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Abstract: Hepatitis B is a worldwide viral infection that causes cirrhosis, hepatocellular cancer,
the need for liver transplantation, and death. This work proposed a mathematical representation of
Hepatitis B Virus (HBV) transmission traits emphasizing the significance of applied mathematics in
comprehending how the disease spreads. The work used an updated Atangana-Baleanu fractional
difference operator to create a fractional-order model of HBV. The qualitative assessment and well-
posedness of the mathematical framework were looked at, and the global stability of equilibrium
states as measured by the Volterra-type Lyapunov function was summarized. The exact answer was
guaranteed to be unique using the Lipschitz condition. Additionally, there were various analyses of this
new type of operator to support the operator’s efficacy. We observe that the explored discrete fractional
operators will be χ2-increasing or decreasing in certain domains of the time scale N j := j, j+1, ...
by looking at the fundamental characteristics of the proposed discrete fractional operators along with
χ-monotonicity descriptions. For numerical simulations, solutions were constructed in the discrete
generalized form of the Mittag-Leffler kernel, highlighting the impacts of the illness caused by
numerous causes. The order of the fractional derivative had a significant influence on the dynamical
process utilized to construct the HBV model. Researchers and policymakers can benefit from the
suggested model’s ability to forecast infectious diseases such as HBV and take preventive action.
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1. Introduction

Hepatitis is an inflammatory liver disease caused by excessive alcohol consumption, pollutants,
drugs, and health issues. Hepatitis B, the most dangerous form, is responsible for 600,000 annual
deaths from acute or chronic complications, making it a significant global healthcare issue [1].
Hepatitis B virus (HBV) is a DNA virus from the Hepadnaviridae family, first identified in an
Australian aborigine. It causes severe liver illnesses, targeting hepatocytes. HBV’s unique genomic
DNA undergoes a molecular template DNA transformation, generating a viral RNA intermediate
and reverse-transcribed back into viral DNA. This stable DNA causes perpetual infection and low
recovery rates. The complex HBV life cycle has led to the development of antiviral medicines [2].
Chronic HBV infection affects 580,000-2.4 million US citizens, increasing the risk of liver cancer
and cirrhosis. 69% of the population, particularly non-US citizens, have the virus, particularly during
perinatal periods. Despite successful hepatitis B vaccination, 70% of US residents self-reported
not receiving it in 2018. Antiviral medication, tracking, and liver cancer diagnosis can help reduce
mortality and morbidity [3]. Hepatocellular carcinoma (HCC) and liver cirrhosis are diseases caused
by the hepatitis B virus. Prevention is crucial, with the first cancer vaccine being the HBV vaccine.
The World Health Organization proposes a 90% vaccination goal to eradicate hepatitis B by 2030,
making HCC prevention a key part of medical policy [4].

For researchers and policy advisers, mathematical modeling is a critical tool for gathering and
assessing data from experiments for medical interventions. It combines data from a variety of sources
into a coherent structure, enabling an in-depth examination of challenging issues. The consequences
of treatments are simulated by mathematical models, which also offer quantitative forecasts for
potential population wellness effects. It has a lengthy history and has developed into a crucial
instrument for making decisions in the fight against infectious diseases [5–8]. To forecast HBV
transmission dynamics and assess a prolonged period efficacy of China’s vaccination initiative, Zhao
et al. [9] created a mathematical model. By creating wave movement using geometrically distinct
perturbation and permitting non-monotone propagating characteristics by numerical simulations,
the model developed in [10] simulates HBV infection with spatial dependency. Two treatment-
related hepatitis C virus (HCV) models were observed by Martin et al. [11] who discovered various
bifurcation patterns. They computed analytical answers for the medication levels required for disease
eradication or control and discovered that reachable levels may culminate in control or extinction
over diverse prevalence levels. In [12], researchers put out an HBV infection model including
vaccine and treatment, evaluating dynamic behavior for uniform controls and applying Pontryagin’s
maximal concept to solve optimal control concerns. The use of mixed control strategies outperformed
independent controls, according to numerical findings. The dynamics of HBV are greatly influenced
by surroundings like humidity and environmental temperature. In a study [13], An effective approach
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for identifying these implications is stochastic modeling. A stochastic hepatitis B model that takes into
account the transmission coefficient’s time delay and the Cytotoxic T cells (CTL) immune response
class has been constructed. Wodajo et al. [14] developed a nonlinear mathematical model for the
kinetics of HBV transmission while taking into account the impacts of immunization, medication,
migration, and screening.

Mathematical analysis techniques that use fractional calculus to extend differential equations are
referred to as fractional differential equations. They are useful in biological contexts because of their
intrinsic affinity for memory-based systems, and they are frequently incorporated into epidemiological
models [15–19], which makes them an important resource for comprehending complicated systems.
In science, especially physics and engineering [20–24], fractional calculus is frequently employed.
Fractional order models are considered more realistic and practical than traditional ordinal order
models due to the use of fractional differential equations to differentiate between distinct mathematical
models’ hereditary and data storage properties. Two models for hepatitis B were presented by Cardoso
et al. [25], both of which had their foundations on fractional differential equations. Drug therapy factors
were absent from the first model whereas they were included in the second. Both models took stability
analysis and reproduction number into account, and numerical simulations utilizing unconventional
finite difference methods revealed that the solutions tend to an equilibrium point. Khan et al. [26]
studied the kinetics of HIV using the Caputo-Fabriizo derivative, utilizing the hypothesis of fixed
points to get conclusions on uniqueness, and using the Adams-Bashfirth numerical approach to solve
the problem. Using the Atangana-Baleanu derivative in Caputo sense, mathematicians created a new
epidemic fractional order model to describe HBV in [27]. A two-step Lagrange polynomial-based
iterative approach was used to determine the solution after the model’s nonnegativity, distinction,
reproduction number, and equilibria were assessed. Utilizing the Caputo-Fabrizio fractional derivative
with immunological delay, Gao et al. [28] presented a mathematical model regarding the HBV.
Applying the Laplace transform and fixed point theorem, the model’s singularity was established.
The iterative solutions’ stability was examined using the Sumudu transform and Picard iteration. In
the study [29], Lévy noise-driven HBV infection is analyzed, taking into account the influence of
vaccination on the dynamics of the epidemic. It employs a non-integer order, fractal dimension
fractional-order scheme. To examine the stochastic model, the theoretical analysis employs the
Lyapunov function. In order to conduct additional research and validate the findings, numerical
simulations and correlations with deterministic structures were offered. Several numerical techniques
for analyzing fractional differential equations have been suggested during the last few decades, with the
finite difference and finite element methods serving as the primary instruments. Meshless or mesh-free
approaches have recently emerged for studying science and engineering problems, with the problem
area represented as a cloud of distributed points [30].

