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Abstract: In this paper, a fractional food chain system consisting of a Holling type II functional 

response was studied in view of a fractional derivative operator. The considered fractional derivative 

operator provided nonsingular as well as a nonlocal kernel which was significantly better than other 

derivative operators. Fractional order modeling of a model was also useful to model the behavior of 

real systems and in the investigation of dynamical systems. This model depicted the relationship 

among four types of species: prey, susceptible intermediate predators (IP), infected intermediate 

predators, and apex predators. One of the significant aspects of this model was the inclusion of 

Michaelis-Menten type or Holling type II functional response to represent the predator-prey link. A 

functional response depicted the rate at which the normal predator consumed the prey. The qualitative 

property and assumptions of the model were discussed in detail. The present work discussed the 

dynamics and analytical behavior of the food chain model in the context of fractional modeling. This 

study also examined the existence and uniqueness related analysis of solutions to the food chain 

system. In addition, the Ulam-Hyers stability approach was also discussed for the model. Moreover, 
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the present work examined the numerical approach for the solution and simulation for the model with 

the help of graphical presentations. 

Keywords: predator-prey model; fractional food chain model; fractional derivative; Ulam-Hyers 

stability analysis; Banach space 
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1. Introduction 

The linkage dynamics between predator and prey explore significant aspects in the field of 

ecology due to its several applications. Lotka-Volterra model [1,2] is the first mathematical 

framework describing the prey-predator interplay in mathematical ecology. Recently, it has been 

detected that stage structure models of the population present the interaction dynamics more 

accurately than other existing models. The recent literature regarding the development of structured 

models can be seen in [3–7]. In the past decade, some models discussed the impact of infectious 

disease on environmental ecology. These models actually show the spread of disease in populations 

and their transmission from susceptible to infected species. Kermack and McKendric [8] contributed 

toward the mathematical theory of epidemics through their model. Several researchers investigated 

mathematical predator-prey models with disease [9–11]. Freedman and Waltman [12] investigated 

three interacting predator-prey populations. Chattopadhyay et al. [13] suggested a predator-prey 

model. Kar et al. [14] modeled a harvested prey-predator system in 2006. In 2007, Dubey [15] 

studied the prey-predator model with a reserved area. In addition, the persistence and extinction of 

one prey and a two predator system were explored in [16]. 

In the past decade, several mathematical models prepared on the basis of the 

Beddington-DeAngelis functional response have been derived in [17–21]. Dubey et al. [22] provided 

the numerical treatment of the fractional food chain problem. In addition, Abdo et al. [23] 

investigated the three-species prey-predator (PP) model pertaining to the Mittag-Leffler kernel. 

Moreover, Ghanbari et al. [24] presented the numerical results of the PP system having a functional 

response of the Beddington-DeAngelis type. More recently, Liu et al. [25] investigated the Turing 

patterns of the Leslie-Gower Holling type III predator-prey model on several different networks with 

the help of linear stability analysis. Song et al. [26] proposed a PP model organized in multiplex 

networks to investigate the effect of multiplex structure on the diffusion of predator and prey, and 

furthermore, the influences on the formation of Turing patterns. Alsakaji et al. [27] investigated a 

delay differential model of one-predator two-prey system with Monod-Haldane and Holling type II 

functional responses. Rihan et al. [28] studied the dynamics of a fractional-order delayed model of 

COVID-19 with vaccination efficacy. More recently, Arif et al. [29] propounded and discussed a 

mathematical food chain model (FCM) involving disease in an intermediate predator. This FCM 

consists of four ordinary differential equations (ODEs) relating four types of species: prey, the 

intermediate predator (IP), susceptible infected intermediate predator (SIIP), and the apex predator. 

One of the significant aspects of this model is the inclusion of the Michaelis-Menten type or Holling 

type II functional response [30,31] to represent the PP link. A functional response depicts the rate at 

which the normal predator consumes the prey. 

In this work, a fractional order mathematical FCM proposed by Arif et al. [29] is investigated 
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and analyzed in view of the Atangana-Baleanu Caputo (ABC) fractional derivative operator (FDO) 

for the first time. This derivative operator was given by Atangana and Baleanu [32] to study the heat 

transfer model. This derivative operator provides a nonsingular as well as nonlocal kernel carrying 

the Mittag-Leffler function (MLF) [33], which is significantly better than previously established 

derivative operators. Atangana and Baleanu [32] have proposed two versions, the Atangana-Baleanu 

FDO (ABFDO) in Caputo sense (i.e., ABC derivative), which is a convolution of a local derivative 

of a given function with the ML function, and the ABFDO in Riemann-Liouville (RL) sense (i.e., 

Atangana-Baleanu Riemann (ABR) derivative), which is the derivative of a convolution of a given 

function that is not differentiable with the ML function. The use of a ML kernel in ABFDO is due to 

its natural appearance in various physical models because the MLF is a joint venture of power-law 

and exponential-law which induces completely the effect of memory [34]. The inspiration behind the 

selection of ABFDO is the nonlocal characteristic of the kernel which generates the scope of global 

analysis in those areas where the trends do not follow the power-law. Recently, a number of models were 

investigated with ABFDO which can be seen in [35–40]. This study also examines the existence and 

uniqueness related analysis of the solution of the model. In addition, the stability analysis for the 

food chain problem is also presented utilizing the Ulam-Hyers approach. In the later part of this work, 

the numerical solution of the model is explored along with simulations. 

