

-1 M1 My-1 M1
19" = Z Z I 0P = hyh, Z Z el rihes i

i= : =1
My—1 p—1 My=1 M —1

=hyhy Y P < Y0P

ylix X

Jj=1 i=1 Jj=1 =1
My=1 M, ~1

= hyh, |0t = 190 .

This means that |||, < [|9°||,, forn =0,1,...,N.
Thus, the proposed Crank-Nicolson finite difference scheme (3.8) is conditionally stable. O
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3.2. Convergence analysis

The convergent of the proposed finite different method can be proved by using the following
statements.

Denote the truncation error at (z, £ X0y i) by R"“/ 2 We let s = u(x;,yj, 1) — U} i For this part, we
assume that &4 = h, = h,. This means that this part is avallable for the scheme with uniform meshes.
From Eqgs (2.4) and (3.7), we consider

2.2
—PO 02Xy O 102X, rxp—oyx;\
£l [(%)cos(ylhx +72h) + (P cos(-yih, + yahy) - (Tl)lsm(ylhx)
2.,2 2.0 2.,2
ry] - O-Zyj . O-l'xi 0-2_)7] r ag
-|—|1 hy) + + + =+
4 ) Sin(y2hy) + =3 2 27 o
» 2.2
O102XY; O102XY; rxi—oix;\
=" |(ZE222 ) costrame + vahy) = (F5 Jcos(pie + 72h) + (Tl) Isin(yih,)
' (3.14)
— 022 2.2 2.2
ry] O-Zyj . 0-1xi 0'2)7] r ag
+| L2 hy— —L 2Ly
4 ) SinGaly) = == =" =5 o
n—1
—|w; + Z(w”‘m“ — Wy U™ — 0, U°| + Rffl/z.
m=1
From Eq (2.4), there is a positive constant C; such that
R < €l + 1) (3.15)

Similar to the stability analysis part, we can write 77,,(x, y) and R**!/2(x, y) as Fourier series.

&'(x,y) = Z Z a8y, )P Gyl

{1=—00 {H=—00
(o)

Rn+l/2(x,y): Z Z (pn(gl,{2)62”]((1X/L+§2y/l‘)’

{1=—00 {H=—00

where the Fourier coeflicients 1, and ¢, are defined by

1 L L
(&1, &) = - f f (2, y)e O LAEID gy
0 0
1 L L
S ﬁf f Rs12(x, y)e e E+ayD gy,
0 0

By the Parseval’s equality and L? norm, we obtain

My—1 M —1 172 o o 1/2
lle"|l> = ( hyhyle] | ] = ( Z Z Inn(él,éz)l] ,
j=1

i=1 fi=—00 fH=1-00

v
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My=1 M,-1 172 o o 12
122
IRl = [ IR ] = [ > D |¢n(41,§2>|J : (3.16)
=1 =1 {1=—0 fp=1-0
By the above expression, we suppose that
8nj — nnel(iylhx+j)/2h)-),Rz}-l/z _ ‘pnel(mh +172h ) (3.17)

By using the assumption (3.17) and Eq (3.14), we obtain

N —PO 102Xy PO102XY
! (TJ)COS(ylhx +72hy) + (TJ)COS(—?’lhx +72hy)
2.2 — 22 2.2 2.2
rX; — OX; . ryj—05); ox; 0, r o
——1I h,) —| ————=|Isin(y2h,) + — + =+
2= (2 s« B 2
o [(PO 102X PO 102Xy
= [(Tj) cos(yih, + y2hy) — (TJ) cos(=y1hy + y2hy)
2.2 2,2 ) 2.2
rX; — O X; . ryj = 03); . oix; 0, r o
+|—|1 hy) +|———— |1 h)— ——-———+
( 7 ) sin(yh;) [ 7 ] Sin(yahy) = — = —F = 2+ o
n—1
+ Z(wn—m - wn—m+1)nm — W1 + 90n+1/2 .
m=1