In view of their unique properties, enhanced fractional continuous and discrete operators utilizing
Mittag-Leffler kernels are especially interesting as discrete equivalents [31–33]. Employing an
improved Atangana-Baleanu fractional difference operator, Farman et al. [34] created a fractional-order
representation of Bovine Brucellosis. They evaluated the global stability of the Volterra-type Lyapunov
function and applied the Lipschitz criterion to guarantee originality. For numerical simulations and
emphasizing the consequences of the illness caused by different causes, solutions were generated in
the discrete generalized version [35]. They conducted assessment using fixed point approaches, looked
at the stability of the solution in the Hyers-Ulam meaning, and applied iterative approaches to get an
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imprecise answer in series. This paper suggests a rarely discussed fractional order model with discrete
generalized Mittag-Leffler kernels for the dynamics of HBV. It will also serve as a basis for numerous
dynamical problems including their existence, distinctiveness, and numerical simulations.

2. Preliminaries

Here are some essential definitions that you may find helpful in system analysis.

Definition 2.1. [31, 36] Consider the reversed jump operator to be ℑ(t) = t−1.

• The nabla left fractional sum of order σ > 0 is defined considering a function X : N j = { j, j+
1, j+2, ...}→ R as

j∇
−σ [X(t)] =

1
Γ(σ)

t

∑
ω=σ+1

X(ω)[t−ℑ(ω)]σ−1, t ∈ N j+1. (2.1)

The nabla left fractional difference of order σ > 0 is defined by

j∇
σ [X(t)] = ∇

k
∇
−(k−σ)
j X(t) =

∇k

Γ(k−σ)

t

∑
ω=σ+1

X(ω)[t−ℑ(ω)]k−σ−1, t ∈ N j+1. (2.2)

• The nabla left fractional sum of order σ > 0 is defined considering a function X : pN = {p, p−
1, p−2, ...}→ R as

∇
−σ
p [X(t)] =

1
Γ(σ)

p−1

∑
ω=t

X(ω)[ω−ℑ(t)]σ−1, t ∈ p−1N. (2.3)

The nabla left fractional difference of order σ > 0 is defined by

∇
σ
p [X(t)] = 	∆

k
∇
−(k−σ)
p X(t) =

(−1)k∆k

Γ(k−σ)

p−1

∑
ω=t

X(ω)[ω−ℑ(t)]k−σ−1, t ∈ p−1N. (2.4)

Definition 2.2. [31, 37] For ψ ∈ R : |ψ| < 1, and σ ,υ ,γ ∈ C with Re(σ) > 0, the nabla discrete
Mittag-leffler function of three parameters is defined as:

Eγ

σ ,υ(ψ, t) =
∞

∑
k=0

ψ
k tkσ+υ−1(γ)k

k!Γ(kσ +υ)
, (γ)k = γ(γ +1)...(γ + k−1). (2.5)

For γ = 1, we can calculate the discrete Mittag-Leffler function of two parameters as

E1
σ ,υ(ψ, t) = Eσ ,υ(ψ, t) =

∞

∑
k=0

ψ
k tkσ+υ−1(1)k

k!Γ(kσ +υ)
=

∞

∑
k=0

ψ
k tkσ+υ−1

Γ(kσ +υ)
. (2.6)

For γ = υ = 1, the discrete Mittag-Leffler function of one parameter is determined by

Eσ (ψ, t) =
∞

∑
k=0

ψ
k tkσ

Γ(kσ +1)
. (2.7)
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Remark 2.1. For, ψ =− σ

1−σ
and σ ∈ (0, 1

2), the initial values of Eσ (ψ, t) at t = 0,1,2, and 3 are as
follows, taken from [38]: 

Eσ (ψ,0) = 1,
Eσ (ψ,1) = 1−σ ,

Eσ (ψ,2) = (1−σ)2(1+σ),

Eσ (ψ,3) = 1−σ

2

(
(2σ −1)σ3−3σ2 +2

)
.

(2.8)

Overall, it is evident that
0 < Eσ (ψ, t)< 1, t = 1,2,3, .. (2.9)

Conversely, we have that for each t = 0,1,2, ..., Eσ (ψ, t) is monotonically decreasing.

Lemma 2.3. [31, 37] The discrete Laplace transform (f) of a function X defined on N j (2.1) can be
expressed by [

f j X(t)
]
(ω) =

∞

∑
t= j+1

X(t)
(1−ω) j−t+1 . (2.10)

Let Z be a function also defined on N j, then the discrete Laplace transform of convolution of X and Z
is given by [

f j (X◦Z)(t)
]
(ω) =

(
f j X

)
(ω)×

(
f j Z

)
(ω). (2.11)

Lemma 2.4. [31, 37] For a function X defined on N j, the outcome is as stated below.[
f j
[
∇X(t)

]]
(ω) = ω

(
f j X(t)

)
(ω)−X( j). (2.12)

In general, [
f j
[
∇

kX(t)
]]
(ω) = ω

k(f j X(t)
)
(ω)−

k−1

∑
r=0

ω
(k−r−1)

∇
r X( j+1). (2.13)

Lemma 2.5. [31, 32, 39] Specify a real number as σ . Then, we have[
f j
[RL

j ∇
−σ X(t)

]]
(ω) =

1
ωσ

(
f j X(t)

)
(ω). (2.14)

Lemma 2.6. [31, 32, 39] For σ ,υ ,ψ,ω ∈ C with Re(υ)> 0, we have[
fσ Eσ ,υ(ψ, t− j)

]
(ω) =

1
ωυ(1−ψω−σ )

, (2.15)

if |ψω−σ |< 1 with Re(ω)> 0. Also, we can find[
fσ Eσ ,σ (ψ, t− j)

]
(ω) =

1
ωσ −ψ

. (2.16)
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Definition 2.7. [31, 32, 39] Assume that X is defined on N j
⋂

pN, j < p. Then, for ψ = − σ

1−σ
and

0 < σ < 1
2 , the left discrete generalized Atangana-Baleanu of the Liouville-Caputo sense fractional

difference is given by

ab
j ∇

σ [X(t)] =
ab(σ)

