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1. Introduction

Different dynamics of prey-predator interaction have been considered over the years, starting with
the classical Lotka-Volterra model. Of interest to us is the case in which prey with herd behavior
and individualistic generalist predators coexist in a common area. For example, we can refer to a
savanna, where large herbivores live alongside some predators that feed on them. A savanna is a
mainly subtropical and tropical terrestrial biome that is mainly characterized by predominantly grassy
vegetation with fairly widely spaced shrubs and trees; it is found in many transition zones between
rainforest and desert or steppe regions in central Africa, Central and South America, India, Indochina,
and Australia [1]. In this context, the choice to live in groups is one of the strategies that herbivores
use to defend themselves against predator attacks and is therefore classified as a behavioral defense
mechanism [2–4].

Predator hunting on prey herds can be modeled by observing that the individuals most likely to be
affected by the predator attack are those on the herd perimeter. Therefore, denoting by N the number
of prey per spatial unit as a function of time, the number of possible prey caught should be proportional
to
√

N; see [5]; for more general case, it should be proportional to Nα, as described in [6], with the
herd shape index being constrained as follows: 1

2 ≤ α < 1. Based on this assumption, several models
that also incorporate the predator satiation phenomenon, [7–11], and the presence of disease, e.g.,
those detailed in [12–14], have been proposed. In addition, the prey response to predator attacks was
considered in [15]. This is in agreement with the fact that, not only is aggregation advantageous for
prey in terms of defense, the benefits tend to increase with growing herd size. Indeed, a large herd
of herbivores can discourage hunting attempts by predators, who can become frightened, fearing that
they in turn will be attacked in defense and injured, especially if the first ones have passive defense
structural elements such as being large in size or having strong horns [16]. This prey-induced fear of
predators is not to be confused with predator-induced fear of prey, in [17–21].

In this paper, we propose a generalization of the two-population model presented in [15]. In
particular, still focusing on individualistic generalist predators and prey that live in herds, we propose
a new predator-prey interaction term. This new term has a denominator of the Beddington-DeAngelis
form, [22, 23], which contains a binary-value parameter that allows to take into account the prey
response to predator attacks or not, depending on the species considered. In addition, this term presents
a function Φ(N, α) in the numerator, instead of Nα, that behaves as N for small values of N, and as
Nα for large values of N. This function has been carefully constructed in such a way as to prevent
singularity problems, similar to what was done in [24, 25].

The article is organized as follows. The next section contains the details of the new model and
its analytical study. In particular, the possible equilibrium points are derived with their feasibility
and local stability conditions. In Section 3, on the other hand, the possible equilibrium bifurcations
and the bistability of the model are numerically analyzed. We used MATLAB to identify the
transcritical bifurcations from the predator-only equilibrium to the coexistence equilibrium and saddle-
node bifurcations of the coexistence equilibrium. In addition, by using the MATLAB toolbox bSTAB,
introduced in [26], bistability was identified and analyzed, as presented here with particular emphasis
on the basin stability values; see [27,28] for further details. The paper ends with a discussion in which
the new system is compared with some models in the literature. Of particular importance are Figures
10, 11, 12, and 13 which compare the population values at coexistence in the N-P plane all of these
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models.

2. Materials and methods

2.1. Model equations

We propose here a simple model, particularly, a generalization of the two-population system
presented in [15], to describe the interaction dynamics of generalist predators, which behave
individualistically, and prey herds. In this case, prey may or may not be able to respond to predator
attacks. This depends on the particular prey species that is being considered.

Herd behavior is generally represented by a power function, as described in [5,6], that can possibly
be modified to account for the predator satiation phenomenon. This function can be modeled, as in [15],
by the classical Holling type II (HTII) functional response [29, 30], with the prey power function
modified in the denominator to account for the prey response to predator attacks.

Here, at first, we choose to generalize this fraction by replacing the prey power function in the
numerator with a function Φ(N, α), with 1

2 ≤ α < 1, such that

Φ(N, α) ≈ N , when N → 0 ,

and

Φ(N, α) ≈ Nα , when N → +∞ .

Specifically, the function we select is given by

Φ(N, α) =
N

1 + N1−α . (2.1)

Since Φ(0, α) = 0 and

∂Φ(N, α)
∂N

=
1 + αN1−α

(1 + N1−α)2 > 0 ,

Φ(N, α) is a nonnegative increasing function. Its behavior with α = 1
2 is shown in Figure 1. Using

the function Φ(N, α) instead of Nα presents advantages from a mathematical point of view because it
avoids the singularity problems associated with Nα. These problems incur in the study of local stability
as a result of evaluating the Jacobian at equilibria under the condition that the first component is equal
to zero. Moreover, from a modeling point of view, this function, Φ(N, α), better describes the real
situation than does Nα. Indeed, for large values of N, it behaves as Nα. For small values of N, Φ(N, α)
behaves like N, which is in agreement with the fact that as the members of a herd decrease, they each
tend to interact individually with the predator population. The function proposed here is not the only
function that exhibits the desired features; see [24, 25], in which similar considerations for α = 1

2 are
introduced.
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Figure 1. The graph of Φ
(
N, 1

2

)
is compared with the corresponding curves for the square

root and the bisectrix of the first and third quadrants. On the left, we consider a large domain,
N ∈ [0, 100]; the right frame shows a close-up view near the origin, N ∈ [0, 1].