After simplification, we have

2 o2
n+1_¢1—¢2+‘/’3+‘ﬂ4—7—27—§+%

0'2_]

Y1+ Yo — Y3 - l/’4+—+—+ + 5%

n—1
1
+ [Z(wn_m = W " = W11, + 9"

o-z 0'2J

“Y+tr—Ys—Yut T+ S +5+ 55

m=1
(3.18)
Next, we want to show that if " forn = 1,2,..., N is the solution of (3.18), then there is a positive
constant C, such that

2] = 1" (G, )] < Calp' (8, )| = Gl (3.19)
Suppose that 7! and ¢"*!/? satisfy Eq (3.18). Then, we have
|nn+1/2| < Cz(n + 1)|901/2|’ n= O, 1,, .. ,N— 1.

We show this by using the mathematical induction.
Suppose that n° = 1°(£;, £») = 0. Then, we have ° = 0. Next, we consider

1
'l = =7 '],

-y +lﬂ2—lﬁ3—¢’4+
'l < lp'?] < Cale' 2.

210
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Assume that [17°7!] < Co(s + D|¢'/?| for s = 0,1,...,n — 1. We need to show that it is true for s = n.

From Eq (3.18), we have

ai? o3 r T
W=ty tds——5 -5 -3+ —w
|77n+1| < 2 — mnl
(Tl O’j
Y1+ -3 —Yat+ T+ S+ 5455
-1
1 n
+ 02/'2 X Z(wn—m_wn—m+l)nm
Y+ —Ys—yu+ -+ B+ L4 ST =1
+ 1 |S0n+1/2|
22 2'2
J
AR e i e s
O'%iz a3 r o
Y - ¢2+¢3+¢4—T—T—§+F—w1
B U%jz r o
—Yr Y~ — Y+ -+ B 5T
—1
1 n
172
+ 0_2/.2 Z(wn—m_wn—m+l)nm C2|S0/|
—Yr Y — s — s+ T+ B+ 5+ ST L
1
172
i ‘T%iz O-%jz r o C2|Q0 |
AT R i e N
ai a3 r o
_ Y - $2+¢3+¢4—T—T—§+F—w1
U%jz r o
—Yr Y — s — Y+ -+ B L5
wp — wn
¥ s a3 r o
Y1+ —Ys—Yut+ -+ S5+ 5+ 5
1
1/2
* 22 o2 Cale -
Y1+ —Ys—Yut+ 5+ S5 +3+ 5%
- AP, g
Ui =Y+ s+ — =5 — 5 — 5 + 5% — w; > 0, then we have
+ 3 + ———ﬁ—1+"— +1
|]7n+1|< WI lﬁz ‘ﬁS '704 2 2 Jl-a Wy C2|(101/2|
- 2:2
—¢1+lﬁ2—¢3—$4+%+i+ + 5%
<Cy(n + Dg'.
If gy — g + _af _of 0, then we h
1=+ Yty - = = — I+ 5% — w; <0, then we have
2:2 22
Ot L%l o g — U —
|]7"+1|< wi + B + B +2 Hi-a l/’4 l//3+lﬁ2 lﬂl C()n+1 C2|901/2|
- 0'12 0'
Y+ =Y —Yu+ T 5+ 3ia
2 o O%Jz o 1
|t t +'_F_W4—l//3+l//2—lﬁ1—wn+ G
B o2i? rr 21
_ — U — ar oy
e R el P T 5+ 5t
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" <Ca(n + D'

Then, we need to have (1 + %)HI _ (1 _ %)1‘“

This means that the inequality holds when 39

Theorem 3.3. If % < 39, the Crank-Nicolson finite difference scheme (3.8) is convergent and the order
of convergence is O(t*~ + h?).