1−σ

t

∑
ω= j+1

∇X(ω) Eσ (ψ, t +1−ω), ∀t ∈ N j, (2.17)

where ab(σ)> 0 with ab(σ)
∣∣
0,1 = 1 is a normalization function. Additionally, the fractional difference

of the Liouville-Caputo type right discrete generalized Atangana-Baleanu is described by

ab
∇

σ
p [X(t)] =

−ab(σ)

1−σ

p−1

∑
ω=t

∆X(ω) Eσ (ψ, t +1−ω), ∀t ∈ pN. (2.18)

The definition of the left discrete Atangana-Baleanu fractional sum is

ab
j ∇
−σ [X(t)] =

1−σ

ab(σ)
X(t)+

σ

ab(σ)
j∇
−σ [X(t)], ∀t ∈ N j. (2.19)

Definition 2.8. [39] Assume that X is defined on N j
⋂

pN, j < p. Then, for ψ =− σ

1−σ
and 0 < σ < 1

2 ,
the we have

mabc
j ∇

σ [X(t)] =
ab(σ)

1−σ

(
X(t)−Eσ (ψ, t− j)X( j)+ψ

t

∑
ω= j+1

Eσ ,σ (ψ, t +1−ω)X(ω)
)
, ∀t ∈ N j.

(2.20)
Furthermore, the fractional difference of the right discrete Atangana-Baleanu modified Liouville-
Caputo type is provided by

mabc
∇

σ
p [X(t)] =

ab(σ)

1−σ

(
X(t)−Eσ (ψ, p−t)X(p)+ψ

p−1

∑
ω=t

Eσ ,σ (ψ,ω+1−t)X(ω)
)
, ∀t ∈ pN. (2.21)

The outcomes listed below can be drawn by generalizing using the approach as for σ ∈ (0,1).

Definition 2.9. [39] Assume that w ∈N0, then for ψw =− σ−w
w+1−σ

and σ ∈ (w,w+ 1
2), the left discrete

modified Atangana-Baleanu of the Liouville-Caputo sense fractional difference of a higher order is
given by

mabc
j ∇

σ X(t) =mabc
j ∇

σ−w
∇

wX(t) =
ab(σ −w)
w+1−σ

[
∇

wX(t)−X( j) Eσ−w(ψw, t− j)∇w

+ψw

t

∑
ω= j+1

X(ω) Eσ−w,σ−w(ψw, t +1−ω)∇w
]
, ∀t ∈ N j.

(2.22)

Also, the right discrete modified Atangana-Baleanu of the Liouville-Caputo type fractional difference
of a higher order is given by

mabc
∇

σ
p X(t) =mabc

∇
σ−w
p ∇

wX(t) =
ab(σ −w)
w+1−σ

[
∇

wX(t)−X(p) Eσ−w(ψw, p− t)∇w

+ψw

p−1

∑
ω=t

X(ω) Eσ−w,σ−w(ψw,ω +1− t)∇w
]
, ∀t ∈ pN.

(2.23)
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3. Discrete fractional order HBV model

In this section, we look at a SEACTR epidemic model [1], which divides the entire population into
six time-associated classes according to the form of HBV disease:

• Susceptible class (S): A susceptible individual is one who lacks immunization or has
compromised immunity, permitting the virus to penetrate into the body and get into tissues,
replicate, and trigger a reaction, potentially leading to HBV infection if subjected to transmission
techniques.

• Exposed class (E): Individuals who have contracted infection but are yet to become contagious
are classified as exposed.

• Acute infective class (A): Acute infective pertains to people who have been hosts of
microorganisms for no longer than six months and who are actively spreading or transmitting
HBV or who have the ability of doing so.

• Chronic infective class (C): Chronic infectious ailments are caused by HBV that continue to exist
after a first infection, frequently leading to recurring or chronic illnesses that affect people who
seem healthy but are actually harboring infections.

• Treated class (T): People who receive lamivudine, tenofovir, and various other therapies after
developing a chronic infection are believed to be in the treated class.

• Recovered class (R): People in the recovered class have either had successful medical treatment
or have recovered naturally.

Mathematical models with fractional derivatives provide more flexibility when analyzing memory
effects and illness dynamics on particular datasets. Hence, the new fractional-order HBV model
is developed using the nonlinear fractional differential equations listed below under the left discrete
modified Atangana-Baleanu of the Liouville-Caputo type fractional derivative with 0 < σ < 1

2 .

mabc
j ∇σ S(t) = κ−κβ1C−κϑR+κ2R−

[
ηλ (A+ξ C)+κ +α

]
S,

mabc
j ∇σ E(t) = ηλ (A+ξ C)S− (η1 +η2 +κ)E,
mabc
j ∇σ A(t) = η1E− (δ1 +δ2 +κ)A,
mabc
j ∇σ C(t) = η2E+δ1A− (φ +ζ +κ−κβ1)C,
mabc
j ∇σ T(t) = φC− (χ +κ)T,
mabc
j ∇σ R(t) = χT+δ2A+αS+(κϑ −κ−κ2)R

(3.1)

with nonnegative initial constraints,

S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, A(0) = A0 ≥ 0,
C(0) = C0 ≥ 0, T(0) = T0 ≥ 0, R(0) = R0 ≥ 0. (3.2)

Susceptible group increases with the arrival of birth flux rate κ−κβ1C−κϑR. The natural birth/death
rate is expressed as κ . For the purpose of vertical transmission, we suppose that a certain percentage,
β1, of newborns from infected classes are infected. This percentage is represented by the term
κβ1C, (β < 1). Where ϑ , (ϑ < 1), is used to indicate that a certain percentage of newborns from the
recovered class are immunized. Immune response degradation rate of the recovered class is represented
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by κ2. The phrase ηλ (A+ ξ C)S is used to describe the force of HBV infection, where η is the per
capita interaction rate, λ is the likelihood of contracting HBV infection from a single infected person,
and ξ is the contamination level of the chronic infected group (C). The rate of immunization causes
proportions of susceptible people to transfer to recovered classes at a rate of α . The rate at which
susceptible people become chronic HBV carriers is termed η1. The rate of transmission from exposed
to acutely infected persons is defined as η2. δ1 represents the rate at people gradually become chronic
HBV carriers and δ2 represents the rate at which people who are acutely which infected recover from
the disease naturally. The rate of chronically infected people seeking treatment is φ , the rate of HBV
disease-related deaths is ζ , and the rate of treatment class recovery is χ . It is also assumed that the
number of newborn carriers is less than the total number of carriers who will die and those who will
move from carriers to recovery states. We illustrate it in Figure 1.