Secondly, we chose to use a fraction denominator of the Beddington-DeAngelis form; see [22, 23].
In addition, it contains a binary-valued parameter q which, for q = 1, may account, or, for q = 0, may
not account for prey response to predator attacks.

In summary, the model equations we propose are as follows:
dN
dt
= rN

(
1 −

N
K

)
−

aΦ(N, α)P
1 + bNα+q + cP

, (2.2)

dP
dt
= sP

(
1 −

P
H

)
+

e aΦ(N, α)P
1 + bNα+q + cP

, (2.3)

where N and P respectively represent prey and predators, with the function Φ(N, α) as defined in (2.1)
and the parameter restrictions as shown below:

1
2
≤ α < 1 , 0 < e ≤ 1 and q ∈ {0, 1} . (2.4)

In this system, the predator’s individualistic behavior is represented by the classical unit exponent
in the numerator and the denominator of the fractional interaction terms. Furthermore, it is assumed
that prey grow logistically with a reproduction rate r and carrying capacity K, while predators behave
similarly, with a growth rate s and carrying capacity H. In particular, the logistic growth in (2.3) is due
to the assumption that the predators are generalists. Hence, they have additional available resources that
are not explicitly modeled. The remaining parameters indicate the predation rate a, the assimilation
coefficient e, the herd shape index α, the prey defense parameter q, and the Beddington-DeAngelis
coefficients for prey and predators, b and c, respectively. Table 1 summarizes the model parameters.
We have assumed the restrictions stated in (2.4) and that all other parameters are positive.

Note that, if q = 0 as the number of prey increases, keeping fixed the number of predators P, the
second term of (2.2) tends to −ab−1P, and that of (2.3) tends to eab−1P. Instead, if q = 1, both terms
in (2.2) and (2.3) go to zero. This follows from the fact that, if P is fixed, the function

g(N, P) =
Φ(N, α)P

1 + bNα+q + cP
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has the following limit:

lim
N→+∞

g(N, P) = lim
N→+∞

P

Nq
(
b + cP

Nα+q

) = b−1P , if q = 0
0 , if q = 1

.

On the other hand, if the numbers of prey and predators increase simultaneously, g(N, P) diverges
positively if q = 0, and it tends to b−1 if q = 1. The behavior of the function g(N, P), for q = 0 and
q = 1, is shown in Figure 2, for fixed parameter values α = 1

2 and b = c = 1. Thus, if q = 1, the model
accounts for the prey response to predator attacks since, as the number of individuals in the prey herd
increases, predation decreases, whereas, if q = 0, this is not the case.

Figure 2. The surface g(N, P) with q = 0 on the left and q = 1 on the right. The chosen
parameter values are α = 1

2 and b = c = 1. The domain considered is [0, 1000] × [0, 1000].

Table 1. Descriptions and dimensions of parameters.

Parameters Descriptions Dimensions

a predation rate
1
[t]

b prey Beddington–DeAngelis coefficient -
c predator Beddington–DeAngelis coefficient -

e ∈ (0, 1] assimilation coefficient -

r prey growth rate
1
[t]

s predator growth rate
1
[t]

K prey carrying capacity -
H predator carrying capacity -

α ∈
[

1
2 , 1

)
herd shape index -

q ∈ {0, 1} prey defense parameter -
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2.2. Model analysis

2.2.1. Equilibrium points and their feasibility

By solving the system of equilibrium equations obtained by setting to zero the right-hand sides
of (2.2) and (2.3), three unconditionally feasible equilibria can be immediately identified. These are
the origin, E0 = (0, 0), and two equilibria with only one vanishing population, i.e., EN = (K, 0) and
EP = (0,H).

The process of analytically determining the coexistence equilibrium of the form ENP = (N∗, P∗),
with N∗ > 0 and P∗ > 0, as based on the equilibrium equations, turns out to be less straightforward
and far more difficult. This amounts to solving a highly nonlinear algebraic system. Thus, we can only
numerically determine the explicit coexistence equilibrium coordinates. However, we can also rely on
a graphic interpretation that will provide conditions for feasibility. The general idea is to interpret the
two equilibrium equations as curves in the phase plane and look for sufficient conditions that ensure
their possible intersections, which represent the coexistence equilibria. We now proceed to detail the
construction of these curves, which, in what follows, will be studied analytically to determine when
they may have intersection points in the first quadrant.