3
Proof. Suppose that "*! and ¢"*!/? satisfy Eq (3.18). If . 3%, we have

M)‘_l Mx—l y 1MA 1
2 I' hy+ jyahy) |2
wit= 35 i oSS oo
j:] i=1 ]: i=1
Mx lMX 1 M‘ lMY 1
= hyh, Z "> < C3(n + 1)°hyh, o'/
== Jj=1 i=1

My—1pM.—1

= C(n + 1)*hyh, Z Z ! el it 2 = €2 4 12||RV2|2.

J 1

Notice that (n + 1) < T'. Let C = C,C,T. From Eq (3.15), we have
le"|l, < C(x* + h?).

The Crank-Nicolson finite difference scheme (3.8) is convergent and the order of convergence is
ot + h?). o

4. Numerical examples

In this section, we apply the proposed scheme to find the solution of a fractional-order Black-
Scholes model with two assets for European call and put options.
4.1. The numerical example for European call option

The investigated Black-Scholes model with two assets can be expressed as

1, LUy, 1 4, ,0°Ux .t
DfU(x,y,t)—— 2x2 (x,y ) —o2y? (x, 3, 1)

axx 22 dy?
A*U(x,y,1) oUu(x,y,t) oU(x,y,t)
— PO 102Xy —rx —-ry +rU =0,
0x0y 0x ay

(x,y) € Q =10,200] x [0,200], t € [0,1],
with the initial condition:

U(x’ Y, O) = max(ﬂlx +ﬁ2y - Ka 0)’
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and boundary conditions:

U(0,y,1) = max(B,y — Ke™"®,0),
U(x,0,1) = max(B,x — Ke™",0),
U(x,y,t) = max((B1 x + Boy) — Ke ™", 0), X — 00 0ry — oo.

Set the parameter values as the strike price, K = 50, the risk-free interest rate (per year), r = 0.02,
the maturity time, 7 (year)= 1, the volatility of the underlying of x assets (per year), o; = 0.15, the
volatility of the underlying of y assets (per year), o, = 0.2, and the correlation, p = 0.5, 8y =2, f, = 1.

Figure 1 shows the solution of the Black-Scholes model by using the proposed Crank-Nicolson
finite difference method for @ = 0.4 with N = 4, M, = 10, M, = 10. The results show that the
European call option price increases as the underlying assets increase.

t=0,0=04 t=025,0=04

>
X

k)

o

<

k)

3
o]

T
[§]

Call Opt

(b)t=0.25

t=05,a=04 t=0.75,a=04 t=1,a=04

®
8

N ow s oo
8 8 8

Call Option Price U(x,y.t)
8

Call Option Price U(x,y,t)
Call Option Price U(x,y,t)
8

N
S
8

(¢)t=0.50 (d)r=0.75 (e)t=1.00

Figure 1. The solution plots of European call option value for different time (a) r = 0, (b)
t=025(0)t=05,(d)t=0.75,and (e) r = 1.

Figure 2 illustrates the value of European call options for various fractional orders @ = 0.2, @ = 0.4,
a = 0.6, « = 0.8, and @ = 1. The results indicate that by increasing the value fractional order, a
decreasing occurs in the value of option price.

By comparing the numerical result to the analytical approximate solution of the fractional-order
Black-Scholes model for call option, the approximate solution from the LHPM [49] is applied. The
relative root mean square error (RRMSE) is used to compare the result.

Table 1 shows the RRMSE for call option price for various times and fractional-orders . The value
of errors confirms that the proposed finite difference scheme provides the option price not significant
from another approximate method.

AIMS Mathematics Volume 9, Issue 7, 17205-17233.



17225

t=0.5,p=0.5,$2=80 t=0.5,p=0.5,51=80

—F—a=02

500 | % —a=06
a=08
a=1

N
[=}
S

Call Option Price
Call Option Price
w
8

n

=]

S
T

200 [

o
S
T

100

0’ R R — ——

S1 S2

— % A 1 A A 1 A 1 A n
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

(a) The call option price with various fractional order @ (b) The call option price with various fractional order «

when fixed S, = 80. when fixed S = 80.