Figure 1. Hepatitis B epidemic model considering Susceptible (S), Exposed (E), Acute (A),
Chronic (C), Treated (T), and Reovered (R) populations.

4. Qualitative analysis of proposed model

4.1. Well-posedness

Here we investigate the circumstances that, under the assumption that real-world conditions with
pertinent values are present, ensure that the solutions of the proposed model are positive. For this
purpose, we find 

E(t) ≥ E0 e−(η1+η2+κ)t ,

A(t) ≥ A0 e−(δ1+δ2+κ)t ,

C(t) ≥ C0 e−(φ+ζ+κ−κβ1)t ,

T(t) ≥ T0 e−(χ+κ)t ,

R(t) ≥ R0 e−(κϑ−κ−κ2)t ,

(4.1)
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for all t ≥ 0.
We specify norm for the class S:

‖P‖∞ = supt∈DP|P(t)|, (4.2)

mabc
j ∇

σ S(t) = κ−κβ1C−κϑR+κ2R−
[
ηλ (A+ξ C)+κ +α

]
S,

mabc
j ∇

σ S(t) ≥ −
[
ηλ (A+ξ C)+κ +α

]
S,

mabc
j ∇

σ S(t) ≥ −
[
ηλ (supt∈DA

|A|+ξ supt∈DC
|C|)+κ +α

]
S,

mabc
j ∇

σ S(t) ≥ −
[
ηλ (|A|∞ +ξ |C|∞)+κ +α

]
S. (4.3)

We can conclude that
S(t)≥ S0 e−

(
ηλ (|A|∞+ξ |C|∞)+κ+α

)
t , ∀t ≥ 0. (4.4)

The positively invariant set of a dynamical system is defined as one in which the system always stays
in the set after emitting from it. We construct a positively invariant region that is closed curve-bounded
and encircles the origin.

Theorem 4.1. In straightforward settings, the suggested model (3.1)’s solution is singular and
constrained to R6

+.

Proof. We shall demonstrate the system (3.1)’s positive solution, and the outcomes are given as
follows:

mabc
j ∇

σ S(t)
∣∣
S=0 = κ−κβ1C−κϑR+κ2R≥ 0,

mabc
j ∇

σ E(t)
∣∣
E=0 = ηλ (A+ξ C)S≥ 0,

mabc
j ∇

σ A(t)
∣∣
A=0 = η1E≥ 0,

mabc
j ∇

σ C(t)
∣∣
C=0 = η2E+δ1A≥ 0,

mabc
j ∇

σ T(t)
∣∣
T=0 = φC≥ 0,

mabc
j ∇

σ R(t)
∣∣
R=0 = χT+δ2A+αS≥ 0.

(4.5)

The solution cannot evacuate the hyperplane if (S0,E0,A0,C0,T0,R0) ∈ R5
+. The domain R6

+ is
a positivity invariant set. The following total population is obtained by summing each part of the
model (3.1)’s population:

mabc
j ∇

σ N(t) = mabc
j ∇

σ S(t)+mabc
j ∇

σ E(t)+mabc
j ∇

σ A(t)+mabc
j ∇

σ C(t)+mabc
j ∇

σ T(t)+mabc
j ∇

σ R(t)

= κ−ζ C−κ(S+E+A+C+T+R)

≤ κ−κN. (4.6)

N(0)≤ 1 ⇒ N(t)≤ 1.

Therefore, a solution of the fractional model (3.1) exists in M for all t > 0. As such, the suggested
HBV model is mathematically and epidemiologically well-posed. Therefore, it is sufficient to examine
the fundamental model’s dynamics in the feasible region:

M=
{
(S,E,A,C,T,R) ∈ R6

+ : N(t)≤ 1
}
. (4.7)

�
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4.2. Equilibrium points

The following total population is obtained by summing each part of the model (3.1)’s population:

N(t) = S(t)+E(t)+A(t)+C(t)+T(t)+R(t). (4.8)

We can write
1−
(
S(t)+E(t)+A(t)+C(t)+T(t)

)
= R(t). (4.9)

Hence, our proposed system reduces to

mabc
j ∇σ S(t) = κ−κβ1C+(κ2−κϑ)

(
1−S−E−A−C−T

)
−
[
ηλ (A+ξ C)+κ +α

]
S,

mabc
j ∇σ E(t) = ηλ (A+ξ C)S− (η1 +η2 +κ)E,
mabc
j ∇σ A(t) = η1E− (δ1 +δ2 +κ)A,
mabc
j ∇σ C(t) = η2E+δ1A− (φ +ζ +κ−κβ1)C,
mabc
j ∇σ T(t) = φC− (χ +κ)T.

(4.10)
We employ E = A = C = 0 to get the HBV-free equilibrium point (E�) of system (4.10). We obtain

E
� = {S�,E�,A�,C�,T�}= { κ(1−ϑ)+κ2

κ(1−ϑ)+κ2 +α
,0,0,0,0} (4.11)

The system (4.10)’s endemic equilibrium point is indicated by E•:

E
• = {S•,E•,A•,C•,T•}

where,

S• =
(κ +η1)(κ +η2)

(
κ(1−β1)+δ2 +κ2

)
ηλ
(
κ(1−β1)+δ1 +δ2 +κ2

)
η1

,

E• =
ηλS•(A•+ξ C•)

κ +η1 +η2
, A• =

ηλη1ξ C•S•

1−ηλη1S•
,

C• =
ηλη2S•(A•+ξ C•)

(κ +η1 +η2)
(
κ(1−β1)+ζ +φ

) + ηλη1δ1ϑC•S•

(1−ηλη1S•)
(
κ(1−β1)+φ

) ,
T• =

[
ηλη2S•(A•+ξ C•)

(κ +η1 +η2)
(
κ(1−β1)+φ

) + ηλη1δ1ξ C•S•

(1−ηλη1S•)
(
κ(1−β1)+φ

)]( α

κ +χ

)
.

