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1. Introduction

The study of fixed-point theory constitutes a crucial branch of pure mathematics because of its vast
applications in engineering, computer science, economics, etc. Recently, many interesting fixed-point
results have been established (see, for example, [1, 2]). In 2011, Azam et al. [3] introduced the notion
of complex-valued metric spaces (CVMSs) for complex numbers (where i2 = −1) and studied some
fixed-point results. Many researchers have focused their attention on generalized metric space and
CVMS and established different types of fixed-point results (see, for example, [4–10]). Later, in 2021,
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Öztürk et al. [11] introduced the notion of elliptic valued metric spaces (EVMSs) for the set of all
elliptic numbers. Basically, complex-valued metric space is a particular type of cone metric space
which was introduced in [12]. But, fixed-point results involving rational and product terms were not
introduced in the setting of cone metric spaces since this space is based on Banach space, which is not
a division ring. Due to this reason, it is important to study fixed-point results in the context of cone
metric space (or EVMS) involving rational and product terms. On the other hand, the notion of b-metric
spaces were presented by Bakhtin [13] and later explained by Czerwik [14] for our known structure.
For this paper, our intention is to introduce the notion of elliptic-valued b-metric spaces (b-EVMSs)
by combining the ideas of EVMS and b-metric space. Now, we give a brief background about integral
equations. In the literature on integral equations, there are two types of famous integral equations that
are available depending on the limits of the integration, i.e., Fredholm integral equations (here, the
limits are constant) and Volterra integral equations (here, at least one of the limits is a variable). Based
on the form of the unknown function, the above-mentioned types of integral equations are either linear
or nonlinear. Both the Fredholm and Volterra integral equations are divided into three categories, first
kind, second kind, and third kind. A particular type of nonlinear Fredholm integral equations of the
second kind is given by

u(t) = σ(t) +
∫ d

c
Θ(t, r, u(t), u(r))dr, t ∈ [c, d],

where σ,Θ are given functions and u(t) is an unknown function. The above integral equation has
two special subclasses, i.e., Hammerstein integral equations and Urysohn integral equations. In the
application section, we will discuss the solution of an Urysohn integral equation by using our new
findings. Next, we move to the preliminary section, where we mention some relevant definitions and
important results, which will be required for the proof of our main results.

2. Preliminaries with known results

Let Ep be the collection of all elliptic numbers given by

Ep = {η = η1 + iη2 : η1, η2 ∈ R, i2 = p < 0},

where η1 is the real part and η2 is the imaginary part of the elliptic number η1 + iη2. For the definitions
of the summation of two elliptic numbers, multiplication of an elliptic-valued number by a scalar,
multiplication of two elliptic numbers, and conjugate and norm of an elliptic number, we refer the
reader to [11]. From now, we write θ to denote the zero element of the elliptic number system. The
inverse of an elliptic number η = η1 + iη2(, θ) is given by η−1 =

η1−iη2

η2
1−pη2

2
. We now define a partial

ordering “ ≾ ” on Ep as follows:

η ≾ ξ iff Re(η) ≤ Re(ξ) and Im(η) ≤ Im(ξ).

Therefore, if η ≾ ξ, then the following relations hold:

i. Re(η) < Re(ξ) and Im(η) < Im(ξ);

ii. Re(η) < Re(ξ) and Im(η) = Im(ξ);
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iii. Re(η) = Re(ξ) and Im(η) < Im(ξ);

iv. Re(η) = Re(ξ) and Im(η) = Im(ξ).

The partial ordering “ ≾ ” defined on Ep satisfies the following properties:

P1 : If θ ≾ η ⋨ ξ, then ∥ η ∥<∥ ξ ∥;

P2 : If η ≾ ξ and ξ ≾ ζ , then η ≾ ζ;

P3 : η ≾ ξ ⇔ η − ξ ≾ θ;

P4 : θ ≾ η and θ ≾ ξ ⇏ θ ≾ ηξ;

P5 : η ≾ ξ with τ ∈ R+ ⇒ τη ≾ τξ.

Next, we introduce the definition of a b-EVMS as follows.

Definition 2.1. Let Ω be a non-empty set and s ∈ [1,∞). A function ϱ : Ω × Ω → Ep is called a
b-EVMS on Ω if the following assertions hold:

A1. θ ≾ ϱ(γ, δ), ∀γ, δ ∈ Ω;

A2. ϱ(γ, δ) = θ ⇔ γ = δ;

A3. ϱ(γ, δ) = ϱ(δ, γ), ∀γ, δ ∈ Ω;

A4. ϱ(γ, δ) ≾ s(ϱ(γ, κ) + ϱ(κ, δ)), ∀γ, κ, δ ∈ Ω.

Here, we call the pair (Ω, ϱ) a b-EVMS.

Example 2.1. Let Ω = Ep. Define a mapping ϱ : Ep × Ep → Ep by

ϱ(η1, η2) = |ξ1 − ξ2|2 + i|ζ1 − ζ2|2,

where η1 = ξ1 + iζ1 and η2 = ξ2 + iζ2. Then, (Ep, ϱ) is a b-EVMS.

Example 2.2. Let Ω = E∗p, where E∗p denotes the collection of all elliptic numbers with the same
argument ∇p. Define a mapping ϱ : E∗p × E

∗
p → Ep by

ϱ(η1, η2) =∥ η1 − η2 ∥
2 ei∇p , ∇p ∈

[
0,
π(p − 1)

8p

]
,

where ∇p is the argument of η1 and η2 with p < 0 and p ∈ R. Then, (E∗p, ϱ) is a b-EVMS.
All of the topological structures for the b-EVMS (Ω, ϱ), like the ϱ-interior point, ϱ-limit point, ϱ-

closed, ϱ-convergence, ϱ-Cauchy sequence and ϱ-complete are of similar types as those for an EVMS
(see [11]). Due to the length of the paper, we are not providing the details here. Like Lemmas 3.1 and
3.2 of [11], one can establish the same type of results in the setting of a b-EVMS. Let (Ω, ϱ) be a b-
EVMS. Then, (Ω, ϱ) is called ϱ-continuous if the corresponding elliptic-valued b-metric ϱ from Ω ×Ω
to Ep is continuous, i.e., if {un}, {vn} are two sequences in Ω with un → u∗ and vn → v∗ as n→ ∞, then
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ϱ(un, vn) → ϱ(u∗, v∗) as n → ∞. Clearly, if (Ω, ϱ) is ϱ-continuous, then every convergent sequence has
a unique limit. Now, we write L and Lo to denote the following subsets of Ep:

L = {η ∈ Ep : η ≿ θ} = {η = ξ + iζ ∈ Eb : ξ ≥ 0; ζ ≥ 0},

and
Lo = {η ∈ Ep : η ≻ θ} = {η = ξ + iζ ∈ Eb : ξ > 0; ζ > 0}.

Definition 2.2. Let f : Lo → Lo be a function. Then,

(i) f is monotonically increasing if for any γ, δ ∈ Lo with γ ≾ δ⇒ f (γ) ≾ f (δ).
(ii) f is said to be ϱ-continuous at γ0 ∈ L if for any sequence {γn}

∞
n=1 ∈ L with

γn → γ0 ⇒ f (γn)→ f (γ0).