Figure 2. Solution plots of the fractional order Black-Scholes model by using the proposed

method at time ¢ = 0.5 with fractional order & = 0.2,0.4,0.6, 0.8, and 1.0.

Table 1. RRMSE for call option price from the proposed scheme comparing to LHPM.

Time a=0.2 a=04 a=0.6 a=0.38 a=10

0.00 0.004951 0.008436 0.009042 0.007713 0.004374
0.25 0.007041 0.008205 0.007851 0.009481 0.003692
0.50 0.007346 0.006986 0.008442 0.008498 0.004813
0.75 0.006925 0.007411 0.006599 0.008270 0.005533
1.00 0.007124 0.007428 0.006589 0.009426 0.004167

4.2. The numerical example for European put option

The European put option based on the model of the Black-Scholes model with two assets thai is

investigated in this example is given as follows:

1 FUx,y,1) 1 PU(x,y, 1
D;*U(x,y,t)—iafxz—(” ) _ 120Uy

02 27 Ty
PUx,y,n)  oUMx,y, 0 Uy, 1)
— PO 02Xy —-rx —ry +rU =0,
O0xdy Ox Ay

(x,y) € Q =[0,200] x [0,200], ¢ € [0, 1],
with the initial condition:
U(x,y,0) = max(K — (B1x + £2Y),0),
and boundary conditions:

U(0,y,1) = max(Ke™” — 8,55, 0),
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U(x,0,7) = max(Ke "™ — B,x,0),
U(x,y,t) = max(Ke™™ — (B, x + 5y), 0), X — 00 0ry — 0o.

To illustrate the numerical solutions, we set the values of parameters as the strike price, K = 150,
the risk-free interest rate (per year), r = 0.02, the maturity time, 7" (year) = 1, the volatility of the
underlying of x assets (per year), oy = 0.15, the volatility of the underlying of y assets (per year),
0, = 0.2, and the correlation, p = 0.5, 8; = 2, 8, = 1. The domain is discritized by N = 4, M, = 10,
and M, = 10.

Figure 3 shows the numerical solution of the fractional order Black-Scholes model which is solved
by the proposed finite difference method. The results show that the put option price decreases when
the underlying asset price increases. The put option price will reach zero when S| is greater than 100
and S, is greater than 50.

Figure 4 illustrates the value of European put options for various fractional order @ = 0.2, @ = 0.4,
a = 0.6, o = 0.8, and @ = 1. The results show that the put option price decreases when we increase
the fractional order.

By comparing the numerical result to the analytical approximate solution of the fractional-order
Black-Scholes model for put option, the approximate analytical solution from LHPM [50] is applied.

Table 2 displays the RRMSE for put option prices at various times and fractional-orders a. It is
noted that approximate analytical solutions generally require less computational time than numerical
solutions, as they can be computed directly at specified points. However, analytical solutions may
not always be feasible due to dependencies on equations, domains, initial conditions, and boundary
conditions. Analytical solutions are specific to each problem and may differ from numerical solutions.
While analytical solutions typically offer high accuracy, the approximate analytical solution provided
by LHPM is selected for comparison with the proposed finite difference method. The error values in the
table affirm that the proposed finite difference scheme provides option prices that are not significantly
different from other approximate methods.

Table 2. RRMSE for put option price from the proposed scheme comparing to LHPM.