(4.12)

4.3. Reproductive number

It is well recognized that a disease’s ability to spread or remain within a community is based on
its basic reproductive number. Utilizing the next generation matrix approach on (4.10), we get the
reproductive number (R0). where

R0 =
ηλ
(
κ(1−ϑ)+κ2

)[
η1(κ +η1 +η2 +δ1ξ )+ξ η2

(
κ(1−β1)+ζ +φ

)](
κ(1−ϑ)+κ2 +α

)
(κ +η1 +η2)(κ +δ1 +δ2)

(
κ(1−β1)+κ2

) . (4.13)

In fact, the HBV will die out, and there will be no epidemic when R0 < 1. In the meantime, an
epidemic will develop if R0 > 1. Furthermore, the R0 value shows how contagious the HBV disease
is.
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4.4. Sensitivity indices of reproductive (R)′s parameters

It is possible to reduce or regulate the incidence and prevalence of HBV if the key effects of each
parameter in the dynamics of the illness are taken into account. It investigates the impact of each
parameter on the fundamental reproduction number R. The sensitivity indices for each parameter are
listed in the table below (see Table 1).

Table 1. Reproductive number’s parameters sensitivity indices [1].

Parameter Index Parameter Index Parameter Index
η +1 η1 +1.3769 η2 +1.4761
δ1 -0.7338 δ2 -0.5968 ϑ -1.3287
κ +0.3647 κ2 +0.3297 ξ +0.9138
χ -0.4286 α +0.3593 φ -1.0025
λ +1 ζ +0.3748 β1 +0.33593

4.5. Stability analysis

Systems and control theory heavily relies on the stability analysis of equilibrium points, which
are defined by the Lyapunov function. It facilitates the evaluation of equilibrium points’ asymptotic
stability in both linear and nonlinear systems without the need to explicitly calculate the differential
equation’s solution. The asymptotic stability of a scalar positive definite function with a negative
definite time derivative is known. For identifying infection stages and creating disease management
plans, the global stability study of epidemiological algorithms is essential. In terms of disease
prevention, the Volterra-Lyapunov matrix theory has become more popular. In order to investigate the
global stability of the proposed system, this study compares the stability of risk endemic equilibrium
with disease-free equilibrium globally.

Lemma 4.1. [40] Let U(t) ∈ R+ be a continuous function such that

mabc
t0 ∇

σ

(
U(t)−U∗−U∗ ln

U(t)
U∗

)
≤
(

1− U∗

U(t)

)
[ mabc

t0 ∇
σU(t)], ∀t ≥ t0, (4.14)

U∗ ∈ R+,∀σ ∈ (0, 1
2).

Theorem 4.2. The HBV-free equilibrium states (E�) are globally asymptotically stable provided the
reproductive number (R) is less than 1.

Proof. Define a Volterra-type Lyaponuv function (V) by

V=
(

S−S�−S� ln
S
S�
)
+E+A+C+T. (4.15)

Using Lemma 4.1, we get

mabc
j ∇

σV≤
(

1− S�

S

)
[ mabc

j ∇
σ S]+ [ mabc

j ∇
σ E]+ [ mabc

j ∇
σ A]+ [ mabc

j ∇
σ C]+ [ mabc

j ∇
σ T]. (4.16)
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When we substitute the derivative values from (4.10), we discover

mabc
j ∇

σV ≤
(

1− S�

S

){
κ−κβ1C+(κ2−κϑ)

(
1−S−E−A−C−T

)
−
[
ηλ (A+ξ C)+κ +α

]
S
}

+
{

ηλ (A+ξ C)S− (η1 +η2 +κ)E
}
+
{

η1E− (δ1 +δ2 +κ)A
}

+
{

η2E+δ1A− (φ +ζ +κ−κβ1)C
}
+
{

φC− (χ +κ)T
}
.

(4.17)

Let S = S−S�, E = E−E�, A = A−A�, C = C−C�, and T = T−T�, then we find

mabc
j ∇

σV ≤
(

1− S�

S

){
κ−κβ1(C−C�)+(κ2−κϑ)

(
1− (S−S�)− (E−E�)− (A−A�)

− (C−C�)− (T−T�)
)
−
[
ηλ ((A−A�)+ξ (C−C�))+κ +α

]
(S−S�)

}
+
{

ηλ ((A−A�)+ξ (C−C�))(S−S�)− (η1 +η2 +κ)(E−E�)
}

+
{

η1(E−E�)− (δ1 +δ2 +κ)(A−A�)
}

+
{

η2(E−E�)+δ1(A−A�)− (φ +ζ +κ−κβ1)(C−C�)
}

+
{

φ(C−C�)− (χ +κ)(T−T�)
}
.

(4.18)

As we can see, for
R < 1 ⇒ MABC

a ∇
σV≤ 0,

and MABC
a ∇σV= 0 only when

S = S�, E = E�, A = A�, C = C�, T = T�.

Thus, we draw the conclusion that global asymptotically stable HBV-free equilibrium states (E�) exist.
�

For the endemic Lyapunov function, we assign all independent variables to the suggested model.

Theorem 4.3. The endemic equilibrium points (E•) are globally asymptotically stable if the
calculation of reproduction number (R0) is greater than 1.

Proof. Define a Volterra-type Lyaponuv function (X) by

X = ρ1

(
S−S•−S• ln

S
S•
)
+ρ2

(
E−E•−E• ln

E
E•
)
+ρ3

(
A−A•−A• ln

A
A•
)

+ρ4

(
C−C•−C• ln

C
C•
)
+ρ5

(
T−T•−T• ln

T
T•
)
. (4.19)

where ρi, i = 1,2,3,4,5,6 are future-selectable positive constants. Using Lemma 4.1 and the Eq (4.19)
to replace system (4.10), we discover

mabc
j ∇

σX ≤ ρ1(
S−S•

S
)[ mabc

j ∇
σ S]+ρ2(

E−E•

E
)[ mabc

j ∇
σ E]+ρ3(

A−A•

A
)[ mabc

j ∇
σ A]
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+ρ4(
C−C•

C
)[ mabc

j ∇
σ C]+ρ5(

T−T•

T
)[ mabc

j ∇
σ T]. (4.20)

Substituting the related derivative values from (4.10), we get

mabc
j ∇

σX ≤ ρ1

(
1− S•

S

){
κ−κβ1C+(κ2−κϑ)

(
1−S−E−A−C−T

)
−
[
ηλ (A+ξ C)+κ +α

]
S
}

+ρ2

(
1− E•

E

){
ηλ (A+ξ C)S− (η1 +η2 +κ)E

}
+ρ3

(
1− A•

A

){
η1E− (δ1 +δ2 +κ)A

}
+ρ4

(
1− C•

C

){
η2E+δ1A− (φ +ζ +κ−κβ1)C

}
+ρ5

(
1− T•

T

){
φC− (χ +κ)T

}
.