Öztürk et al. [11] defined the notion of a C-class function in the setting of an EVMS, which is also
valid in a b-EVMS. Motivated by [15,16], next, we introduce the definition of a revised CF -simulation
function in the context of a b-EVMS.

Definition 2.3. A mapping F : Lo × Lo → Ep has the property CF if ∃ a CF ≿ θ such that

C1. F (η1, η2) ≻ CF ⇒ η1 ≻ η2, or ∥ F (η1, η2) ∥>∥ CF ∥⇒∥ η1 ∥>∥ η2 ∥ .

C2. F (η1, η2) ≾ CF or ∥ F (η1, η2) ∥≤∥ CF ∥, ∀η1, η2 ∈ L.

Definition 2.4. A revised CF -simulation function is a function λ : L × L → Ep that satisfies the
following assertions:

λ1. λ(γ, δ) ≺ F (δ, γ) or ∥ λ(γ, δ) ∥<∥ F (δ, γ) ∥, ∀γ, δ ≻ θ, where F is a C-class function
with the property CF ;
λ2. let {γn}, {δn} be two sequences in Lo such that either statement is true:
λ2a. θ ≺ lim

n→∞
γn ≾ lim inf

n→∞
δn ≾ lim sup

n→∞
δn ≾ s lim

n→∞
γn ≺ ∞ implies lim sup

n→∞
λ(sγn, δn) ≺ CF ,

or
λ2b. 0 < lim

n→∞
∥ γn ∥≤ lim inf

n→∞
∥ δn ∥≤ lim sup

n→∞
∥ δn ∥≤ s lim

n→∞
∥ γn ∥< ∞ implies

lim sup
n→∞

∥ λ(sγn, δn) ∥<∥ CF ∥ .

Now, we shall give examples.

Example 2.3. Let λ : L × L → Ep be a function given by λ(η1, η2) = a
bη2 − η1, where η1, η2 ∈ L with

a, b ∈ R+, b > a, and F (η1, η2) = η1 − η2 with CF = (s + 1)(ρ1 + iρ2), where ρ1 + iρ2 ∈ Ep. Clearly, λ1

holds. Let us take two sequences {γn}, {δn} from IntL such that
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θ ≺ lim
n→∞
γn ≾ lim inf

n→∞
δn ≾ lim sup

n→∞
δn ≾ s lim

n→∞
γn ≺ ρ1 + iρ2,

or
0 < lim

n→∞
∥ γn ∥≤ lim inf

n→∞
∥ δn ∥≤ lim sup

n→∞
∥ δn ∥≤ s lim

n→∞
∥ γn ∥< ρ,

where ρ =∥ ρ1 + iρ2 ∥. Then,

lim sup
n→∞

λ(sγn, δn)

= lim sup
n→∞

[a
b
δn − sγn

]
= lim sup

n→∞

a
b
δn − lim inf

n→∞
sγn

=
a
b

lim sup
n→∞

δn − lim inf
n→∞

sγn

≾ lim sup
n→∞

δn − lim inf
n→∞

sγn ≾ θ ≾ CF .

Furthermore, it can be easily checked that lim sup
n→∞

∥ λ(sγn, δn) ∥<∥ CF ∥.

Example 2.4. Let λ : L × L→ Eb be a function defined by

λ(η1, η2) =

1 − η1
2 , if η2 = θ,

kη2
1+η1

, if η2 ≿ θ,

where k is a real number such that k ∈ [0, 1), F (η1, η2) = η1
1+η2

, and CF = 1 + i. Clearly, λ1 holds. To
check λ2, let us take two sequences {γn}, {δn} from IntL such that

θ ≺ lim
n→∞
γn ≾ lim inf

n→∞
δn ≾ lim sup

n→∞
δn ≾ s lim

n→∞
γn,

or
0 < lim

n→∞
∥ γn ∥≤ lim inf

n→∞
∥ δn ∥≤ lim sup

n→∞
∥ δn ∥≤ s lim

n→∞
∥ γn ∥ .

Here, we suppose that lim
n→∞
γn = ρ1 + iρ2 with ρ =∥ ρ1 + iρ2 ∥. Then,

lim sup
n→∞

∥ λ(sγn, δn) ∥

= lim sup
n→∞

∥
kδn

1 + sγn
∥

≤ lim sup
n→∞

∥
δn

1 + sγn
∥

≤ lim sup
n→∞

[
∥ δn ∥∥ (1 + sγn)−1 ∥

]
≤ lim sup

n→∞
∥ δn ∥ lim sup

n→∞
∥ (1 + sγn)−1 ∥

≤ s lim
n→∞
∥ γn ∥ lim sup

n→∞
∥ (1 + sγn)−1 ∥

≤
sρ
sρ
≤∥ 1 + i ∥ .
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Moreover, it can be easily shown that lim supn→∞ λ(sγn, δn) ≺ CF .

Example 2.5. Every simulation function is a revised CF -simulation function with F (η1, η2) = η1 − η2

and CF = θ.

Now, we shall state two important lemmas.

Lemma 2.1. For every sequence {γn} from a b-EVMS (Ω, ϱ), the following inequality holds:

ϱ(γ0, γk) ≾ sn
k−1∑
j=0

ϱ(γ j, γ j+1)

for each n ∈ N and each k ∈ {1, 2, 3, · · · , 2n−1, 2n}.
Our next lemma is as follows.

Lemma 2.2. Every sequence {γn} from a b-EVMS (Ω, ϱ) with a constant s such that ϱ(γn, γn+1) ≾
aϱ(γn−1, γn),∀n ∈ N is a Cauchy sequence where a ∈ [0, 1). Further, the following inequality holds:

ϱ(γt, γt+k) ≾
anA

1 − a
ϱ(γ0, γ1),

where A =
∑∞

j=1 a2 j lna s+2 j−1
.

Remark 2.1. The proof of the above two lemmas is similar to the proof given by Miculescu and
Mihail [17] in the setting of a b-metric space.

Remark 2.2. If we have that ∥ ϱ(γn, γn+1) ∥≤ a ∥ ϱ(γn−1, γn) ∥ in place of ϱ(γn, γn+1) ≾ aϱ(γn−1, γn) in
Lemma 2.2, then {γn} is also a Cauchy sequence.

Next, we shall state some important definitions of α-admissible mapping.

Definition 2.5. ( [18]) Let J : Ω → Ω and α : Ω × Ω → R+ be two given mappings. Then, J is said
to be an α-orbital admissible mapping if the following holds:

α(u,Ju) ≥ 1⇒ α(Ju,J2u) ≥ 1, ∀u ∈ Ω.

Definition 2.6. ( [18]) Let J : Ω → Ω and α : Ω × Ω → R+ be two given mappings. Then, J is said
to be a triangular α-orbital admissible mapping if J satisfies

(i) α(u,Ju) ≥ 1⇒ α(Ju,J2u) ≥ 1,

(ii) α(u, v) ≥ 1, and α(v,Jv) ≥ 1⇒ α(u,Jv) ≥ 1, ∀u, v ∈ Ω.

Definition 2.7. ( [19]) A sequence {un} is said to be α-regular if α(un, un+1) ≥ 1 and un → u∗(∈ Ω) as
n→ ∞; then, there exists a subsequence {unk} of {un} such that α(unk , u

∗) ≥ 1 for every k ∈ N.