The rest part of the paper is subdivided as follows: Section 2 provides fundamental definitions 

and formulae regarding fractional integral and derivative operators. Section 3 gives a basic 

description of the food chain model. Section 4 discusses the qualitative property of the model. 

Sections 5 and 6, respectively, present the existence and uniqueness of the obtained solution. In 

Section 7, Ulam-Hyers stability approach is applied for FCM. In Sections 8 and 9, the numerical 

solution and simulation are discussed, respectively. Finally, Section 10 concludes the whole work. 

2. Preliminaries 

This section presents a quick review of fractional integral and derivative operators. 

Definition 2.1. Let  00  . Then, Banach space EEEE = , where  0,0 CE = , 

with the norm 

( )
 

   011
,0

1 ,0,,,,max,,,
0




+++==


CNNMNNMNNM .  (2.1) 

Definition 2.2. [41] Let   be a Banach space. The operator →:  is Lipschitzian if   a 

constant 0m  such that 

1 2 1 2 1 2,  , ,m      −  −          (2.2) 

where m  is the Lipschitz constant for . If 1m ,  is a contraction. 

Definition 2.3. [32] The Caputo type fractional integral & derivative of a function ( )M  of order 

 , respectively, are expressed as 



17092 

 

AIMS Mathematics  Volume 9, Issue 7, 17089–17121. 

( )
( )

( ) ( )
1

0
0

1
,  0 1,CI M M d

 

      


−
= −  
       (2.3) 

( )
( )

( ) ( ) ( )
1

0
0

1
0 1 ,

k kCD M M d k k
k

 

       


− −
= −  −  
 −  , ,    (2.4) 

where +Zk  and   is a gamma function. 

Definition 2.4. [32] The AB fractional integral & derivative of ( )N  of order   are stated as 
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Here, ( )E  signifies the MLF formulated as [33]: 
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        (2.7) 

and ( )
( )





+−=1B  denotes normalized function with ( ) ( ) 101 == BB . 

Definition 2.5. [32] The fractional order ABC derivative fulfills the Lipschitz criterion for two 

functions ( )M  and ( )N , and the inequality holds as follows: 

( )( ) ( )( ) ( ) ( ) 



 NMHNDMD ABCABC −− 00 .     (2.8) 

Proposition 2.6. [42] The solution of 

( ) ( )
 VUDABC =0 , ( ) 00 UU = , ( 1,0       (2.9) 

is suggested by 
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3. Mathematical description of the food chain problem 

In this segment, we provide the basic information about the equations and parameters of the FCM. 

The mathematical structure of the FCM with three species suggested by Arif et al. [29] is 

represented by means of four nonlinear ODEs in this way: 
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where ( ) 0 M , ( ) 0 N , ( ) 01 

N , ( ) 0  . Here, ( )M , ( )N , ( )1N  and ( ) , 

respectively, denote functions of time representing population densities of susceptible prey (SP), 

susceptible IP (SIP), infected IP (IIP), and the top predator (TP), and all parameters are positive 

constants. 

The food chain model given above describes the relation between SP, SIP, IIP, and the TP. 

( ) ( )
( )




M

NM

+1
0  is the Michaelis-Menten type (or Holling type II) functional response and IP 

becomes infected with relative function 
( ) ( )
( ) ( )



1

1

NN

NN
c

+
. Parameters are denoted as follows:  

indicates half saturation constant, rate 0  is the per capita rate of predation of the IP, rate 1  

measures the efficiency of biomass conversion from prey to IP, rate 2  is the per capita rate of 

predation of the TP, rate 3  measures the efficiency of biomass conversion from IP to TP, rate 4  

is the per capita rate of predation of the prey, and rate 5  measures the efficiency of biomass 

conversion from infected IP to TP. Furthermore, r  is the intrinsic rate of growth of SP. Moreover, c 
measures the rate of contact between SIP and IIP while rate k represents the transformation from IIP 

to SIP, as this model is known as the SIS model. In this model, d1 and d2, respectively, stand for 

natural deaths of intermediate & TPs. Finally, q denotes harvesting of an IIP. 

We present a brief presentation of the model which may indicate the biological relevance of it. 

Behavior of the entire biological community is assumed to arise from the coupling of the interacting 

species M , N , 1N , and  , where the top predator   prey on intermediate predators N  and 

1N , and intermediate predators prey on M . This is the practical assumption from both mathematical 

and biological points of view. A specific feature of these food chain systems is that if one species 

dies out, all the species at higher trophic levels die out as well. It is also assumed that in the absence 

of the predators the prey population density grows according to a logistic curve with carrying 

capacity and with an intrinsic growth rate constant r ( )0r . The consideration of functional 
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response provides motivation to study a food chain model under the framework of nonlinear ODEs. 