By summing the two equilibrium equations, after multiplying the first equation by e, we obtain

Γ(N, P) =
er
K

N2 +
s
H

P2 − erN − sP = 0 , (2.5)

which is a conic section. Moreover, from the first equilibrium equation, it is possible to explicitly get
P as a function of N, which is P = ψ(N), with

P = ψ(N) =
rN (K − N) (1 + bNα+q)

aK Φ(N, α) − crN (K − N)
=

N(ψ)(N)
D(ψ)(N)

. (2.6)

The first curve, Γ(N, P) = 0, is given implicity, whereas the second one, P = ψ(N), turns out to be
an explicit function. If intersections between Γ, from (2.5), and ψ, from (2.6), exist inside of the first
quadrant of the N-P plane, these are coexistence equilibria of the model. We now seek to indentify
these intersections or, at least, the conditions guaranteeing them, so as to ensure the feasibility of the
coexistence point ENP.

Note that the choice to consider the conic Γ and the first nullcline, i.e, P = ψ(N), that is instead of
the two nullclines, is dictated by the difficulty of the problem and simplifies the analysis. Indeed, both
nullclines have highly nonlinear algebraic expressions. In the first nullcline, however, it is possible to
obtain P as a function of N, which is not true for the second nullcline, nor can one find N as a function
of P. Consequently, the second nullcline turns out to be particularly problematic. Determining its
qualitative behavior analytically is very complicated. Moreover, numerically obtaining its graphical
representation is also difficult. The MATLAB built-in functions for graphical representation of its
implicit expression also fail in this case. For these reasons, we found that it is possible to get the
simpler conic Γ from the sum of the two equilibrium equations and consider it in place of the second
nullcline.

We begin by studying the conic Γ. To assess its nature, we need to determine its invariants.
Note that for each conic in non-homogeneous coordinates of the general form

C : a11x2 + a22y2 + 2a12xy + 2a13x + 2a23y + a33 = 0,
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two relevant matrices can be considered: the matrix of coefficients, MC = (ai j), which is a symmetric
matrix of order 3, and the matrix of quadratic terms, which is the submatrix S C of MC that is obtained
by deleting the third row and third column. See, for example, [31, 32]. Further, det(MC) and det(S C)
are respectively called cubic and quadratic invariants of C.

The two matrices associated with the conic (2.5) are given by

MΓ =


er
K 0 − er

2
0 s

H − s
2

− er
2 − s

2 0

 and S Γ =
[ er

K 0
0 s

H

]
.

They have the following determinants, respectively:

det (MΓ) = −
ers
4

( s
K
+

er
H

)
, 0 and det (S Γ) =

ers
KH

> 0 .

Consequently, using the classification scheme of conics in non-homogeneous coordinates [31, 32], we
can say that the conic is non-degenerate and it is an ellipse. The axes of this ellipse are the two
perpendicular lines N = K

2 and P = H
2 . Then, its center is C =

(
K
2 ,

H
2

)
and its vertices are given by

V1,2 =

K
(
er ±

√
∆N

)
2er

,
H
2

 and V3,4 =

K
2
,

H
(
s ±
√
∆P

)
2s

 ,
with

∆N = er
(
er +

sH
K

)
> 0 and ∆P = s

(
s +

erK
H

)
> 0 .

Furthermore, the conic intersects the coordinate axes at the origin and two other points, i.e., W1 = (K, 0)
and W2 = (0,H). Note also that the vertices of Γ lie outside of the rectangle formed by the points W1

and W2, the origin, and (K,H).
As for the function P = ψ(N), note that it goes through W1, as does Γ. Now, ψ(N) is defined only

for the values N > 0 such that
Φ(N, α) ,

cr
aK

N (K − N) . (2.7)

Observe also that
lim

N→0+
ψ(N) =

r
a − cr

.

Assume that (2.7) holds. In view of the fact that ψ(N) does not have zeros other than N = K, in the
interval [0,K], it is positive only if

cr < a. (2.8)

Further, ψ(N) itself will intersect Γ(N, P), if at some point is lower than Γ(N, P) and at other points is
greater. Since both vanish at N = K, it is enough to require that the height of ψ at the origin is above
W2, i.e., the condition ψ(0) > H must be satisfied. Hence, the first set of sufficient conditions to ensure
at least one coexistence equilibrium is defined by (2.8), together with

cr < a < cr +
r
H
. (2.9)

If the above condition (2.9) is not satisfied, ψ is negative in [0,K] and no feasible EN,P exists.
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We now look into the situation in which (2.7) fails to hold. In such case, ψ admits vertical
asymptotes.

Note that, if they exist, they must lie to the left of W1, i.e., for 0 < N < K. Indeed, Φ(N, α) > 0 and
the function ψ must be positive on the right-hand side of (2.7) to have an equality. In the same interval,
we also have N(ψ)(N) > 0. Moreover, since, for N > K, the numerator and denominator of ψ(N) have
constant signs, N(ψ)(N) < 0 and D(ψ)(N) > 0, it follows that ψ(N) < 0 for N > K, that is, it is negative
to the right of W1, with

lim
N→+∞

ψ(N) = −∞.

In addition, we can observe that

ψ′(K) = −
r(1 + bKα+q + bKq+1 + K1−α)

aK
< 0 .