Note: In the proof of our main results, we will use Definition 2.7 with an additional condition, i.e.,
unk , Ju∗,∀ k ∈ N, where J is a mapping from Ω to Ω, and we still say that it is a α-regularity
condition.

Next, we move to the main section of our paper.
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3. Main results

In this section, first, we introduce the following definition.

Definition 3.1. Let (Ω, ϱ) be a b-EVMS with J : Ω → Ω and α : Ω × Ω → R+ be two mappings.
Suppose that, for all u, v ∈ Ω with α(u, v) ≥ 1, one has

λ(sϱ(Ju,Jv),∆J (u, v)) ≿ CF , (3.1)

where ∆J (u, v) = max
{
ϱ(u, v), ϱ(u,Ju), [1+ϱ(u,Ju)]ϱ(v,Jv)

1+ϱ(u,v) , ϱ(v,Ju)ϱ(v,Jv)
1+ϱ(u,v) ,

ϱ(v,Ju)ϱ(u,Jv)
1+ϱ(u,v)

}
and each term inside

“max” is comparable with respect to the partial order “ ≾ ”. Then, J is said to satisfy the condition of
a generalized α-orbital admissible revised CF -simulation contraction associated with rational terms.

Theorem 1. Let (Ω, ϱ) be a ϱ-complete and ϱ-continuous b-EVMS with a constant s ≥ 1. Let α :
Ω ×Ω→ R+ and J : Ω→ Ω be two mappings such that the following assertions hold:

(i) J is a triangular α-admissible mapping;
(ii) J satisfies the conditions of an α-orbital admissible revised CF simulation contraction;
(iii) there exists a point u0 ∈ Ω such that α(u0,Ju0) ≥ 1;
either
(iva) J is ϱ-continuous;
or
(ivb) if {un} is a sequence in Ω, then it satisfies the α-regularity condition.

Then, J has a fixed point in Ω.

Proof. From our assumption (iii), there exists a point u0 ∈ Ω such that α(u0,Ju0) ≥ 1. Clearly, starting
from this initial point, one can construct a sequence {un} by un+1 = Jun, ∀n ∈ N. For the remainder of
the proof, we will assume that un+1 , un, ∀n ∈ N, i.e., ϱ(un, un+1) ≻ θ. Otherwise, we can find a point,
say, un0 , for which we have that un0+1 = un0 ⇒ un0 = Jun0 . Clearly, we obtain a fixed point of J and
the proof becomes less interesting. Now, since J is a triangular α-admissible mapping, one can easily
get that α(un, un+1) ≥ 1, and, furthermore, α(un, um) ≥ 1, ∀n,m ∈ N with m > n. Now, we shall divide
the proof into two cases.
Case-I: Here, we consider that s = 1. Since we have assumed that ϱ(un, un+1) ≻ θ, ∀n ∈ N, we have

∆J (un−1, un)

= max
{
ϱ(un−1, un), ϱ(un−1, un),

[1 + ϱ(un−1, un)]ϱ(un, un+1)
1 + ϱ(un−1, un)

,
ϱ(un, un)ϱ(un, un+1)

1 + ϱ(un−1, un)
,
ϱ(un, un)ϱ(un−1, un+1)

1 + ϱ(un−1, un)

}
= max{ϱ(un−1, un), ϱ(un, un+1)}.

Now, it can be easily checked that ∆J (un−1, un) ≻ θ, ∀n ∈ N. SinceJ is an α-orbital admissible revised
CF simulation contraction, i.e., we have

λ(ϱ(un, un+1),∆J (un−1, un)) ≿ CF .
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Since ϱ(un, un+1) ≻ θ and ∆J (un−1, un)) ≻ θ, ∀n ∈ N, i.e., by using property λ1, we have

CF ≾ λ(ϱ(un, un+1),∆J (un−1, un)) ≺ F (∆J (un−1, un), ϱ(un, un+1))

⇒ CF ≺ F (∆J (un−1, un), ϱ(un, un+1)).

Now, by C1, we get that ϱ(un, un+1) ≺ ∆J (un−1, un). Clearly, we arrive at a contradiction if we
consider max{ϱ(un−1, un), ϱ(un, un+1)} = ϱ(un, un+1). Thus, we have that ϱ(un, un+1) ≺ ϱ(un−1, un), ∀n ∈
N with

CF ≾ λ(ϱ(un, un+1), ϱ(un−1, un)). (3.2)

Consequently, the sequence {ϱ(un−1, un)} is monotonically decreasing and bounded below by θ.
Hence, there exists η ∈ L such that lim

n→∞
ϱ(un−1, un) = η ≿ θ. We consider η ∈ Lo. Utilizing the

property λ2a with γn = ϱ(un, un+1) and δn = ϱ(un−1, un), we have

lim sup
n→∞

λ(ϱ(un, un+1), ϱ(un−1, un)) ≺ CF ,

which contradicts (3.2). Thus, our assumption, i.e., that η ∈ Lo, is wrong. Hence, η = θ, i.e.,

lim
n→∞
ϱ(un, un+1) = θ. (3.3)

Our next intention is to show that {un} is bounded, i.e., {∥ ϱ(um, un) ∥ : m, n ∈ N with m > n} is
bounded. We now show this by using the method of contradiction. Suppose that {un} is not bounded.
Then, there exists a subsequence {unl} of {un} such that n1 = 1; also, for every l ∈ N, nl+1 is the minimum
positive integer such that

∥ ϱ(unl+1 , unl) ∥> 1, and

∥ ϱ(uq, unl) ∥≤ 1, ∀q ∈ N with nl ≤ q ≤ nl+1 − 1.
(3.4)

Now, applying the triangular inequality property of b-EVMS and (3.4), we obtain

1 ≤∥ ϱ(unl+1 , unl) ∥

≤∥ ϱ(unl+1 , unl+1−1) + ϱ(unl+1−1, unl) ∥

≤∥ ϱ(unl+1 , unl+1−1) ∥ + ∥ ϱ(unl+1−1, unl) ∥

≤∥ ϱ(unl+1 , unl+1−1) ∥ +1.

Now, by applying (3.3), we obtain that lim
l→∞
∥ ϱ(unl+1 , unl) ∥= 1. lim

l→∞
∥ ϱ(unl+1 , unl) ∥= 1 implies

that ϱ(unl+1 , unl) → η1 as l → ∞ with ∥ η1 ∥= 1. Now, since J is an α-orbital admissible revised
CF -simulation contraction, considering that u = unl+1−1 and v = unl−1 in (3.1), we have

CF ≾ λ(ϱ(unl+1 , unl),∆J (unl+1−1, unl−1)).

Observe that ∆J (unl+1−1, unl−1) ≻ θ since each term of ∆J (unl+1−1, unl−1) is comparable and there is a
term ϱ(unl+1−1, unl+1) ≻ θ. Also, ϱ(unl+1 , unl) ≿ θ with ∥ ϱ(unl+1 , unl) ∥≥ 1 (from (3.4)) implies that
ϱ(unl+1 , unl) ≻ θ. Thus, by property λ1, we get

CF ≾ λ(ϱ(unl+1 , unl),∆J (unl+1−1, unl−1))

≺ F (∆J (unl+1−1, unl−1), ϱ(unl+1 , unl))
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⇒ ϱ(unl+1 , unl) ≺ ∆J (unl+1−1, unl−1). (3.5)

Again, we know that θ ≾ η1 ⋨ η2 ⇒∥ η1 ∥<∥ η2 ∥. Thus, from (3.5), we have

∥ ϱ(unl+1 , unl) ∥<∥ ∆J (unl+1−1, unl−1) ∥ .