Now, we replace the classical derivatives in the model (3.1) with ABC fractional derivatives 

DABC

0  of order   to capture memory effect in the model in this way: 
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along with following conditions: 

( ) ( )00 MM = , ( ) ( )00 NN = , ( ) ( )010,1 NN = , ( ) ( )00 =  .   (3.3) 

4. Nonnegative solutions: qualitative properties of the model 

In this segment, we discuss qualitative properties of the nonnegative solutions of the fractional 

FCM (3.2). 

For biological reasons, each variable in model (3.2) must be a nonnegative real-valued function. 

In other words, ( ) 4

1,,, + RNNM , where ( ) 4,3,2,1,0:,,, 4321

4 ===+ iuuuuuuR i . Now, we 

demonstrate that all the solutions of the model (3.2) with (3.3) are absolutely nonnegative. 

Lemma 4.1. All solutions of the model (3.2) lie in 4

+R . 

Proof. We define 

( ) ( )   ( ) 4

11 ,,,&,,,,0 +== RNNMNNMlll  .    (4.1) 

Then from the FCM (3.2), we attain 
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Thus, ( ) ( )( ) .,),(),( 4

1 + RNNM   Hence, the lemma is proved. 

Theorem 4.2. Consider the subsequent initial value problem (IVP) 
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( ) ( )( )
 UVUDABC ,0 = , ( ) 00 UU = , 10  ,     (4.3) 

where 
DABC

0  signifies the ABC fractional derivative operator and ( )( ) mmUV →+:,   

denotes a vector field. This system (4.3) definitely has a unique solution on  ),0  if 

(a) ( )( ) UV ,  and all of its partial derivatives are continuous  mU  . 

(b) ( )( ) ( ) UaaUV 21, +  for each mRU   for 0, 21 aa . 

Now, it is easy to establish that the above-mentioned criteria are fulfilled by the set of equations 

of the model (3.2) with (3.3), and, thus, it confirms the existence of unique nonnegative solutions for 

the model (3.2) with (3.3). 

5. Analysis of existence of the solution of the FCM 

Here, we investigate the existence of a solution of arbitrary order FCM with disease in the 

intermediate predator. Now exerting AB integral operator of fractional order in the system of Eq (3.2) 

in the following way: 
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Making use of the definition of AB fractional integral operator in the system of Eq (5.1), we acquire 
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For simplified presentation of the above system of Eq (5.2), we express 
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Theorem 5.1. The kernels 1 , 2 , 3 , and 4  fulfill the Lipschitz criterion, and contraction of the 

conditions 10 1   , 10 2   , 10 3   , and 10 4    are satisfied. 

Proof. First, we initiate with the kernel 1 . Suppose ( )M  and ( )M  are two functions for the 

kernel 1  fulfilling the conditions 1lM   and 
  1lM . Similarly, ( )N  and ( )N  are 

assumed to be the functions for the kernel 2  satisfying the criteria 2lN   and 
  2lN , 

( )1N  and ( )

1N  are the two functions for the kernel 3  satisfying the conditions 31 lN   and 


 31 lN , ( )  and ( )  are the two functions for the kernel 4  satisfying the conditions 

4l  and 
  4l . 
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Here, ( )M  signifies the bounded function, then 

( ) ( )  −− MMMM 111 ,,  .       (5.6) 

Thus, the kernel 1  satisfies the Lipschitz criterion. In addition, if  )1,01  , then it will also be a 
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Here, ( )tN  signifies the bounded function, then 

( ) ( )  −− NNNN 222 ,,  .        (5.9) 



17098 

 

AIMS Mathematics  Volume 9, Issue 7, 17089–17121. 

Therefore, the Lipschitz criterion is fulfilled for the kernel 2 . Further, if 10 2   , then it is also 

a contraction for 2 . 

Similarly, the Lipschitz criterion is satisfied for the kernels 3  and 4  as follows: 
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Moreover, if 10 3    and 10 4   , it is also a contraction for 3  and 4 . 

In view of the system of Eq (5.3), the system of Eq (5.2) takes the following form: 
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Now, the subsequent recursive formulae are constructed in this way: 
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( ) ( )

( ) ( ) 












dM
B

M
B

MM nnn 11

1

0
110 ,

1
,

1
−

−

−  −


+
−

+= , 

( )
( )

( )
( ) ( )

( ) ( ) 












dN
B

N
B

NN nnn 12

1

0
120 ,

1
,

1
−

−

−  −


+
−

+= , 

( )
( )

( )
( ) ( )

( ) ( ) 












dN
B

N
B

NN nnn 1,13

1

0
1,130,1,1 ,

1
,

1
−

−

−  −


+
−

+= , 

( )
( )

( )
( ) ( )

( ) ( ) 












d
BB

nnn 14

1

0
140 ,

1
,

1
−

−

− −


+
−

+=  ,  (5.15) 
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with the following conditions: 

( ) ( )00 MM = , ( ) ( )00 NN = , ( ) ( )010,1 NN = , ( ) ( )00 =  .    (5.16) 

Next, we consider difference of the successive terms as 

11 −−= nnn MM  

( )
( ) ( )( )2111 ,,

1
−− −

−
= nn MM

B






( ) ( )
( ) ( ) ( )( ) 



 

dMM
B

nn 2111

1

0
,,

1
−−

−

−−


+  , 

12 −−= nnn NN  

( )
( ) ( )( )2212 ,,

1
−− −

−
= nn NN

B






( ) ( )
( ) ( ) ( )( ) 