(4.21)

Let S = S−S•, E = E−E•, A = A−A•, C = C−C•, and T = T−T•, then we have

mabc
j ∇

σX ≤ ρ1

(
1− S•

S

){
κ−κβ1(C−C•)+(κ2−κϑ)

(
1− (S−S•)− (E−E•)− (A−A•)

− (C−C•)− (T−T•)
)
−
[
ηλ ((A−A•)+ξ (C−C•))+κ +α

]
(S−S•)

}
+ρ2

(
1− E•

E

){
ηλ ((A−A•)+ξ (C−C•))(S−S•)− (η1 +η2 +κ)(E−E•)

}
+ρ3

(
1− A•

A

){
η1(E−E•)− (δ1 +δ2 +κ)(A−A•)

}
+ρ4

(
1− C•

C

){
η2(E−E•)+δ1(A−A•)− (φ +ζ +κ−κβ1)(C−C•)

}
+ρ5

(
1− T•

T

){
φ(C−C•)− (χ +κ)(T−T•)

}
.

(4.22)

mabc
j ∇

σX≤



ρ1κ−ρ1κ
S•
S −ρ1κβ1(C−C•)+ρ1κβ1

S•
S (C−C•)+ρ1(κ2−κϑ)−ρ1

S•
S (κ2−κϑ)

−ρ1(κ2−κϑ) (S−S•)2

S −ρ1(κ2−κϑ)(E−E•)+ρ1(κ2−κϑ)S•
S (E−E•)

−ρ1(κ2−κϑ)(A−A•)+ρ1(κ2−κϑ)S•
S (A−A•)−ρ1(κ2−κϑ)(C−C•)

+ρ1(κ2−κϑ)S•
S (C−C•)−ρ1(κ2−κϑ)(T−T•)+ρ1(κ2−κϑ)S•

S (T−T•)
−ρ1

[
ηλ ((A−A•)+ξ (C−C•))+κ +α

] (S−S•)2

S +ρ2ηλ (A−A•)(S−S•)
−ρ2ηλ

E•
E (A−A•)(S−S•)+ρ2ηλξ (C−C•)(S−S•)−ρ2ηλξ

E•
E (C−C•)(S−S•)

−ρ2(η1 +η2 +κ) (E−E•)2

E +ρ3η1(E−E•)−ρ3η1
A•
A (E−E•)

−ρ3(δ1 +δ2 +κ) (A−A•)2

A +ρ4η2(E−E•)−ρ4η2
C•
C (E−E•)

+ρ4δ1(A−A•)−ρ4δ1
C•
C (A−A•)−ρ4(φ +ζ +κ−κβ1)

(C−C•)2

C +ρ5φ(C−C•)
−ρ5φ

T•
T (C−C•)−ρ5(χ +κ) (T−T•)2

T .
(4.23)
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Let ρ1 = ρ2 = ρ3 = ρ4 = ρ5 = 1 and after simplifying above, we can express

mabc
j ∇

σX ≤ A−B , (4.24)

where

A =κ +κβ1
S•

S
(C−C•)+(κ2−κϑ)+(κ2−κϑ)

S•

S
[
(E−E•)+(A−A•)+(C−C•)+(T−T•)

]
+ηλ (A−A•)(S−S•)+ηλξ (C−C•)(S−S•)+(η1 +η2)(E−E•)+δ1(A−A•)+φ(C−C•).

B =κ
S•

S
+κβ1(C−C•)+(κ2−κϑ)

[S•

S
+

(S−S•)2

S
+(E−E•)+(A−A•)+(C−C•)+(T−T•)

]
+
[
ηλ ((A−A•)+ξ (C−C•))+κ +α

](S−S•)2

S
+ηλ

E•

E
(A−A•)(S−S•)+ηλξ

E•

E
(C−C•)(S−S•)

+(η1 +η2 +κ)
(E−E•)2

E
+η1

A•

A
(E−E•)+(δ1 +δ2 +κ)

(A−A•)2

A
+η2

C•

C
(E−E•)

+δ1
C•

C
(A−A•)+(φ +ζ +κ−κβ1)

(C−C•)2

C
+φ

T•

T
(C−C•)+(χ +κ)

(T−T•)2

T
.

We notice that for R0 > 1
A < B ⇒ mabc

j ∇
σX≤ 0,

and when we let S = S•, E = E•, A = A•, C = C•, and T = T•, then

A−B = 0 ⇒ mabc
j ∇

σX= 0.

The system (4.10) is therefore determined to be globally asymptotically stable. �

4.6. Existence and uniqueness

The presence and uniqueness of the solution are demonstrated in this part by illustrating that the
underlying coefficients of the proposed system fulfill the Lipschitz and linear growth requirements.
Consider Q= (Q1,Q2,Q3,Q4,Q5,Q6) such that

Q1(t,S,E,A,C,T,R) =κ−κβ1C−κϑR+κ2R−
[
ηλ (A+ξ C)+κ +α

]
S,

Q2(t,S,E,A,C,T,R) =ηλ (A+ξ C)S− (η1 +η2 +κ)E,
Q3(t,S,E,A,C,T,R) =η1E− (δ1 +δ2 +κ)A,

Q4(t,S,E,A,C,T,R) =η2E+δ1A− (φ +ζ +κ−κβ1)C, (4.25)
Q5(t,S,E,A,C,T,R) =φC− (χ +κ)T,
Q6(t,S,E,A,C,T,R) =χT+δ2A+αS+(κϑ −κ−κ2)R.

Let G = (S,E,A,C,T,R) ∈W, where W= [C([0,T],R+)]6 is a Banach space built with the norm:

‖G‖= sup
t∈[0,T]

[
|S(t)|+ |E(t)|+ |A(t)|+ |C(t)|+ |T(t)+ |R(t)|

]
,
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It is evident that Q ∈ [0,T]×W]6 is continuous. Also

G(t) =



S(t)
E(t)
A(t)

C(t)

T(t)
R(t)

G0(t) =



S0

E0

A0

C0

T0

R0

=



Q1(t,S,E,A,C,T,R),

Q2(t,S,E,A,C,T,R),

Q3(t,S,E,A,C,T,R),

Q4(t,S,E,A,C,T,R),

Q5(t,S,E,A,C,T,R),

Q6(t,S,E,A,C,T,R).