Now,

∥ ∆J (unl+1−1, unl−1) ∥

= max
{
∥ ϱ(unl+1−1, unl−1) ∥, ∥ ϱ(unl+1−1, unl+1 ) ∥, ∥

[1 + ϱ(unl+1 , unl+1−1)]ϱ(unl , unl−1)
1 + ϱ(unl+1−1, unl−1)

∥,

∥
ϱ(unl+1 , unl−1)ϱ(unl , unl−1)

1 + ϱ(unl+1−1, unl−1)
∥, ∥
ϱ(unl+1 , unl−1)ϱ(unl , unl+1−1)

1 + ϱ(unl+1−1, unl−1)
∥
}

≤ max
{
∥ ϱ(unl+1−1, unl ) ∥ + ∥ ϱ(unl , unl−1) ∥, ∥ ϱ(unl+1−1, unl+1 ) ∥,

[1+ ∥ ϱ(unl+1 , unl+1−1) ∥] ∥ ϱ(unl , unl−1) ∥
∥ 1 + ϱ(unl+1−1, unl−1) ∥

,

[∥ ϱ(unl+1 , unl ) ∥ + ∥ ϱ(unl , unl−1) ∥] ∥ ϱ(unl , unl−1) ∥
∥ 1 + ϱ(unl+1−1, unl−1) ∥

,
[∥ ϱ(unl+1 , unl ) ∥ + ∥ ϱ(unl , unl−1) ∥] ∥ ϱ(unl , unl+1−1) ∥

∥ 1 + ϱ(unl+1−1, unl−1) ∥

≤ max
{
∥ ϱ(unl+1−1, unl ) ∥ + ∥ ϱ(unl , unl−1) ∥, ∥ ϱ(unl+1−1, unl+1 ) ∥,

[1+ ∥ ϱ(unl+1 , unl+1−1) ∥] ∥ ϱ(unl , unl−1) ∥
∥ 1 + ϱ(unl+1−1, unl−1) ∥

,

[∥ ϱ(unl+1 , unl ) ∥ + ∥ ϱ(unl , unl−1) ∥] ∥ ϱ(unl , unl−1) ∥
∥ 1 + ϱ(unl+1−1, unl−1) ∥

,

[∥ ϱ(unl+1 , unl+1−1) ∥ + ∥ ϱ(unl+1−1, unl ) ∥ + ∥ ϱ(unl , unl−1) ∥] ∥ ϱ(unl , unl+1−1) ∥
∥ 1 + ϱ(unl+1−1, unl−1) ∥

}
.

(3.6)

Now, we observe that ∥ ϱ(unl+1−1, unl) ∥≤ 1 and ∥ ϱ(un, un+1) ∥→ 0 as n → ∞. Further, observe that
ϱ(γ, δ) ≿ θ ⇒∥ 1 + ϱ(γ, δ) ∥≥ 1. Next, considering the lim sup as l→ ∞ in (3.6), we obtain

lim sup
l→∞

∥ ∆J (unl+1−1, unl−1) ∥≤ 1. (3.7)

Again, from (3.5), we have that ∥ ϱ(unl+1 , unl) ∥<∥ ∆J (unl+1−1, unl−1) ∥ implies that

1 <∥ ∆J (unl+1−1, unl−1) ∥ . (3.8)

Consequently, taking the lim inf as n→ ∞ in (3.8), we get

1 ≤ lim inf
l→∞

∥ ∆J (unl+1−1, unl−1) ∥ . (3.9)

Hence, from (3.7) and (3.9), we have

lim
l→∞
∥ ∆J (unl+1−1, unl−1) ∥= 1,

which is equivalent to ∆J (unl+1−1, unl−1)→ η2 as l→ ∞ with ∥ η2 ∥= 1. Now, take γn = ϱ(unl+1 , unl) and
δn = ∆Jϱ(unl+1−1, unl−1). Here if η1 = η2, then, by applying λ2a and (3.5), we get

CF ≾ lim sup
l→∞

λ(ϱ(unl+1 , unl),∆J (unl+1−1, unl−1)) ≺ CF ,

which is a contradiction. On the other hand, for ∥ η1 ∥=∥ η2 ∥, we apply λ2b and (3.5) to get

∥ CF ∥≤ lim sup
l→∞

∥ λ(ϱ(unl+1 , unl),∆J (unl+1−1, unl−1)) ∥< CF ,
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which is a contradiction. Thus, from any case, we can conclude that {un} is bounded. Our next goal is
to show that {un} is a Cauchy sequence. Let us consider that Mn = sup{∥ ϱ(ur, us) ∥: r, s > n}, n ∈ N.
Since we have already shown that {un} is a bounded sequence, Mn < ∞, ∀n ∈ N. Now, observe that
{Mn} is a positive decreasing sequence; consequently, there exists an M ≥ 0 such that lim

n→∞
Mn = M.

Let us assume that M > 0. Now, applying the definition of Mn, for each l ∈ N, there exist rl, tl ∈ N

such that tl ≥ rl ≥ l and

Ml −
1
l
<∥ ϱ(url , utl) ∥≤ Ml. (3.10)

Ensuring that l→ ∞ in (3.10), we get

lim
l→∞
∥ ϱ(url , utl) ∥= M, (3.11)

and
lim
l→∞
∥ ϱ(url−1, utl−1) ∥= M. (3.12)

Now, we set u = url−1 and v = utl−1 in (3.1). Consequently, we have

CF ≾ λ(ϱ(url , utl),∆J (url−1, utl−1)), where (3.13)

∆J (url−1, utl−1) = max
{
ϱ(url−1, utl−1), ϱ(url−1, url),

[1 + ϱ(url−1, url)]ϱ(utl−1, utl)
1 + ϱ(url−1, utl−1)

,
ϱ(url , utl−1)ϱ(utl , utl−1)

1 + ϱ(url−1, utl−1)
,

ϱ(url , utl−1)ϱ(url−1, utl)
1 + ϱ(url−1, utl−1)

}
.

It can be easily checked that ϱ(url , utl) ≻ θ and ∆J (url−1, utl−1) ≻ θ. Therefore, we get

λ(ϱ(url , utl),∆J (url−1, utl−1)) ≾ F (∆J (url−1, utl−1), ϱ(url , utl)),

or
∥ λ(ϱ(url , utl),∆J (url−1, utl−1)) ∥ ≤ ∥ F (∆J (url−1, utl−1), ϱ(url , utl)) ∥ .

Hence, from any situation, we have

∥ ϱ(url , utl) ∥<∥ ∆J (url−1, utl−1) ∥ .