 

dNN
B

nn 2212

1

0
,,

1
−−

−

−−


+  , 

1,1,13 −−= nnn NN  

( )
( ) ( )( )2,131,13 ,,

1
−− −

−
= nn NN

B






( ) ( )
( ) ( ) ( )( ) 



 

dNN
B

nn 2,131,13

1

0
,,

1
−−

−

−−


+  , 

14 −−= nnn  

( )
( ) ( )( )2414 ,,

1
−− −

−
= nn

B






( ) ( )
( ) ( ) ( )( ) 



 

d
B

nn 2414

1

0
,,

1
−−

−

−−


+  . (5.17) 

It is worth noting that 

( ) 
=

=
n

j

jnM
0

1)( , ( ) 
=

=
n

j

jnN
0

2)( , ( ) 
=

=
n

j

jnN
0

3,1 )( , ( ) 
=

=
n

j

jn

0

4)( .  (5.18) 

Now, utilizing the set of Eq (5.17) along with the triangular inequality, we attain 

( ) 11 −−= nnn MM  

( )
( ) ( )2111 ,,

1
−− −

−
 nn MM

B






( ) ( )
( ) ( ) ( ) 



 

dMM
B

nn 2111

1

0
,,

1
−−

−

−−


+  , 

( ) 12 −−= nnn NN  

( )
( ) ( )2212 ,,

1
−− −

−
 nn NN

B






( ) ( )
( ) ( ) ( ) 



 

dNN
B

nn 2212

1

0
,,

1
−−

−

−−


+  , 
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( ) ( ) ( ) 1,1,13 −−= nnn NN  

( )
( ) ( )2,131,13 ,,

1
−− −

−
 nn NN

B






( ) ( )
( ) ( ) ( ) 



 

dNN
B

nn 2,131,13

1

0
,,

1
−−

−

−−


+  , 

( ) ( ) ( ) 1,14 −−= nnn  

( )
( ) ( )2414 ,,

1
−− −

−
 nn

B






( ) ( )
( ) ( ) ( ) 



 

d
B

nn 2414

1

0
,,

1
−−

−

−−


+  . (5.19) 

It is already proved that the kernels 1 , 2 , 3 , and 4  satisfy the Lipschitz condition, so the set 

of Eq (5.19) reduces to 

( )
( ) ( ) ( )

( ) 












dMM
B

MM
B

nnnnn 121

1

0
2111

11
−−

−

−− −−


+−
−

  .  (5.20) 

Consequently, we attain the following result: 

( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( ) 













d
BB

nnn 111

1

0
1111

11
−

−

− −


+
−

  .   (5.21) 

Applying the same procedure, we attain other results as follows: 

( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( ) 













d
BB

nnn 122

1

0
1222

11
−

−

− −


+
−

  , 

( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( ) 













d
BB

nnn 133

1

0
1333

11
−

−

− −


+
−

  , 

( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( ) 













d
BB

nnn 144

1

0
1444

11
−

−

− −


+
−

  .  (5.22) 

Taking Eqs (5.21) and (5.22) into account, we acquire the existence of the solution of the considered 

model. This establishes the theorem. 

Theorem 5.2. The fractional FCM involving Holling type II functional response expressed by the 

system of Eq (3.2) possesses a solution if  0  in this way: 

( )
( ) ( ) ( )

1
1 0 


+

−
ii

BB












, 4,3,2,1=i .      (5.23) 

Proof. It is assumed that ( )M , ( )N , ( )1N , and ( )  are functions of bounded nature. Now, 

using Eqs (5.21) and (5.22) along with the recursive algorithm, we get 
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( ) ( )
( )
( ) ( ) ( )

n

n
BB

M 









+

−













0

111

1
0 , 

( ) ( )
( )
( ) ( ) ( )

n

n
BB

N 









+

−













0

222

1
0 , 

( ) ( )
( )
( ) ( ) ( )

n

n
BB

N 









+

−













0

3313

1
0 , 

( ) ( )
( )
( ) ( ) ( )

n

n
BB











+

−













0

444

1
0 .     (5.24) 

Evidently, Eq (5.18) assures about the existence and smoothness of the functions. Thus, the solution 

of system (3.2) exists as well as is continuous. Furthermore, to examine that the system (5.14) is a 

solution of the FCM model (3.2), it is presumed that 

( ) nn FMMM 1)()0()( −+= , 

( ) nn FNNN 2)()0()( −+= , 

( ) nn FNNN 3,111 )()0()( −+= , 

( ) nn F4)()0()( −+= .       (5.25) 

Thus, we find 

( )
( )

( ) ( )( )
( ) ( )

( ) ( ) ( )( ) 












dMM
B

MM
B

F nnn 111

1

0
1111 ,,

1
,,

1
−

−

− −−


+−
−

=  , 

( )
( )

( ) ( )( )
( ) ( )

( ) ( ) ( )( ) 












dNN
B

NN
B

F nnn 122

1

0
1222 ,,

1
,,

1
−

−

− −−


+−
−

=  , 

( )
( )

( ) ( )( )
( ) ( )