Let us consider separately the two functions in (2.7). The former is the increasing nonnegative
function Φ(N, α), while the latter, i.e.,

θ(N) =
cr
aK

N (K − N) ,

is a concave parabola through the origin, and W1. Their graphs certainly intersect at the origin and
possibly at other points within the first quadrant, which correspond to as many vertical asymptotes of
ψ(N). Since

∂Φ(0, α)
∂N

= 1 and θ′(0) =
cr
a
,

a sufficient condition to have at least one vertical asymptote of ψ(N) is the opposite one of (2.8), i.e.,

a < cr . (2.10)

Let us say that the vertical asymptote is located at some 0 < N1 < K. Since ψ′(K) < 0, the function ψ in
(N1,K] has a positive branch descending from +∞ at N = N1 down to zero at N = K. Considering the
continuity of both ψ and Γ in (N1,K] and the fact that Γ(N1, α) is finite, there must be an intersection
in the positive stripe (N1,K] × R+, ensuring a coexistence equilibrium ENP for the system.

We can elaborate more on this situation. No other intersection exists in [0,N1] in the case that (2.10)
holds because ψ in such an interval is negative and it is negative at the origin. Indeed, we have

lim
N→N1−

ψ(N) = −∞.

If more asymptotes exist to the left of N1, for each of these asymptotes, N = Nk, we must have

lim
N→N±k

ψ(N) = −∞

because, once again, the function ψ does not have zeros in [0,K). Hence, no other feasible intersections
can exist between ψ and Γ.

By combining the conditions (2.10) and (2.9), we can conclude that a sufficient condition for the
existence of at least one coexistence equilibrium is given by

a < a∗ = cr +
r
H
, with a , cr . (2.11)
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2.2.2. Local stability

We use the Jacobian of the system of equations (2.2) and (2.3) to study the local stability of its
equilibria. This matrix is given by

J(N, P) =
[
r − 2r

K N − a∂D(N,P)
∂N −a∂D(N,P)

∂P
ea∂D(N,P)

∂N s − 2s
H P + ea∂D(N,P)

∂P

]
,

with
∂D(N, P)
∂N

=
P

((
1 + αN1−α

)
(1 + bNα+q + cP) − b(α + q)Nα+q

(
1 + N1−α

))
(
1 + N1−α)2 (1 + bNα+q + cP)2

and
∂D(N, P)

∂P
=

N (1 + bNα+q)(
1 + N1−α) (1 + bNα+q + cP)2 ,

where
D(N, P) =

Φ(N, α)P
1 + bNα+q + cP

.

Evaluating J at the three equilibria with at least one nonvanishing population, we find that

J(0, 0) =
[
r 0
0 s

]
, J(0,H) =


r −

aH
1 + cH

0

eaH
1 + cH

−s

 , J(K, 0) =


−r −

aK(
1 + K1−α) (1 + bKα+q)

0 s +
eaK(

1 + K1−α) (1 + bKα+q)

 .
The origin and EN are unconditionally unstable since both eigenvalues of J(0, 0) are positive and the
first and the second eigenvalues of J(K, 0) are are respectively negative and positive. The second
eigenvalue on the diagonal of the matrix J(0,H), instead, is always negative, while the first one is
negative if and only if

a > a∗ = cr +
r
H
. (2.12)

The point EP is asymptotically stable if and only if this condition is verified.
Finally, to discuss the local stability of the coexistence equilibrium, whose coordinates are not

known, we can calculate the trace and the determinant of the Jacobian. The trace is given by

trJ(N, P) = A(N, P) + B(N, P) − aN1(N, P)

and the determinant is given by

det J(N, P) = A(N, P)B(N, P) − aN2(N, P) ,

with

N1(N, P) =
∂D(N, P)
∂N

− e
∂D(N, P)

∂P
, N2(N, P) = B(N, P)

∂D(N, P)
∂N

− eA(N, P)
∂D(N, P)

∂P
,

A(N, P) = r
(
1 −

2
K

N
)

and B(N, P) = s
(
1 −

2
H

P
)
.
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Then, using the Routh-Hurwitz criterion, we can say that the equilibria of the form ENP, when they are
feasible, are asymptotically stable if and only if

A(N∗, P∗) + B(N∗, P∗) < aN1(N∗, P∗) , A(N∗, P∗)B(N∗, P∗) > aN2(N∗, P∗) . (2.13)

The fact that these two stability conditions can be simultaneously satisfied for a feasible coexistence
equilibrium has been verified through numerical simulations. For instance, by setting the parameter
values

a = 0.8 , b = 0.3 , c = 0.5 , e = 0.6 , r = 0.4 , s = 0.3 , K = 40 , H = 50 , α = 0.5 , q = 1 , (2.14)

we can obtain an asymptotically stable coexistence equilibrium point by applying the initial conditions
N(0) = 60 and P(0) = 15; see the left panel of Figure 3.

Table 2 summarizes the identified information concerning the model equilibrium points with their
feasibility and local stability conditions.