Now,

∆J (url−1, utl−1) = max
{
∥ ϱ(url−1, utl−1) ∥, ∥ ϱ(url−1, url) ∥,

∥ 1 + ϱ(url−1, url) ∥∥ ϱ(utl−1, utl) ∥
∥ 1 + ϱ(url−1, utl−1) ∥

,

∥ ϱ(url , utl−1) ∥∥ ϱ(utl , utl−1) ∥
∥ 1 + ϱ(url−1, utl−1) ∥

,
∥ ϱ(url , utl−1) ∥∥ ϱ(url−1, utl) ∥
∥ 1 + ϱ(url−1, utl−1) ∥

}
≤ max

{
∥ ϱ(url−1, utl−1) ∥, ∥ ϱ(url−1, url) ∥,

1+ ∥ ϱ(url−1, url) ∥∥ ϱ(utl−1, utl) ∥
∥ 1 + ϱ(url−1, utl−1) ∥

,

(∥ ϱ(url , url−1) ∥ + ∥ ϱ(url−1, utl−1) ∥) ∥ ϱ(utl−1, utl) ∥
∥ 1 + ϱ(url−1, utl−1) ∥

,

(∥ ϱ(url , utl) ∥ + ∥ ϱ(utl , utl−1) ∥)(∥ ϱ(url−1, utl−1) ∥ + ∥ ϱ(utl−1, utl) ∥)
∥ 1 + ϱ(url−1, utl−1) ∥

}
.
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Keeping in mind that ∥ ϱ(url−1, utl−1) ∥<∥ 1 + ϱ(url−1, utl−1) ∥, and using (3.3), (3.11), and (3.12), we
have that lim

l→∞
∥ ∆J (url−1, utl−1) ∥= M. Now, lim

l→∞
∥ ϱ(url , utl) ∥= M ⇒ ϱ(url , utl) → η1 as l → ∞ with

∥ η1 ∥= M, and lim
l→∞
∥ ∆J (url−1, utl−1) ∥= M ⇒ ∆J (url−1, utl−1) → η2 with ∥ η2 ∥= M. If η1 = η2, then

we apply λ2a with γl = ϱ(url , utl) and δl = ∆J (url−1, utl−1) to show

lim sup
l→∞

λ(ϱ(url , utl),∆J (url−1, utl−1)) ≺ CF ,

which contradicts (3.13). Otherwise, we have that ∥ η1 ∥=∥ η2 ∥. In this case, we apply λ2b with the
same γl and, δl and, consequently, we have

∥ CF ∥≤ lim sup
l→∞

∥ λ(ϱ(url , utl),∆J (url−1, utl−1)) ∥<∥ CF ∥,

which is a contradiction. Thus, our assumption that M > 0 is not correct, i.e., M = 0. Hence, {un} is a
Cauchy sequence.
Case -II: In this case, we assume that s > 1. Here, (3.2) takes the following form:

CF ≾ λ(sϱ(un, un+1), ϱ(un−1, un)).

From this, one can easily derive that ϱ(un, un+1) ≾ 1
sϱ(un−1, un), ∀n ∈ N. Now, by applying Lemma 2.2,

we conclude that {un} is a Cauchy sequence. Since (Ω, ϱ) is ϱ-complete, there exists a u∗ ∈ Ω such that
un → u∗ as n→ ∞. Suppose that J is ϱ-continuous. So, we have

Ju∗ = J( lim
n→∞

un) = lim
n→∞
Jun = lim

n→∞
un+1 = u∗.

Next, we suppose that ϱ(u∗,Ju∗) ≻ θ and there exists a subsequence {unl} of {un} such that
α(unl , u

∗) ≥ 1 and unl , u∗, ∀l ∈ N. Now, setting u = unl−1, v = u∗ in (3.1), we obtain

CF ≾ λ(sϱ(unl ,Ju∗),∆J (unl−1, u∗)).

One can easily check that ϱ(unl ,Ju∗) ≻ θ and ∆J (unl−1, u∗) ≻ θ. Hence, we have

λ(sϱ(unl ,Ju∗),∆J (unl−1, u∗)) ≾ F (∆J (unl−1, u∗), sϱ(unl ,Ju∗)), or

∥ λ(sϱ(unl ,Ju∗),∆J (unl−1, u∗)) ∥ ≤ ∥ F (∆J (unl−1, u∗), sϱ(unl ,Ju∗)) ∥ .

Consequently, from any situation, we get

∥ sϱ(unl ,Ju∗) ∥ < ∥ ∆J (unl−1, u∗) ∥

⇒∥ ϱ(unl ,Ju∗) ∥ <
1
s
∥ ∆J (unl−1, u∗) ∥ .

(3.14)

Now,

ϱ(u∗,Ju∗) ≾ s[ϱ(u∗, unl) + ϱ(unl ,Ju∗)]

⇒∥ ϱ(u∗,Ju∗) ∥ ≤ s
[
∥ ϱ(u∗, unl) ∥ + ∥ ϱ(unl ,Ju∗) ∥

]
.

(3.15)
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Taking the limit as l→ ∞ in (3.15), we get

∥ ϱ(u∗,Ju∗) ∥
s

≤ lim
l→∞
∥ ϱ(unl ,Ju∗) ∥ . (3.16)

Again,

∥ ∆J (unl−1, u∗) ∥

= max
{
∥ ϱ(unl−1, u∗) ∥, ∥ ϱ(unl−1, unl) ∥,

∥ 1 + ϱ(unl−1, unl) ∥∥ ϱ(u
∗,Ju∗) ∥

∥ 1 + ϱ(unl−1, u∗) ∥
,

∥ ϱ(unl , u
∗) ∥∥ ϱ(u∗,Ju∗) ∥

∥ 1 + ϱ(unl−1, u∗) ∥
,
∥ ϱ(unl , u

∗) ∥∥ ϱ(Ju∗, unl−1) ∥
∥ 1 + ϱ(unl−1, u∗) ∥

}
.

(3.17)

Taking the limit as l→ ∞ in (3.17), we have

lim
l→∞
∥ ∆J (unl−1, u∗) ∥ ≤ ∥ ϱ(u∗,Ju∗) ∥ . (3.18)

Combining (3.14), (3.16), and (3.18), we obtain

lim
l→∞
∥ sϱ(unl ,Ju∗) ∥= lim

l→∞
∥ ∆J (unl−1, u∗) ∥=∥ ϱ(u∗,Ju∗) ∥ .

By using (λ2a), or (λ2b) with γl = sϱ(unl ,Ju∗), and δl = ∆J (unl−1, u∗) as before, one can easily show
that

CF ≾ lim sup
l→∞

λ(sϱ(unl ,Ju∗),∆J (unl−1, u∗)) ≺ CF

or ∥ CF ∥ ≤ ∥ lim sup
l→∞

λ(sϱ(unl ,Ju∗),∆J (unl−1, u∗)) ∥ < ∥ CF ∥,

which is a contradiction. Thus, we have that ϱ(u∗,Ju∗) = θ ⇒ u∗ = Ju∗. □

Theorem 2. In addition to the hypotheses of Theorem 1, we further assume that α(u∗1, u
∗
2) ≥ 1 for all

u∗i ∈ Fix(J), where i = 1, 2. Then, J has a unique fixed point.

Proof. Since α(u∗1, u
∗
2) ≥ 1, we have

λ(sϱ(Ju∗1,Ju∗2),∆J (u∗1, u
∗
2)) ≿ CF .