( ) ( ) ( )( ) 












dNN
B

NN
B

F nnn 1,1313

1

0
1,13133 ,,

1
,,

1
−

−

− −−


+−
−

=  , 

( )
( )

( ) ( )( )
( ) ( )

( ) ( ) ( )( ) .,,
1

,,
1

144

1

0
1444 













d
BB

F nnn −

−

− −−


+−
−

=  (5.26) 

Now, we have 

( )
( )

( ) ( )
( ) ( )

( ) ( ) ( ) 












dMM
B

MM
B

F nnn 111

1

0
1111 ,,

1
,,

1
−

−

− −−


+−
−
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( ) ( ) ( )










 1111

11
−− −


+−

−
 nn MM

B
MM

B
.       (5.27) 

Making the process recursively, we achieve 

( )
( )
( ) ( ) ( )

1

1

1

11

1 +

+











+

−


n

n

n
BB

aF 











.      (5.28) 

For 0 = , we obtain 

( )
( )
( ) ( ) ( ) 1

1

1

1

0

1

1
a

BB
F

n

n

n

+

+
















+

−
 












.      (5.29) 

Applying the similar methodology, we further get 

( )
( )
( ) ( ) ( ) 2

1

2

1

0

2

1
a

BB
F

n

n

n

+

+
















+

−
 












, 

( )
( )
( ) ( ) ( ) 3

1

3

1

0

3

1
a

BB
F

n

n

n

+

+
















+

−
 












, 

( )
( )
( ) ( ) ( ) 4

1

4

1

0

4

1
a

BB
F

n

n

n

+

+
















+

−
 












.     (5.30) 

Now, employing the limit on inequality (5.29) as →n , we find ( ) 01 →nF . Implementing the 

same procedure, we have ( ) 0→inF , 4,3,2=i , and this establishes the theorem. 

6. Uniqueness of system of solutions of the model 

Here, we show the uniqueness of the solution of the fractional food chain model (3.2). We 

assume that ( )M , ( )N , ( )

1N , and ( )  is another set of solutions for the ABC fractional 

order model (3.2), then 

( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )( ) 











dMM
BB

MMMM 
−

 −−


+
−

−=−  ,,
11

,, 11

1

0
11 , 

( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )( ) 











dNN
BB

NNNN 
−

 −−


+
−

−=−  ,,
11

,, 22

1

0
22 , 

( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )( ) 











dNN
BB

NNNN


−


−−


+
−

−=−  1313

1

0
131311 ,,

11
,, , 
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( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )( ) 











d
BB


−

 −−


+
−

−=−  ,,
11

,, 44

1

0
44 . (6.1) 

Taking the norm of equations of system (6.1) provides 

( ) ( )
( )



B

MMMM
−

−−  1
,, 11 ( ) ( )

( ) ( ) ( ) 


 

dMM
B


−

−−


+  ,,
1

11

1

0
, 

( ) ( )
( )



B

NNNN
−

−−  1
,, 22 ( ) ( )

( ) ( ) ( ) 


 

dNN
B


−

−−


+  ,,
1

22

1

0
, 

( ) ( )
( )



B

NNNN
−

−−
 1

,, 131311 ( ) ( )
( ) ( ) ( ) ,,,

1
1313

1

0




 

dNN
B


−

−−


+   

( ) ( )
( )



B

−
−−  1

,, 44 ( ) ( )
( ) ( ) ( ) .,,

1
44

1

0




 

d
B


−

−−


+   (6.2) 

Now, employing the results presented in (5.6) and (5.9)–(5.11) in the set of inequalities (6.2), we have 

( )
( ) ( )

( ) ( )
( ) ( ) ( ) 








 

dMM
B

MM
B

MM 
−

 −−


+−
−

−  1

1

0
1

11
, 

( )
( ) ( )

( ) ( )
( ) ( ) ( ) 








 

dNN
B

NN
B

NN 
−

 −−


+−
−

−  2

1

0
2

11
, 

( )
( ) ( )

( ) ( )
( ) ( ) ( ) 








 

dNN
B

NN
B

NN


−


−−


+−
−

−  113

1

0
11311

11
, 

( )
( ) ( )

( ) ( )
( ) ( ) ( ) .

11
4

1

0
4 








 

d
BB


−

 −−


+−
−

−    (6.3) 

After simplification, we achieve 

( ) ( ) ( )
 −


+−

−
− MM

B
MM

B
MM 11

11









 

, 

( ) ( ) ( )
 −


+−

−
− NN

B
NN

B
NN 22

11









 

, 

( ) ( ) ( )


−


+−
−

− 11311311

11
NN

B
NN

B
NN 








 

, 

( ) ( ) ( )
 −


+−

−
− 44

11









 

BB
,     (6.4) 
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which produces 

( ) ( )
( ) ( ) ( )

0
11

1 11 









−

−
−−  













BB
MM , 

( ) ( )
( ) ( ) ( )

0
11

1 22 









−

−
−−  













BB
NN , 

( ) ( )
( ) ( ) ( )

0
11

1 3311 









−

−
−−
















BB
NN , 

( ) ( )
( ) ( ) ( )

0
11

1 44 









−

−
−−  













BB
.     (6.5) 

Theorem 6.1. The fractional food chain model (3.2) will possess the unique solution if 