Time a=02 a=04 a=0.6 a=0.28 a=10

0.00 0.007668 0.009536 0.009537 0.008723 0.005745
0.25 0.006136 0.009986 0.009157 0.005988 0.005936
0.50 0.007010 0.008248 0.008229 0.008926 0.006725
0.75 0.006259 0.008868 0.007991 0.008182 0.005920
1.00 0.006547 0.007218 0.007335 0.009801 0.008776
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Figure 3. The numerical solutions of the fractional order Black-Scholes model show the put
option price by using the proposed method for order @ = 0.4 at time (a) ¢ = 0.00, (b) = 0.25,
(¢)t=0.50,(d) = 0.75, and (e) t = 1.00.
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Figure 4. Solution plots of the fractional order Black-Scholes model by using the proposed
method at time ¢ = 0.5 with fractional order & = 0.2,0.4,0.6,0.8 and 1.0.

4.3. The numerical analysis

Let g(¢) = £* + 1. The formula for the max norm of errors is given by
Error(a, 7) = max |D§’g(t) — G(ty41 /2)|,
1<n<N

where G(#,11,2) 1s the approximation to D{g(t), which is obtained by formula (3.7) at z, = 1. Table 3
shows the order of the fractional-order difference method.

Table 3. Error table for g(f) = > + 1.

a=0.5 a=0.8
N Error Rate Error Rate
3 0.0825383731 - 0.0672589125 -
6 0.0246116282 3.3536 0.0245714285 2.7373
12 0.0080163211 3.0702 0.0102954495 2.3866
24 0.0026733662 2.9986 0.0045762878 2.2497

Since the investigated model has no exact solution, we compared the value of the option
price obtained from the proposed method to the one obtained from the approximate analytical
method (LHPM) as a reference. The setting parameters are similar to Sections 4.1 and 4.2, and the
fractional-order is @ = 0.5 at time t = 1. The computational times of the two methods are shown
in Table 4. The RRMSE is used to represent the error. The results show that the error decreases as
the number of intervals increases. The computational time of the proposed method is higher than the
approximate analytical method (LHPM) because the finite difference method deals with matrices, but
the LHPM calculates only at the specific points. The benefit of the proposed method is suitable for
many types of problems, but the analytical method is used for specific problems, or some problems
that cannot find the analytical solution.
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Table 4. The compuational error result of the proposed method comparing to LHPM.

Option M N Error Time(s) LHPM time(s)

Put
5 5 0.0087214139 0.24 0.02
10 5 0.0042940916 0.67 0.09
10 10 0.0011981534 1.29 0.12
20 10 0.0010828360 5.27 0.25
20 20 0.0007243762 8.86 0.47
40 20 0.0002639712 20.42 1.18

Call
5 5 0.0092284540 0.18 0.03
10 5 0.0051749610 0.54 0.07
10 10 0.0029358174 1.48 0.13
20 10 0.0009257164 4.71 0.21
20 20 0.0005619228 8.24 0.38
40 20 0.0001472839 18.57 1.01

5. Conclusions

The multidimensional Black-Scholes model has become popular because the option price does
not depend on only one asset. The Black-Scholes model is widely used to compute the option
price in European-style options and is suitable for both call and put options. Recently, fractional-
order derivatives have become powerful tools for improving theoretical understanding. The two-
dimensional time-fractional-order Black-Scholes model is a model that can be used to find the option
price depending on two assets. The solution of this model is crucial for determining a suitable
price for investors. However, some fractional-order partial differential equations do not have closed-
form solutions. As a results, the numerical solutions is the only viable method for determining
the price. Thus, we propose a modified Crank-Nicolson finite difference method for solving the
time-fractional-order Black-Scholes model with two assets. The fractional-order Liouville-Caputo
derivative is applied to the ordinary Black-Scholes model. This method combines the concepts of
the finite difference method for solving the multidimensional Black-Scholes model and the finite
difference method for solving the fractional-order heat equation. Analysis of the proposed method
reveals conditional stability, and the order of convergence is also investigated. Numerical examples
are illustrated to demonstrate the trend of option prices for call and put options. By comparing the
numerical results with solutions from analytical approximation techniques and the LHPM, we observe
only small differences, indicating in the results, which mean that the proposed method is suitable for
solving the two-dimensional fractional-order Black-Scholes model.
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