Since u∗1 , u∗2, ϱ(u∗1, u
∗
2) ≻ θ and, hence, ϱ(Ju∗1,Ju∗2) and ∆J (u∗1, u

∗
2) ≻ θ. By using λ1 and C1, one can

easily show that
∥ sϱ(u∗1, u

∗
2)) ∥ < ∥ ∆J (u∗1, u

∗
2)) ∥ . (3.19)

Now,

∥ ∆J (u∗1, u
∗
2) ∥

= max
{
∥ ϱ(u∗1, u

∗
2) ∥, ∥ ϱ(u∗1, u

∗
1) ∥,
∥ 1 + ϱ(u∗1,Ju∗1) ∥∥ ϱ(u∗2,Ju∗2) ∥

∥ 1 + ϱ(u∗1, u
∗
2) ∥

,

∥ ϱ(Ju∗1, u
∗
2) ∥∥ ϱ(u∗2, u

∗
2) ∥

∥ 1 + ϱ(u∗1, u
∗
2) ∥

,
∥ ϱ(Ju∗1, u

∗
2) ∥∥ ϱ(Ju∗2, u

∗
1) ∥

∥ 1 + ϱ(u∗1, u
∗
2) ∥

}
=∥ ϱ(u∗1, u

∗
2) ∥ .

(3.20)

Clearly, from (3.20), we arrive at a contradiction since we have assumed that ϱ(u∗1, u
∗
2) ≻ θ, i.e., ∥

ϱ(u∗1, u
∗
2) ∥> 0. Thus, we obtain that u∗1 = u∗2. □
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Next, we shall state and prove a result as a corollary of our main result.

Corollary 3.1. Let (Ω, ϱ) be a ϱ-complete and ϱ-continuous b-EVMS with the constant s ≥ 1. Let
α : Ω × Ω → R+ and J : Ω → Ω be two mappings. Suppose that there exists an m ∈ N for which the
following assertions hold:

(i) Jm is a triangular α-admissible mapping;
(ii) Jm satisfies the conditions of an α-orbital admissible revised CF simulation contraction;
(iii) there exists a point u0 ∈ Ω such that α(u0,J

mu0) ≥ 1;
either
(iva) Jm is ϱ-continuous;
or
(ivb) if {un} is a sequence in Ω, then it satisfies the α-regularity condition.

Then, Jm has a fixed point (say, ϑ) in Ω. Furthermore, ϑ is also a fixed point of J , provided that
α(ϑ,Jϑ) ≥ 1.

Proof. Clearly, by using Theorem 1, we can obtain a fixed point of Jm. Let ϑ ∈ Ω be the fixed point
of Jm with α(ϑ,Jϑ) ≥ 1. We assume that Jϑ , ϑ. Since ϑ is a fixed point of Jm, Jmϑ = ϑ. Now,
for α(ϑ,Jϑ) ≥ 1, we have

λ(sϱ(Jmϑ,JmJϑ),∆Jm(ϑ,Jϑ)) ≿ CF ,

where

∆Jm(ϑ,Jϑ)

= max
{
ϱ(ϑ,Jϑ), ϱ(ϑ,Jmϑ),

[1 + ϱ(ϑ,Jmϑ)]ϱ(Jϑ,JmJϑ)
1 + ϱ(ϑ,Jϑ)

,

ϱ(Jmϑ,Jϑ)ϱ(JmJϑ,Jϑ)
1 + ϱ(ϑ,Jϑ)

,
ϱ(Jmϑ,Jϑ)ϱ(JmJϑ, ϑ)

1 + ϱ(ϑ,Jϑ)
}
.

Observe that ϱ(Jmϑ,JmJϑ) = ϱ(ϑ,Jϑ) ≻ θ. By using λ1 and C1, one can show that

∥ sϱ(Jmϑ,JmJϑ) ∥ < ∥ ∆Jm(ϑ,Jϑ) ∥ . (3.21)

Clearly, ∥ ∆Jm(ϑ,Jϑ) ∥=∥ ϱ(ϑ,Jϑ) ∥ . Thus, from (3.21), we have

s ∥ ϱ(ϑ,Jϑ) ∥= s ∥ ϱ(Jmϑ,JmJϑ) ∥<∥ ϱ(ϑ,Jϑ) ∥,

which is a contradiction since we have assumed that ϑ , Jϑ. Therefore, we have that ϑ = Jϑ. □

Example 3.1. Let Ω = Ep be the set of all elliptic-valued numbers with i2 = −2. Define a mapping
ϱ : Ω ×Ω→ Ω by
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ϱ(η1, η2) =∥ ξ1 − ξ2 ∥2 +i ∥ ζ1 − ζ2 ∥2,

where η1 = ξ1 + iζ1 and η2 = ξ2 + iζ2. Let α : Ω × Ω → R+ by α(η1, η2) = 1, ∀ η1, η2 ∈ Ω. Clearly,
(Ω, ϱ) is a ϱ-continuous and ϱ-complete b-EVMS with s = 2. Let us define a mapping J : Ω→ Ω by

J(η) = J(ξ + iζ) =


0, if ξ, ζ ∈ Ξ;
3 + 3i, if ξ, ζ ∈ Ξ̃;
3, if ξ ∈ Ξ̃, ζ ∈ Ξ;
3i, if ξ ∈ Ξ, ζ ∈ Ξ̃.

where Ξ, Ξ̃ denote the sets of all rational and irrational numbers, respectively. Take u = 1
√

5
and v = 1

in (3.1), and we calculate the following:

ϱ(J
1
√

5
,J1) = ϱ(3, 0) = 9,

ϱ(
1
√

5
, 1) = (1 −

1
√

5
)2, ϱ(

1
√

5
, 3) = (3 −

1
√

5
)2 ≈ 6.516,

(1 + ϱ( 1
√

5
,J 1

√
5
))ϱ(1,J1)

1 + ϱ( 1
√

5
, 1)

=
(1 + ϱ( 1

√
5
, 3))ϱ(1, 0)

1 + (1 − 1
√

5
)2

=
(1 + (3 − 1

√
5
)2)

1 + (1 − 1
√

5
)2
≈ 4.17,

ϱ(J 1
√

5
, 1)ϱ(1,J1)

1 + ϱ( 1
√

5
, 1)

=
ϱ(3, 1)

1 + (1 − 1
√

5
)2
=

4
1 + (1 − 1

√
5
)2
,

ϱ(J 1
√

5
, 1)ϱ(J1, 1

√
5
)

1 + ϱ( 1
√

5
, 1)

=
ϱ(3, 1)ϱ(0, 1

√
5
)

1 + (1 − 1
√

5
)2
=

4
5

1 + (1 − 1
√

5
)2
.

Clearly, Jm(η) = 0, ∀ m ∈ N \ {1}. Then, it can be easily checked that, for u = 1
√

5
and v = 1, the

inequality
sϱ(Ju,Jv) ≾ h∆J (u, v)

is not satisfied, whereas the following holds:

sϱ(Jmu,Jmv) ≾ h∆Jm(u, v), ∀ u, v ∈ Ω,

where
m > 1, λ(η1, η2) = hη2 − η1 with 0 < h < 1, F (η1, η2) = η1 − η2, and CF = θ.

Observe that the function J is not ϱ-continuous. To verify this, take γn = (2− 1
√

2n
)+ i(2+ 1

√
2n

) and
γ0 = 2 + 2i. Then, (γn − γ0) = − 1

√
2n
+ i 1

√
2n

. Clearly,

∥ ϱ(γn, γ0) ∥=∥ (γn − γ0) ∥=

√
1

2n
+

2
2n
=

√
3
2n
→ 0 as n→ ∞,

i.e., γn → γ0, but J(γn) ↛ J(γ0). Furthermore, one can check that Jm is a ϱ-continuous function for
m > 1. Here, all conditions of Corollary 3.1 are satisfied and θ is a fixed point of J .