Table 2. Equilibria: feasibility and local stability conditions.

Equilibria Feasibility Local Stability
E0 = (0, 0) unconditionally feasible unconditionally unstable
EP = (0,H) unconditionally feasible asymptotically stable iff (2.12)
EN = (K, 0) unconditionally feasible unconditionally unstable

ENP = (N∗, P∗) feasible if (2.11) asymptotically stable iff (2.13)

3. Results

From Table 2, the local stability condition (2.12) for the predator-only equilibrium and the feasibility
condition (2.11) for coexistence are complementary. However, by performing numerical simulations,
as the parameter a changes, transcritical bifurcations can be identified at a = a∗∗, with a∗∗ ≥ a∗ = cr+ r

H ,
whose value changes depending on the initial conditions. Sotomayor’s theorem constitutes a useful tool
to analytically prove the presence of transcritical, saddle-node, and pitchfork bifurcations, provided
that the coordinates of one equilibrium point are explicitly known [33]. In addition, it is necessary to
know the exact value of the threshold for the bifurcation parameter. Thus, in this case, since we cannot
exactly identify the critical value a∗∗, this theorem cannot be used. Consequently, we can only perform
numerical simulations to visualize such transcritical bifurcations and estimate the value of a∗∗. For
example, in Figure 4, using the parameter values (2.14) and the initial conditions N(0) = P(0) = 30,
we observe a transcritical bifurcation from ENP to EP at a = a∗∗, with a∗∗ ≈ 1.08834 > a∗ = 0.20800.

This is in agreement with the fact that the condition (2.11) is only sufficient for the feasibility of
the coexistence point. Hence, ENP could be feasible even if (2.11) is not satisfied. Thus, there may
exist regions in the parameter space for which the equilibria EP and ENP turn out to be simultaneously
feasible and asymptotically stable. In these regions we have bistability. For instance, as illustrated in
Figure 3, fixing the parameter values as detailed in (2.14), we can observe how the system can reach
the two different equilibria under different initial conditions.

AIMS Mathematics Volume 9, Issue 7, 17122–17145.
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Figure 3. Coexistence and predator-only equilibria reached under the initial conditions
N(0) = 60 and P(0) = 15 in the left panel and N(0) = 5 and P(0) = 30 in the right one,
respectively. The parameter values used were as given in (2.14).

Figure 4. Transcritical bifurcation from ENP to EP at a ≈ 1.08834. The parameter values
were as given in (2.14) and the initial conditions were N(0) = P(0) = 30. On the left, we
consider a ∈ [0, 2], while the close-up view on the right shows a ∈ [1.0882, 1.0885].

This bistability has been explored by using the MATLAB toolbox bSTAB, as introduced in [26].
In the square Q = [0, 50] × [0, 50], n = 104 uniformly distributed initial conditions were considered
together with the relative tolerance of the numerical integration scheme RelTol = 10−6. The basins
of stability of the two equilibria mentioned above are illustrated in the right panel of the top row of
Figure 5, while the left panel shows the basin stability values. Refer to [26–28] for their definitions.
In particular, the basin stability value of an attractor A in a D-dimensional state space is defined as
follows:

SB (A) =
∫

κB (y) ρ (y) dy, y ∈ RD,

AIMS Mathematics Volume 9, Issue 7, 17122–17145.
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where κ (y) is an indicator function

κ (y) =
{

1, if y ∈ B (A)
0, otherwise

which determines whether y belongs to the attraction basinB (A) and ρ is a density distribution of states
such that the system may be perturbed with

∫
R
ρ (y) dy = 1. The MATLAB toolbox bSTAB was used to

estimate the basin stability values by performing Monte Carlo sampling from the density distribution
ρ. Specifically, the two basin stability values found were SB(EP) ≃ 0.13 and SB(ENP) ≃ 0.87. By
increasing the side of the square Q, SB(EP) was found to decrease and, consequently, SB(ENP) increased,
and vice versa.

In the bottom row of Figure 5, we can see how the values SB(EP) and SB(ENP) vary as the parameter a
moves from 0.8 to 1.3. At first, we have that SB(EP) , 0 and SB(ENP) , 0 such that SB(EP)+SB(ENP) =
1; in this case, there is bistability of EP and ENP. Then, we have that SB(EP) = 1 and SB(ENP) = 0; in
this second case, only EP is feasible and asymptotically stable at the same time.