To prove the existence and originality of the solution, we must verify the subsequent theorem.

Theorem 4.4. Suppose that there exist positive constants, Pi, 0i, (i=1,2,3,4,5,6) such that

• |Qi(G, t)|2 ≤Pi(1+ |G|2) , ∀(G, t) ∈ R6× [0,T].
• |Qi(G1, t)−Qi(G2, t)|2 ≤ 0i|G1−G2|2.

Proof. With linear growth, we start.

|Q1(t,S,E,A,C,T,R)|2 =
∣∣∣κ−κβ1C−κϑR+κ2R−

[
ηλ (A+ξ C)+κ +α

]
S
∣∣∣2

≤ 2{κ2 +κ
2
β

2
1 |C|2 +(κ2

ϑ
2 +κ

2
2 )|R|}+2

∣∣[ηλ (|A|+ξ |C|)+κ +α
]∣∣2|S|2

≤ 2{κ2 +κ
2
β

2
1 sup

t∈[0,T]
|C|2 +(κ2

ϑ
2 +κ

2
2 ) sup

t∈[0,T]
|R|}

+2
∣∣[ηλ ( sup

t∈[0,T]
|A|+ξ sup

t∈[0,T]
|C|)+κ +α

]∣∣2| sup
t∈[0,T]

S|2

≤ 2{κ2 +κ
2
β

2
1 |C|2∞ +(κ2

ϑ
2 +κ

2
2 )|R|∞}+2

∣∣[ηλ (|A|∞ +ξ |C|∞)+κ +α
]∣∣2|S|2∞

≤ 2{κ2 +κ
2
β

2
1 |C|2∞ +(κ2

ϑ
2 +κ

2
2 )|R|∞}

[
1+

[
ηλ (|A|∞ +ξ |C|∞)+κ +α

]2
κ2 +κ2β 2

1 |C|2∞ +(κ2ϑ 2 +κ2
2 )|R|∞

|S|2∞
]
,

⇒ |Q1(t,S,E,A,C,T,R)|2≤P1(1+ |S|2∞),
[
ηλ (|A|∞ +ξ |C|∞)+κ +α

]2
κ2 +κ2β 2

1 |C|2∞ +(κ2ϑ 2 +κ2
2 )|R|∞

< 1. (4.26)

|Q2(t,S,E,A,C,T,R)|2 =
∣∣∣ηλ (A+ξ C)S− (η1 +η2 +κ)E

∣∣∣2
≤ 2η

2
λ

2(|A|2 +ξ
2|C|2)|S|2 +2(η1 +η2 +κ)2|E|2

≤ 2η
2
λ

2( sup
t∈[0,T]

|A|2 +ξ
2 sup

t∈[0,T]
|C|2) sup

t∈[0,T]
|S|2 +2(η1 +η2 +κ)2 sup

t∈[0,T]
|E|2

≤ 2η
2
λ

2(|A|2∞ +ξ
2|C|2∞)|S|2∞ +2(η1 +η2 +κ)2|E|2∞

≤ 2η
2
λ

2(|A|2∞ +ξ
2|C|2∞)|S|2∞

[
1+

(η1 +η2 +κ)2

η2λ 2(|A|2∞ +ξ 2|C|2∞)|S|2∞
|E|2∞

]
,

⇒ |Q2(t,S,E,A,C,T,R)|2 ≤P2(1+ |E|2∞),
(η1 +η2 +κ)2

η2λ 2(|A|2∞ +ξ 2|C|2∞)
< 1. (4.27)
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|Q3(t,S,E,A,C,T,R)|2 =
∣∣∣η1E− (δ1 +δ2 +κ)A

∣∣∣2 ≤ 2η
2
1 |E|2 +2(δ1 +δ2 +κ)2|A|2

≤ 2η
2
1 sup

t∈[0,T]
|E|2 +2(δ1 +δ2 +κ)2 sup

t∈[0,T]
|A|2

≤ 2η
2
1 |E|2∞ +2(δ1 +δ2 +κ)2|A|2∞ ≤ 2η

2
1 |E|2∞

[
1+

(δ1 +δ2 +κ)2

η2
1 |E|2∞

|A|2∞
]
,

⇒ |Q3(t,S,E,A,C,T,R)|2 ≤P3(1+ |A|2∞),
(δ1 +δ2 +κ)2

η2
1 |E|2∞

< 1. (4.28)

|Q4(t,S,E,A,C,T,R)|2 =
∣∣∣η2E+δ1A− (φ +ζ +κ−κβ1)C

∣∣∣2
≤ 2(η2

2 |E|2 +δ
2
1 |A|2)+2(φ +ζ +κ−κβ1)

2|C|2

≤ 2(η2
2 sup

t∈[0,T]
|E|2 +δ

2
1 sup

t∈[0,T]
|A|2)+2(φ +ζ +κ−κβ1)

2 sup
t∈[0,T]

|C|2

≤ 2(η2
2 |E|2∞ +δ

2
1 |A|2∞)+2(φ +ζ +κ−κβ1)

2|C|2∞

≤ 2(η2
2 |E|2∞ +δ

2
1 |A|2∞)

[
1+

(φ +ζ +κ−κβ1)
2

η2
2 |E|2∞ +δ 2

1 |A|2∞
|E|2∞

]
,

⇒ |Q4(t,S,E,A,C,T,R)|2 ≤P4(1+ |C|2∞),
(φ +ζ +κ−κβ1)