( ) ( ) ( )
0

11
1 










−

−
− ii

BB













, 4,3,2,1=i .      (6.6) 

Proof. If the conditions presented in (6.6) hold, then the set of inequalities (6.5) provides 

( ) ( )
( ) ( ) ( )

0
11

1 11 









−

−
−−  













BB
MM , 

( ) ( )
( ) ( ) ( )

0
11

1 22 









−

−
−−  













BB
NN , 

( ) ( )
( ) ( ) ( )

0
11

1 3311 









−

−
−−
















BB
NN , 

( ) ( )
( ) ( ) ( )

0
11

1 44 









−

−
−−  













BB
.     (6.7) 

In view of properties of norm, the set of conditions (6.7) implies that 

0=− MM , 0=− NN , 011 =−


NN , 0=− 
.    (6.8) 

Thus, 

= MM , = NN , 


= 11 NN , = .      (6.9) 

Therefore, the food chain model (3.2) has a unique solution. Hence, the theorem proved. 
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7. Ulam-Hyers stability analysis for the model 

The Ulam-Hyers stability approach [43,44] has been used for problems with fractional 

derivatives [45–48]. Now, we apply this approach to discuss stability for model (3.2) by virtue of 

nonlinear functional analysis. 

Definition 7.1. System (3.2) with (3.3) possesses Ulam-Hyers stability if there exist

( ) 0,,,max 4321 =   and ( ) ,0,,,max 4321 = for each ,
~

,
~

,
~

,
~

1 EEEENNM   

having the subsequent inequalities 

( ) ( ) 110

~
,

~
− MMDABC 

 , 

( ) ( ) 210

~
,

~
− NNDABC 

 , 

( ) ( ) 31110

~
,

~
− NNDABC 

 , 

( ) ( ) 410

~
,

~
− 

DABC
,        (7.1) 

then there exists ( ) EEEENNM 
~

,,, 1  fulfilling system (3.2) with conditions given by 

( ) ( )0
~

0 MM = , ( ) ( )0
~

0 NN = , ( ) ( )0
~

0 11 NN = , ( ) ( )0
~

0 =     (7.2) 

such that 

( ) ( ) −


,,,
~

,
~

,
~

,
~

11 NNMNNM .      (7.3) 

Remark 7.2. Consider the small perturbations  04321 ,0,,, Chhhh   that depend only on the 

solutions such that ( ) ( ) ( ) ( )1 2 3 40 0,  0 0,  0 0,  0 0h h h h= = = = , with the following properties: 

(1) 

( ) ( ) ( ) ( )1 1 2 2 3 3 4 4,  ,  ,  h h h h       , for  0,0   , 0i , 4,3,2,1=i . (7.4) 

(2) Furthermore, one has 

( ) ( ) ( ),
~

,
~

110 
 hMMDABC +=  0,0   , 

( ) ( ) ( ),
~

,
~

210 
 hNNDABC +=  0,0   , 

( ) ( ) ( ),
~

,
~

31110 
 hNNDABC +=  0,0   , 

( ) ( ) ( ),
~

,
~

410 
 hDABC +=  0,0   .      (7.5) 

Now, 



17106 

 

AIMS Mathematics  Volume 9, Issue 7, 17089–17121. 

( ) ( ) 11

~
−  MM , 

( ) ( ) 22

~
−  NN , 

( ) ( ) 3311

~
−  NN , 

( ) ( ) 44

~
−  .        (7.6) 

Lemma 7.3. The solution of perturbed problems 

( ) ( ) ( )

( )

0 1 1

0

, ,

0 ,

ABCD M M h

M M



     = +


=

       (7.7) 

( ) ( ) ( )

( )

0 1 2

0

, ,

0 ,

ABCD N N h

N N



     = +


=

        (7.8) 

( ) ( ) ( )

( )

0 1 1 1 3

1 1,0

, ,

0 ,

ABCD N N h

N N



     = +


=

       (7.9) 

( ) ( ) ( )

( )

0 1 4

0

, ,

0

ABCD h

      =  +

 = 

       (7.10) 

fulfills the relations 

( ) ( ) 1

~~
1

− mMM h  , 

( ) ( ) 2

~~
2

− mNNh  , 

( ) ( ) 31,1

~~
3

− mNN h  , 

( ) ( ) 4

~~
4

− mh  ,        (7.11) 

where ( )
1

~
hM , ( )

2

~
hN , ( )

3,1

~
hN , ( )

4

~
h  are solutions of Eqs (7.7)–(7.10), respectively. Here, 

M
~

, ,
~
N  1

~
N , 

~
 satisfy the set of conditions (7.1) and 

( ) ( )
( ) ( )

 



++−
=

B
m 01

. 