Figures 6 and 7 show how SB(EP) and SB(ENP) change as the c value varies. This parameter is of
great interest since it controls the interference of predators. Recall that it appears in the denominator
of the predator-prey interaction terms of the equations (2.2) and (2.3). To obtain the results shown
in Figure 6, we did not consider the response of prey to predator attacks; hence, we set q = 0.
Alternatively, Figure 7 shows the results of considering the prey response, which means that we set
q = 1. Further, to see if there is a significant variation as the shape of the prey herd changes within the
range of the shape index, we considered a low value, α = 0.5, and a higher value, α = 0.9, because
technical constraints of bSTAB prevent to generate a figure for a continuous range of values of α.
These variations appear to be most significant in the case in which there is no prey response to predator
attacks. Indeed, in Figure 6, we see that, for the lowest value of α, the transition from having EP as the
only attractor to having only ENP occurs earlier than in the case in which α = 0.9. As can be seen in the
right frame of the top row of Figure 6, for α = 0.5, bistability occurs in the range of 0.95 ⪅ c < 1.4. As
can be seen in the right frame of the bottom row of Figure 6, for α = 0.9, either no bistability occurs,
suggesting perhaps a transcritical bifurcation, or, there is a very tiny bistability region that is difficult to
locate numerically given the very long processing time of bSTAB. Alternatively as shown in Figure 7,
although different values of SB(EP) and SB(ENP) can be observed in the intermediate phase, as α varies,
the transitions from only stability of EP to bistability, as well as from bistability to only stability of
ENP, occur for very close values of c.

Finally, we can easily identify other bifurcations by examining the expressions (2.5) and (2.6).
Indeed as e, s, and H vary, the graphical representation of P = ψ(N) remains fixed in the N-P plane
while Γ(N, P) = 0 moves; this is because only the expression of the ellipse contains these three
parameters. Conversely, varying α, a, b, c, and q was found to keep the ellipse fixed and shift the
graph of the function ψ(N), whose expression is the only one that contains these five parameters. In
both cases, the intersections between the two curves in the first quadrant of the N-P plane can change,
giving rise to bifurcations. For example, as shown in Figures 8 and 9, under the conditions of the fixed
parameter values

a = 8.5 , b = 3.5 , c = 3.3 , e = 0.7 , r = 1.2 , s = 0.1 , K = 6 , H = 5 , α = 0.7 , q = 1 , (3.1)

we were able to observe saddle-node bifurcations of the coexistence equilibrium by varying e, s, and H
in the first case and α, a, b, and c in the second one. Tipically Sotomayor’s theorem is also employed
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to analytically prove the presence of saddle-node bifurcations. However, in this case, since we cannot
exactly identify the threshold values of the bifurcation parameters, the theorem is of no use. Thus, we
investigated the occurrence of such bifurcations only through numerical simulations.

Figure 5. Top row: the basin stability values in the left panel, and the basin of stability in
the state space in the right one. Bottom row: the basin stability values for varying values
of a ∈ [0.8, 1.3]. In both cases, the parameter values were as given in (2.14), the initial
conditions were n = 104 uniformly distributed points in Q = [0, 50]× [0, 50], and the relative
tolerance of the numerical integration scheme was RelTol = 10−6.
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Figure 6. The basin stability values for q = 0 for varying values of c ∈ [0, 2.5]. The initial
conditions were n = 104 uniformly distributed points in Q = [0, 50]× [0, 50], and the relative
tolerance of the numerical integration scheme was RelTol = 10−6. We considered α = 0.5
for the top row and α = 0.9 for the bottom row. The other parameter values were as given in
(2.14). The right panels contain a close-up view of the left frames.
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Figure 7. The basin stability values for q = 1 for varying values of c ∈ [0, 2.5]. The initial
conditions were n = 104 uniformly distributed points in Q = [0, 50]× [0, 50], and the relative
tolerance of the numerical integration scheme was RelTol = 10−6. For the left panel, we set
α = 0.5 and we set α = 0.9, for the right one. The other parameter values were as given in
(2.14).

Figure 8. Saddle-node bifurcations of coexistence equilibrium obtained by moving the
ellipse (2.5), keeping fixed the graph of (2.6). The parameter values used were as given
in (3.1), with e, s, and H varied as indicated in each frame. The bifurcation values were
e = 0.42, s = 0.16, and H = 3.87.
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Figure 9. Saddle-node bifurcations of coexistence equilibrium obtained by moving the graph
of (2.6), keeping fixed the ellipse (2.5). The parameter values used were as given in (3.1),
with s = 0.15 for the left panel of the bottom row and varied α, a, b, and c, respectively,
as indicated in each frame. The bifurcation values were α = 0.66, a = 8.05, b = 4.15, and
c = 3.56.

4. Discussion

This new model exhibits just two possible steady states, i.e., the coexistence and the prey-free
equilibrium. They can be linked by a transcritical bifurcation, as shown in Figure 4.

Figures 8 and 9 show that, in the interior of the first quadrant, there are two, one, or no intersections
among Γ(N, P) = 0, from (2.5), and P = ψ(N), from (2.6). For no intersection, the equilibrium attained
by the system is EP, i.e., the intersection of the conic section with the vertical axis. When there are
two, these are coexistence equilibria, where the right one is stable and the left one is unstable, because
it must separate the basins of attractions of EP and the stable branch of ENP. Indeed, the bistability
situation (the right intersection of the conic Γ with P = ψ(N) and the intersection of the conic section
with the vertical axis) translates into the fact that EP remains stable and, topologically, that the left
of the two intersections of (2.5) with (2.6) must be a saddle, while the right one must be an attractor.
When the two curves are tangent to each other, a saddle-node bifurcation occurs.