Next, we propose a new type of contraction involving orbital admissible mapping and rational terms
in the setting of a b-EVMS, and it was inspired by the famous Caristi-type contraction (see [20]).
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Definition 3.2. Let J be a mapping from Ω to Ω on a b-EVMS (Ω, ϱ). Suppose that X is a mapping
from Ω to R+ with X(Ju) ≤ X(u) for all u ∈ Ω. Also, suppose that α : Ω × Ω → R+ is a mapping
such that α(u, v) ≥ 1 with ϱ(u,Ju) ≻ θ implies that

ϱ(Ju,Jv) ≾ (X(u) − X(Ju))∆J (u, v), (3.22)

where ∆J (u, v) is defined in (3.1). Then, J is said to be an α-orbital admissible revised Caristi-type
contraction involving rational terms.

Theorem 3. Let (Ω, ϱ) be a ϱ-complete and ϱ-continuous b-EVMS with the constant s ≥ 1. Let
α : Ω ×Ω→ R+ and J : Ω→ Ω be two mappings such that the following assertions hold:

(i) J is a triangular α-admissible mapping;
(ii) J satisfies the conditions of an α-orbital admissible revised Caristi-type contraction involving rational terms;
(iii) there exists a point u0 ∈ Ω such that α(u0,Ju0) ≥ 1;
either
(iva) J is ϱ-continuous;
or
(ivb) if {un} is a sequence in Ω, then it satisfies the α-regularity condition.

Then, J has a fixed point in Ω.

Proof. From our assumption (iii), there exists a point u0 ∈ Ω such that α(u0,Ju0) ≥ 1. Clearly,
starting from this initial point, one can construct a sequence {un} by using un+1 = Jun, ∀n ∈ N. For
the remainder of the proof, we will assume that un+1 , un, ∀n ∈ N, i.e., ϱ(un, un+1) ≻ θ. Otherwise, we
can find a point, say, un0 , for which we have that un0+1 = un0 ⇒ un0 = Jun0 . Clearly, we obtain a fixed
point ofJ and the proof becomes less interesting. Now, sinceJ is a triangular α-admissible mapping,
one can easily get that α(un, un+1) ≥ 1, and, furthermore, α(un, um) ≥ 1, ∀n,m ∈ N with m > n. Since
α(un−1, un) ≥ 1, ϱ(un−1,Jun−1) = ϱ(un−1, un) ≻ θ, and J satisfies condition (ii), we have

ϱ(Jun−1,Jun) ≾ (X(un−1) − X(Jun−1))∆J (un−1, un).

Taking the norm on both sides of the above inequality, we obtain

∥ ϱ(Jun−1,Jun) ∥ ≤ | (X(un−1) − X(Jun−1)) |∥ ∆J (un−1, un) ∥ .

Since X(Ju) ≤ X(u), we have

∥ ϱ(Jun−1,Jun) ∥ ≤ (X(un−1) − X(Jun−1)) ∥ ∆J (un−1, un) ∥, (3.23)

where
∥ ∆J (un−1, un) ∥

= max
{
∥ ϱ(un−1, un) ∥, ∥ ϱ(un−1, un) ∥,

∥ 1 + ϱ(un−1, un) ∥∥ ϱ(un, un+1) ∥
∥ 1 + ϱ(un−1, un) ∥

,

∥ ϱ(un, un) ∥∥ ϱ(un, un+1) ∥
∥ 1 + ϱ(un−1, un) ∥

,
∥ ϱ(un, un) ∥∥ ϱ(un−1, un+1) ∥
∥ 1 + ϱ(un−1, un) ∥

}
= max{∥ ϱ(un−1, un) ∥, ∥ ϱ(un, un+1) ∥}.
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Thus, from (3.23), we have

∥ ϱ(un, un+1) ∥ ≤ (X(un−1) − X(un)) max{∥ ϱ(un−1, un) ∥, ∥ ϱ(un, un+1) ∥}. (3.24)

Suppose that max{∥ ϱ(un−1, un) ∥, ∥ ϱ(un, un+1) ∥} =∥ ϱ(un−1, un) ∥ . Then, from (3.24), we have

∥ ϱ(un, un+1) ∥ ≤ (X(un−1) − X(un)) ∥ ϱ(un−1, un) ∥

⇒ 0 <
∥ ϱ(un, un+1) ∥
∥ ϱ(un−1, un) ∥

≤ (X(un−1) − X(un)) (3.25)

⇒ X(un) < X(un−1).

Thus, {X(un)}∞n=1 is monotonically decreasing and bounded below by 0. Let X(un) → c∗. Now, from
(3.25), we have

r∑
t=1

∥ ϱ(ut, ut+1) ∥
∥ ϱ(ut−1, ut) ∥

≤

r∑
t=1

(X(ut−1) − X(ut))

= X(u0) − X(ur)→ X(u0) − c∗ as r → ∞,

which shows that
∑r

t=1
∥ϱ(ut ,ut+1)∥
∥ϱ(ut−1,ut)∥

< ∞. Consequently, ∥ ϱ(ut, ut+1) ∥ ≤ ω ∥ ϱ(ut−1, ut) ∥, ∀t ≥ t0 ∈

N, where ω ∈ [0, 1). Then, if we consider max{∥ ϱ(un−1, un) ∥, ∥ ϱ(un, un+1) ∥} =∥ ϱ(un, un+1) ∥, then,
from (3.23), we have

∥ ϱ(un, un+1) ∥ ≤ (X(un−1) − X(un)) ∥ ϱ(un, un+1) ∥

⇒ 1 ≤ X(un−1) − X(un).

Similarly, we can show that {X(un)} is a monotonically decreasing sequence, and, if we consider the
limit as n → ∞ in the above inequality, then we get that 1 ≤ 0, which is a contradiction. Thus, we
must have

∥ ϱ(ut, ut+1) ∥ ≤ ω ∥ ϱ(ut−1, ut) ∥, ∀t ∈ N, where ω ∈ [0, 1).

Applying Remark 2.2, one can show that {ut}
∞
t=1 is a Cauchy sequence. Since (Ω, ϱ) is ϱ-complete,

there exists a u∗ ∈ Ω such that ut → u∗ as t → ∞. Suppose that J is ϱ-continuous. So,

Ju∗ = J( lim
n→∞

un) = lim
n→∞
Jun = lim

n→∞
un+1 = u∗.

Otherwise, suppose that (ivb) holds and ϱ(u∗,Ju∗) ≻ θ. Consequently, we obtain a subsequence {unl}

of {un} such that α(unl , u
∗) ≥ 1. Also, ϱ(unl ,Junl) ≻ θ. Now,

ϱ(u∗,Ju∗)

≾ s
[
ϱ(u∗, unl+1) + ϱ(unl+1,Ju∗)

]
= s
[
ϱ(u∗, unl+1) + ϱ(Junl ,Ju∗)

]
≾ sϱ(u∗, unl+1) + s(X(unl) − X(unl+1))∆J (unl , u

∗),

(3.26)

AIMS Mathematics Volume 9, Issue 7, 17184–17204.