Proof. As suggested by Remark 7.2 and Lemma 7.3, the solutions of Eqs (7.7)–(7.10) are, 

respectively, given by 

( )
( )

( )
( ) ( )

( ) ( ) 












dM
B

M
B

MM h

~
,

1~
,

1~~
1

1

0
101

−

 −


+
−

+=  

( )
( )

( ) ( )
( ) ( ) 








 

dh
B

h
B

1

1

0
1

11 −

 −


+
−

+ , 
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( )
( )

( )
( ) ( )

( ) ( ) 












dN
B

N
B

NN h

~
,

1~
,

1~~
2

1

0
202

−

 −


+
−

+=  

( )
( )

( ) ( )
( ) ( ) 








 

dh
B

h
B

2

1

0
2

11 −

 −


+
−

+ , 

( )
( )

( )
( ) ( )

( ) ( ) 












dN
B

N
B

NN h 13

1

0
130,1,1

~
,

1~
,

1~~
3

−

 −


+
−

+=  

( )
( )

( ) ( )
( ) ( ) 








 

dh
B

h
B

3

1

0
3

11 −

 −


+
−

+ , 

( )
( )

( )
( ) ( )

( ) ( ) 












d
BB

h −


+
−

+=
−


~

,
1~

,
1~~

4

1

0
404

 

( )
( )

( ) ( )
( ) ( ) 








 

dh
B

h
B

4

1

0
4

11 −

 −


+
−

+ .     (7.12) 

Also, we find 

( )
( )

( )
( ) ( )

( ) ( ) 












dM
B

M
B

MM
~

,
1~

,
1~~

1

1

0
10

−

 −


+
−

+= , 

( )
( )

( )
( ) ( )

( ) ( ) 












dN
B

N
B

NN
~

,
1~

,
1~~

2

1

0
20

−

 −


+
−

+= , 

( )
( )

( )
( ) ( )

( ) ( ) 












dN
B

N
B

NN 13

1

0
130,11

~
,

1~
,

1~~ −

 −


+
−

+= , 

( )
( )

( )
( ) ( )

( ) ( ) 












d
BB

−


+
−

+=
−


~

,
1~

,
1~~

4

1

0
40

.   (7.13) 

It follows from the Remark 7.2 that 

( ) ( )
( )

( )
( ) ( )

( ) ( ) 












dh
B

h
B

MM h 1

1

0
1

11~~
1

−

 −


+
−

−  

( ) ( )
( ) ( ) 1

01













++−




 

B
1 m .      (7.14) 

Similarly, 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) 











dh
BB

hNNh 2

1

0
2

11~~
2

−

 −


+
−

−  
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( ) ( )
( ) ( ) 2

01
















++−




 

B
2 m .      (7.15) 

( ) ( )
( )

( )
( ) ( )

( ) ( ) 












dh
B

h
B

NN h 3

1

0
31,1

11~~
3

−

 −


+
−

−  

( ) ( )
( ) ( ) 3

01
















++−




 

B
3m .      (7.16) 

Similarly, 

( ) ( ) 4

~~
4

− mh  .        (7.17) 

Hence, the lemma is proved. 

Theorem 7.4. Under the assumptions of Theorems 5.1 and 5.2 and conditions (5.6), (5.9)–(5.11), the 

system (3.2) with (3.3) will possess Ulam-Hyers stability in  . 

Proof. Let ENNM 
~

,
~

,
~

,
~

1  be the solutions of inequalities (7.1) and the functions ENNM ,,, 1  

be unique solutions of Eq (3.2) with the conditions (7.2). Now, due to the set of conditions (7.2), we 

obtain 

00

~
MM = , 00

~
NN = , 0,10,1

~
NN = , 00

~
= .      (7.18) 

That is, 

( )
( )

( )
( ) ( )

( ) ( ) 












dM
B

M
B

MM ,
1

,
1

1

1

0
10

−

 −


+
−

+= , 

( )
( )

( )
( ) ( )

( ) ( ) 












dN
B

N
B

NN ,
1

,
1

2

1

0
20

−

 −


+
−

+= , 

( )
( )

( )
( ) ( )

( ) ( ) 












dN
B

N
B

NN 13

1

0
130,11 ,

1
,

1 −

 −


+
−

+= , 

( )
( )

( )
( ) ( )

( ) ( ) 












d
BB

−


+
−

+=
−
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Hence, the set of Eq (7.19) transforms to 
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Now, making use of inequality (5.6) and Lemma 7.3, we get 
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which yields that 
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Similarly, by condition (5.9) and Lemma 7.3, we obtain 
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which implies that 
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Similarly, we conclude that 

3311

~
− 

E
NN , 44

~
− 

E
,     (7.27) 

where 

i

i

m




−
=

1

2
, 3,4.i =         (7.28) 

Thus, for some 0,   , 

( ) ( ) −


,,,
~

,
~

,
~

,
~

11 NNMNNM .     (7.29) 

Therefore, the Ulam-Hyers stability of the model (3.2) with (3.3) is established. 

8. Numerical solution of the ABC type FCM model 

Here, a numerical approach for the solution of the model is discussed. For this, we consider an 

IVP with the ABC fractional derivative as follows: 

( ) ( )( )0 , .ABCD U V U

   =        (8.1) 

Employing the AB fractional integral operator on Eq (8.1), we get 
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Taking nn ==  in Eq (8.2), we obtain 
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Now, the linear Lagrange interpolation of ( )( )tUtV ,  provides 
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By using Eq (8.4) in Eq (8.3), the estimated solution of Eq (8.1) is obtained as 
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where 

( ) ( )
( )2

11
1

+

−−−−
=

+







nnn

n ,        (8.6) 

( )

( ) ( )

( )

1 11

1 1
, 0,

2

1 2 1
,  1,2,3,..., 1.