Note that, for an increasing hunting rate, the predators wipe out the prey and continue to thrive
because they are not specialists on N. Furthermore, Figure 3 shows that different initial conditions lead
to different system outcomes with the same choice of model parameters, i.e., a bistability situation.
In Figure 5, we show the basin stability values. In particular, the bottom frame shows that, if a < â,
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for a certain 1 < â < 1.1, the size of the basin of attraction of the coexistence equilibrium is much
larger than that of the prey-free equilibrium. For a > â, no prey survive and the basin of attraction of
the prey-free equilibrium is the whole domain. This means that, in this case, for a > â, EP is a 100%
attractor. For the results shown in Figures 6 and 7, on the other hand, we consider variations of the
basin stability values for EP and ENP as the parameters controlling predator interference, prey herding
shape, and prey retaliation change.

4.1. Comparison with simpler models

A direct analytical comparison with the two-population model in [15], of which the model
proposed here is a generalization, is possible. The two systems have the same equilibrium points,
i.e., the coexistence equilibrium with different components. However, for the model in [15], the
unconditionally feasible equilibrium EP turns out to be always unstable. In that case, since coexistence
is the only conditionally feasible and locally asymptotically stable equilibrium, there can be no
transcritical bifurcations, but saddle-node bifurcations of the coexistence equilibrium have been
numerically identified. A similar comparison, however, is not possible with many other previously
mentioned prey-predator models, that have appeared in the literature because of different assumptions.
In particular, here, we are considering generalist predators, while many of these models focus on
specialist predators.

4.2. Reformulation of some simpler models for comparison

In order to make a direct comparison by focusing only on predation terms, we chose to rewrite the
models chosen for comparison, by inserting logistic growth terms into both differential equations we
assume generalist predators in all cases. The general reference form is given by

dN
dt
= rN

(
1 −

N
K

)
− a f (N, P) , (4.1)

dP
dt
= sP

(
1 −

P
H

)
+ ae f (N, P) , (4.2)

where the function f (N, P) is characteristic of each model. In particular, we were interested in
comparing coexistence equilibria. As in [15] we choose to illustrate the differences graphically. We
work for simplicity with α = 0.5. There would be no substantial differences with a generic herd shape
index 0.5 ≤ α < 1. The four functions we consider concern predators that hunt prey that gather in
herds, with or without predator satiation, predator interference and prey retaliation to predator attacks.
These are respectively defined as follows:

f1(N, P) =
√

NP , f2(N, P) =
√

NP

1 + b
√

N
, f3(N, P) =

√
NP

1 + bN
, f4(N, P) =

Φ
(
N, 1

2

)
P

1 + bN
1
2+q + cP

.

The first one of these, as introduced in [5], is the simplest possible function in the case of individualistic
predators and grouped prey. The second one, which appears, for example, in [7–11, 13, 14], combines
the HTII functional response with prey herd behavior. The third one, proposed in [15], is a variant
of the second function that takes into account the prey response to predator attacks. We observe that
f1(N, P) is a special case of both f2(N, P) and f3(N, P) with b = 0. Finally, the fourth function, which
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is the one proposed in this paper, applies a denominator of Beddington-DeAngelis type [22, 23], and
has the function Φ(N, α) in the numerator, is a generalization of the previous three. In particular, we
are interested in both the case q = 0, in which there is no response of prey to predator attacks, and the
case q = 1, in which this response is present.

Note that the comparison with models that apply

f5(N, P) = NP and f6(N, P) =
NP

1 + bN

instead of f (N, P) in the equations (4.1) and (4.2), i.e., models considering prey and predators both
individualistic, particularly, the former with the classical quadratic or Holling type I term and the latter
with the Holling type II functional response, has been already investigated. We refer the reader to the
results in [15].

4.3. Numerical results of comparison with the reformulation of simpler models

The graphical results obtained are shown in Figures 10, 11, 12, and 13. The parameters used were
as follows:

a = 0.01 , b = 0.05 , c = 0.1 , e = 0.6 , r = 0.5 , s = 0.8 , H = 80 , K = 100 . (4.3)

To obtained the results shown in each subfigure, one of the parameters in (4.3) were varied within
an interval, while all of the other ones remained fixed to see how the coordinates of the achieved
coexistence equilibria change in the N-P plane. The chosen initial conditions were applied as follows:

N(0) = P(0) = 50 . (4.4)