17200

where

∆J (unl , u
∗)

= max
{
ϱ(unl , u

∗), ϱ(unl , unl+1),
[1 + ϱ(unl , unl+1)ϱ(u∗,Ju∗)]

1 + ϱ(unl , u∗)
,

ϱ(unl+1, u∗)ϱ(u∗,Ju∗)
1 + ϱ(unl , u∗)

,
ϱ(unl+1, u∗)ϱ(unl ,Ju∗)

1 + ϱ(unl , u∗)
}
.

Clearly, the right-hand side of (3.26) tends to θ since ϱ(u∗, unl+1)→ θ and X(un)→ c∗ as l→ ∞. Thus,
we have that ϱ(u∗,Ju∗) = θ ⇒ u∗ = Ju∗. □

4. Application

In this section, we apply our theoretical result to find a solution of a Urysohn integral equation. Let
Ω = C([c, d],Rn), c > 0, and ϱ : Ω ×Ω→ Ep be a mapping defined by

ϱ(u, v) = max
r∈[c,d]

∥ u(r) − v(r) ∥2∞
√

1 + ρ2ei arctan ρ,

where u, v ∈ Ω, ρ > 0, and i2 = p < 0. Clearly, (Ω, ϱ) is a ϱ-complete and ϱ-continuous b-EVMS with
s = 2. Consider the following nonlinear Urysohn integral equation:

u(t) = σ(t) +
∫ d

c
Θ(t, r, u(r))dr, (4.1)

where t ∈ [c, d], u, σ ∈ Ω, and Θ : [c, d]2 × Rn → Rn. Let J : Ω→ Ω be a mapping defined by

Ju(t) = σ(t) +
∫ d

c
Θ(t, r, u(r))dr. (4.2)

It is clear that u∗ is a solution of (4.1) if and only if it is a fixed point of the operator J . Here, Θ is a
mapping such that Ju ∈ Ω.

Theorem 4. Suppose that the following conditions hold:
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A1. The mapping Θ is a continuous function;

A2. There exists a function µ : Rn × Rn → R such that, for each δ ∈ [c, d] and u, v ∈ Ω, the following statements hold:

A2a. µ(u(δ),Ju(δ)) ≥ 0 implies that µ(Ju(δ),J2u(δ)) ≥ 0,

A2b. µ(u(δ), v(δ)) ≥ 0 and µ(v(δ),Jv(δ)) ≥ 0 implies that µ(u(δ),Jv(δ)) ≥ 0,

A2c. there exists a point u0 ∈ Ω for all δ ∈ [c, d] µ(u0(δ), σ(δ) +
∫ d

c
Θ(δ, r, u0(r))dr) ≥ 0;

A3. Suppose for u, v ∈ Ω with µ(u(δ), v(δ)) ≥ 0 and δ, ρ ∈ [c, d], that we have the following:

2 ∥ Ju(δ) − Jv(δ) ∥2∞
√

1 + ρ2ei arctan ρ

≾ h max
{
∥ u(δ) − v(δ) ∥2∞

√
1 + ρ2ei arctan ρ, ∥ u(δ) − Ju(δ) ∥2∞

√
1 + ρ2ei arctan ρ[

1+ ∥ u(δ) − Ju(δ) ∥2∞
√

1 + ρ2ei arctan ρ] ∥ v(δ) − Jv(δ) ∥2∞
√

1 + ρ2ei arctan ρ

1 + ϱ(u, v)
,

∥ Ju(δ) − v(δ) ∥2∞∥ Jv(δ) − v(δ) ∥2∞ (1 + ρ2)e2i arctan ρ

1 + ϱ(u, v)
,
∥ Ju(δ) − v(δ) ∥2∞∥ Jv(δ) − u(δ) ∥2∞ (1 + ρ2)e2i arctan ρ

1 + ϱ(u, v)
}

Then, J has a fixed point, i.e., the Urysohn integral equation (4.1) has a solution in Ω.

Proof. Let us define a mapping α : Ω ×Ω→ R+ by

α(u, v) =

1, if µ(u(δ), v(δ)) ≥ 0, ∀δ ∈ [c, d];

b, otherwise,

where u, v ∈ Ω and b ∈ (0, 1). Clearly, α(u,Ju) ≥ 1 ⇒ µ(u(δ),Ju(δ)) ≥ 0 ⇒ µ(Ju(δ),J2u(δ)) ≥
0 ⇒ α(Ju,J2u) ≥ 1. Also, α(u, v) ≥ 1 ⇒ µ(u(δ), v(δ)) ≥ 0 and α(v,Jv) ≥ 1 ⇒ µ(v(δ),Jv(δ)) ≥ 0.
By (A2b), µ(u(δ), v(δ)) ≥ 0 and µ(v(δ), Jv(δ)) ≥ 0 gives µ(u(δ), Jv(δ)) ≥ 0⇒ α(u,Jv) ≥ 1. Since the
mapping Θ and σ are both continuous, J is also continuous, i.e., J is ϱ-continuous. One can easily
check that

ϱ(u, v) =∥ u(δ) − v(δ) ∥2∞
√

1 + ρ2ei arctan ρ,

ϱ(Ju,Jv) =∥ Ju(δ) − Jv(δ) ∥2∞
√

1 + ρ2ei arctan ρ,

ϱ(u,Ju) =∥ u(δ) − Ju(δ) ∥2∞
√

1 + ρ2ei arctan ρ,

ϱ(v,Jv) =∥ v(δ) − Jv(δ) ∥2∞
√

1 + ρ2ei arctan ρ,

ϱ(Ju, v) =∥ Ju(δ) − v(δ) ∥2∞
√

1 + ρ2ei arctan ρ,

ϱ(v,Ju) =∥ v(δ) − Ju(δ) ∥2∞
√

1 + ρ2ei arctan ρ.

Hence, from A3, for µ(u(δ), v(δ)) ≥ 0, i.e., α(u, v) ≥ 1, we have

2ϱ(Ju,Jv)

≾ h max
{
max
{
ϱ(u, v), ϱ(u,Ju),

[1 + ϱ(u,Ju)]ϱ(v,Jv)
1 + ϱ(u, v)

,
ϱ(v,Ju)ϱ(v,Jv)

1 + ϱ(u, v)
,
ϱ(v,Ju)ϱ(u,Jv)

1 + ϱ(u, v)
}
.

Now, taking λ(η1, η2) = hη2 − η1 and F (η1, η2) = η1 − η2 with 0 < h < 1 and CF = θ, we can apply
Theorem 1 to guarantee the existence of a fixed point of the operatorJ . Thus, (4.1) has a solution. □
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5. Conclusions

In this paper, we have introduced the notion of b-EVMSs and studied some fixed-point results
involving rational and product terms. We have given examples to support our findings. We have given
an application to a Urysohn integral equation.

6. Open problems

1) In the first line of Theorem 1, we have assumed that (Ω, ϱ) is ϱ-continuous to ensure that the limit
of a convergent sequence is unique. Our open problem is identifying whether one can remove or
replace (by any other suitable condition) the “ϱ-continuity” condition of (Ω, ϱ) from Theorem 1.

2) Since b-EVMS is newly introduced, one can study different types of fixed-point results involving
rational and product terms, such as those for the interpolative contraction (see [21]).
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