2
n



 



 




 + ++

−
+ = +

= 
− −  + + = −

  +      

(8.7) 

Using the numerical method (8.5)–(8.7), the solution of the model (3.2) is generated recursively in 

this way: 
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The solution of the model (3.2) is achieved by means of the above obtained iterative numerical 

schemes (8.8). 

9. Numerical simulation 

In this part, the above obtained numerical iterative schemes represented by Eqs (8.6)–(8.8) are 

utilized to perform the simulations for the fractional food chain model (3.2). The following values 

for the parameters of the discussed model are considered for the simulation purpose [29]: 6.0=r , 

44.00 = , 406.0= , 479.04 = , 309.01 = , 45.02 = , 202.0=c , 095.0=k , 126.01 =d , 

07.02 =d , 292.05 = , 5.0=q , ,35.03 = and a time step size 3100.1 −= . 

The graphs presented here show the behavior of solutions for different values of some 

parameters. The numerical solution of the model is plotted through Figures 1–10 for various initial 

values and fractional order  . Figure 1 shows the impact of distinct values of fractional order  on 

the dynamics of solutions ( )M , ( )N , ( )1N , and ( ) . Figure 2 presents the effect of various 

values of   on the nature of solutions M , N , 1N , and  . Figure 3 describes the behavior of 

solutions M , N , 1N , and   for distinct values of r . Figures 4 and 5, respectively, depict the 

dynamics of solutions M , N , 1N  and   for distinct values of 0  and 1 . Figures 6 and 7, 

respectively, show the impact of distinct values of 2  and 3  on the dynamics of solutions M , 

N , 1N  and  . Figures 8 and 9 elucidate the nature of solutions M , N , 1N , and   for various 

values of 1d  and 2d . Finally, Figure 10 explains the impact of various values of k  on the 

dynamics of solutions M , N , 1N , and  . It is easy to examine that the achieved numerical 

results are compatible with the conceptual conjectures in the foregoing sections. 
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Figure 1. Impact of distinct values of fractional order  on the dynamics of solutions 

( )M , ( )N , ( )1N , and ( ) . 

 

Figure 2. Effect of various values of   on the dynamics of solutions ( )M , ( )N , 

( )1N , and ( ) . 
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Figure 3. Effect of distinct values of r  on the dynamics of solutions ( )M , ( )N , 

( )1N , and ( ) . 

 

Figure 4. Impact of distinct values of 0  on the dynamics of solutions ( )M , ( )N , 

( )1N , and ( ) . 
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Figure 5. Impact of various values of 1  on the dynamics of solutions ( )M , ( )N , 

( )1N , and ( ) . 

 

Figure 6. Impact of distinct values of 2  on the dynamics of solutions ( )M , ( )N , 

( )1N , and ( ) . 
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Figure 7. Effect of distinct values of 3  on the dynamics of solutions ( )M , ( )N , 

( )1N , and ( ) . 

 

Figure 8. Impact of various values of 1d  on the dynamics of solutions ( )M , ( )N , 

( )1N , and ( ) . 
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Figure 9. Effect of distinct values of 2d  on the dynamics of solutions ( )M , ( )N , 

( )1N , and ( ) . 

 

Figure 10. Impact of various values of k on the dynamics of solutions ( )M , ( )N , 

( )1N , and ( ) . 
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10. Concluding remarks and observations 

This paper examines the fractional order FCM having Holling type II functional response. The 

ABC fractional derivative operator providing Mittag-Leffler kernel is used for this purpose. The best 

feature of this derivative operator is that it provides scope for inclusion of memory-related properties 

very efficiently along with utilization of the information. This FDO possesses all the features of the 

Caputo-Fabrizio derivative with extra features of nonsingular and nonlocal character of a kernel. The 

main reason behind the use of FDO is the better description of memory characteristics which can be 

possible through the inclusion of nonlocal features. The use of an ML kernel in ABFDO is due to its 

natural appearance in various physical and biological models because the ML function is a joint 

venture of power-law and exponential-law which induces the memory effect completely. The 

inspiration behind the selection of the AB derivative is the nonlocal characteristic of the kernel which 

generates the scope of global analysis in those areas where the trends do not follow the power-law. 

Fractional order modeling also enhances the accuracy of the analysis and provides an extended 

degree of freedom in the model. However, the most important attribute of the fractional order 

modeling is to provide an excellent tool for the description of memory and hereditary characteristics 

which are generally ignored by systems of integer-order derivatives. In addition, fractional order 

derivatives are also useful to model the behavior of real systems and in the investigation of 

dynamical systems. The numerical approach is implemented to solve the model to get an 

approximate solution. The existence and uniqueness related analysis for the model are also presented. 

In addition, the model is also discussed regarding the Ulam-Hyers stability approach. Moreover, the 

graphical presentations for numerical solutions of the model confirm the authenticity of the 

numerical scheme utilized in this paper. It is clear that the achieved numerical results for the model 

correspond well with the conceptual findings. As a future research scope of the work, the presented 

numerical approach and stability analysis can also be applied to other physical and biological 

models. 
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