The model proposed here, with or without prey response to predator attacks, shows that, at each
coexistence equilibrium, prey thrive in greater numbers and predators in smaller numbers than in the
other three models considered. In particular, it can be observed that, by fixing all parameter values,
the number of prey increases and the number of predators decreases from the first to the fifth case,
i.e., the coexistence equilibrium moves rightward and downward. Note that, although there are four
functional forms fi(N, P), i = 1, . . . , 4, we split the analysis of f4 into two, obtaining five cases. The
fourth case corresponds to taking the function f (N, P) in (4.1) and (4.2) equal to f4(N, P) with q = 0,
i.e., without prey response to predator attacks. The fifth case corresponds to considering f4(N, P) with
q = 1, indicating prey retaliation. This variation is more significant over the course of the first case
to the third one and less so from the third case to the last one. The changes obtained for each model
as the parameter values were varied also became significantly less pronounced over the course of the
first to the fifth case, except for the variations of the parameters H and K. In addition, we observed
that, as b and c varied, the coordinates of the achieved coexistence equilibrium did not change in all
systems because not all functions fi(N, P), for i = 1, 2, 3, 4, contained them. In particular, f1(N, P) does
not contain b and only f4(N, P) contains c. Consequently, in Figure 13, we did not observe a shifting
of the coexistence equilibrium, as b changed, in the left panel, and a variation in the position of this
equilibrium was observed only for the last two cases, as c value changed, in the right one.
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Figure 10. Coexistence equilibrium results as the predation rate a and the assimilation
coefficient e vary. We considered a = 0 : 0.0005 : 0.01 on the left and e = 0 : 0.05 : 1
on the right. Increases in a and e correspond to darkens colors. The other parameter values
were as given in (4.3), and the initial conditions were as given in (4.4).

Figure 11. Coexistence equilibrium results for various prey and predator growth rates, r and
s, respectively. We considered r = 0.5 : 0.025 : 1 on the left and s = 0.5 : 0.025 : 1 on the
right. Increasing values of r and s correspond to darkens colors. The other parameter values
were as given in (4.3), and the initial conditions were as given in (4.4).
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Figure 12. Coexistence equilibrium results for various prey and predator carrying capacities,
K and H, respectively. We consider K = 20 : 5 : 100 on the left and H = 20 : 5 : 100 on
the right. Increasing values of K and H correspond to darkens colors. The other parameter
values were as given in (4.3), and the initial conditions were as given in (4.4).

Figure 13. Coexistence equilibrium results for various prey and predator coefficients, b and
c, respectively. We consider b = 0.05 : 0.05 : 1 on the left and c = 0.05 : 0.05 : 1 on the
right. Increasing values of b and c correspond to darkens colors. The other parameter values
were as given in (4.3), and the initial conditions were as given in (4.4).

5. Conclusions

The new model has the following characteristics: the equilibrium points that it admits are the origin,
the predator-only equilibrium, the predator-free equilibrium, and two, one, or no coexistence points.
The first three are unconditionally feasible, while coexistence is conditionally feasible. Moreover, only
the equilibrium EP and the coexistence points can be locally asymptotically stable. Consequently, these
equilibria are the only two steady states to which the system can converge, regardless of the parameter
values and the initial conditions.
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Transcritical bifurcations from the predator-only equilibrium to the coexistence point are
possible. In addition, saddle-node bifurcations of coexistence have also been numerically identified.
Furthermore, there are combinations of parameter values for which, simultaneously, EP and ENP are
admissible and locally asymptotically stable. In these cases, by fixing certain parameter values, the
equilibrium toward which the system converges depends only on the initial conditions.

Situations of bistability, or, more generally, of multistability, have already been identified in the
literature for different predator-prey dynamics; some examples can be found in [19, 34–38].

A direct analytical comparison with the two-population model in [15], of which this model is a
generalization, has been done. Finally, the new model has been also compared graphically, in terms
of coexistence equilibria, with several other prey-predator models that have appeared in the literature,
considering generalist predators. The main evidence is that the new model always shows that prey and
predators thrive in respectively larger and smaller numbers than in the other models considered for
comparison. In particular, we have observed that by fixing all parameter values and refining the model
(i.e., changing from the model that only takes into account grouped prey to the model that also takes
into account the predator satiation, predator interference, and the possible prey response to predator
attacks) the coexistence equilibrium moves rightward and downward. This is in agreement with the
fact that the phenomenon of predator satiation and prey retaliation are advantageous for prey population
growth and disadvantageous for predators. On the other hand, predator interference by itself should
promote predator growth. However, in the new model, it is offset by the other two factors. Thus, the
model seems to suggest that predator interference in the case of prey herds with or without response
to predator attacks, does not significantly help the predator population to increase in size because the
grouping of prey turns out to have a stronger influence.

Moreover, by combining the results of this study with those obtained in [15], we can generally
remark prey that gather in herds suffer fewer losses from attacks of the predators than individualistic
ones. This is also in agreement with the results of previous investigations, e.g., [38]. Similar results
hold for herds of competing population. On the other hand, the advantages for symbiotic populations
are reduced because only the outermost individuals can exploit the other populations for additional
resources. A secondary but important result highlighted in [38] is the occurrence of tristability in the
case of herd competition.

Overall, models with herds in which the response function takes different forms, among which the
one presented in this paper is a further example, appear to exhibit novel, interesting features that are not
observed with the classical quadratic population models and therefore should be given an appropriate
amount of attention by the theoretical biologists, despite their simple conceptual formulations.
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