2

η2
2 |E|2∞ +δ 2

1 |A|2∞
< 1. (4.29)

|Q5(t,S,E,A,C,T,R)|2 =
∣∣∣φC− (χ +κ)T

∣∣∣2 ≤ 2φ
2|C|2 +2(χ +κ)2|T|2

≤ 2φ
2 sup

t∈[0,T]
|C|2 +2(χ +κ)2 sup

t∈[0,T]
|T|2

≤ 2φ
2|C|2∞ +2(χ +κ)2|T|2∞ ≤ 2φ

2|C|2∞
[
1+

(χ +κ)2

φ 2|C|2∞
|T|2∞

]
,

⇒ |Q5(t,S,E,A,C,T,R)|2 ≤P5(1+ |T|2∞),
(χ +κ)2

φ 2|C|2∞
< 1. (4.30)

|Q6(t,S,E,A,C,T,R)|2 =
∣∣∣χT+δ2A+αS+(κϑ −κ−κ2)R

∣∣∣2
≤ 2(χ2

2 |T|2 +δ
2
2 |A|2 +α

2|S|2)+2(κϑ −κ−κ2)
2|R|2

≤ 2(χ2
2 sup

t∈[0,T]
|T|2 +δ

2
2 sup

t∈[0,T]
|A|2 +α

2 sup
t∈[0,T]

|S|2)+2(κϑ −κ−κ2)
2 sup

t∈[0,T]
|R|2

≤ 2(χ2
2 |T|2∞ +δ

2
2 |A|2∞ +α

2|S|2∞)+2(κϑ −κ−κ2)
2|R|2∞

≤ 2(χ2
2 |T|2∞ +δ

2
2 |A|2∞ +α

2|S|2∞)
[
1+

(κϑ −κ−κ2)
2

(χ2
2 |T|2∞ +δ 2

2 |A|2∞ +α2|S|2∞)
|R|2∞

]
,
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⇒ |Q6(t,S,E,A,C,T,R)|2 ≤P6(1+ |R|2∞),
(φ +ζ +κ−κβ1)

2

η2
2 |E|2∞ +δ 2

1 |A|2∞
< 1. (4.31)

Thus, the function satisfies the criteria for growth. We’ll now assess the Lipschitz scenario. We have

|Q1(t,S1,E,A,C,T,R)−Q1(t,S2,E,A,C,T,R)|2

=
∣∣[ηλ (A+ξ C)+κ +α

]
(S1−S2)

∣∣2
≤
(

2η
2
λ

2|A|2 +2η
2
λ

2
ξ

2|C|2 +2κ
2 +2α

2
)∣∣(S1−S2)

∣∣2
≤
(

2η
2
λ

2 sup
t∈[0,T]

|A|2 +2η
2
λ

2
ξ

2 sup
t∈[0,T]

|C|2 +2κ
2 +2α

2
)∣∣(S1−S2)

∣∣2
=
(

2η
2
λ

2|A|2∞ +2η
2
λ

2
ξ

2|C|2∞ +2κ
2 +2α

2
)∣∣(S1−S2)

∣∣2
≤ 01|S1−S2|2.

|Q2(t,S,E1,A,C,T,R)−Q2(t,S,E2,A,C,T,R)|2 =
∣∣(η1 +η2 +κ)(E1−E2)

∣∣2
≤
(

2η
2
1 +2η

2
2 +2κ

2
)∣∣(E1−E2)

∣∣2
≤ 02|E1−E2|2.

(4.32)

|Q3(t,S,E,A1,C,T,R)−Q3(t,S,E,A2,C,T,R)|2 =
∣∣(δ1 +δ2 +κ)(A1−A2)

∣∣2
≤
(

2δ
2
1 +2δ

2
2 +2κ

2
)∣∣(A1−A2)

∣∣2
≤ 03|A1−A2|2.

(4.33)

|Q4(t,S,E,A,C1,T,R)−Q4(t,S,E,A,C2,T,R)|2 =
∣∣(φ +ζ +κ−κβ1)(C1−C2)

∣∣2
≤
(

2φ
2 +2ζ

2 +2κ
2 +2κ

2
β

2
1

)∣∣(C1−C2)
∣∣2

≤ 04|C1−C2|2.
(4.34)

|Q5(t,S,E,A,C,T1,R)−Q5(t,S,E,A,C,T2,R)|2 =
∣∣(χ +κ)(T1−T2)

∣∣2
≤
(

2χ
2 +2κ

2
)∣∣(T1−T2)

∣∣2
≤ 05|T1−T2|2.

(4.35)

|Q6(t,S,E,A,C,T,R1)−Q6(t,S,E,A,C,T,R2)|2 =
∣∣(κϑ −κ−κ2)(R1−R2)

∣∣2
≤
(

2κϑ
2 +2κ

2 +2κ
2
2

)∣∣(R1−R2)
∣∣2

≤ 06|R1−R2|2.

(4.36)

Here

01 = 2η
2
λ

2|A|2∞ +2η
2
λ

2
ξ

2|C|2∞ +2κ
2 +2α

2,

02 = 2η
2
1 +2η

2
2 +2κ

2,

03 = 2δ
2
1 +2δ

2
2 +2κ

2,
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04 = 2φ
2 +2ζ

2 +2κ
2 +2κ

2
β

2
1 , (4.37)

05 = 2χ
2 +2κ

2,

06 = 2κϑ
2 +2κ

2 +2κ
2
2 .

The solution to our system (3.1) therefore exists and is particularly given the specific conditions.

max



{ [
ηλ (|A|∞+ξ |C|∞)+κ+α

]2

κ2+κ2β 2
1 |C|2∞+(κ2ϑ 2+κ2

2 )|R|∞

}
,{ (η1+η2+κ)2

η2λ 2(|A|2∞+ξ 2|C|2∞)|S|2∞

}
,{ (δ1+δ2+κ)2

η2
1 |E|2∞

}
,{ (φ+ζ+κ−κβ1)

2

η2
2 |E|2∞+δ 2

1 |A|2∞

}
,{ (χ+κ)2

φ 2|C|2∞

}
,{ (φ+ζ+κ−κβ1)

2

η2
2 |E|2∞+δ 2

1 |A|2∞

}
< 1. (4.38)

�

5. Analysis of proposed model with discrete Atangana-Baleanu, and modified
Atangana-Baleanu operators

5.1. χ-monotonicity investigations

We implement σ -monotonicity study for the discrete nabla fractional operators in this part. First,
as mentioned in [39], we review the definitions of σ -monotones for each 0 ∈ (0,1] and a function
℘ : N j→ R fulfilling ℘( j) = 0.

• ℘ is referred to as a σ -monotone rising function on N j in the following case

℘(h+1)≥ σ℘(h), ∀h ∈ N j. (5.1)

• ℘ is referred to as a σ -monotone falling function on N j in the following case

℘(h+1)≤ σ℘(h), ∀h ∈ N j. (5.2)

• On N j, the function ℘ is referred to as a σ -monotone extremely rising function if

℘(h+1)> σ℘(h), ∀h ∈ N j. (5.3)

• On N j, the function ℘ is referred to as a σ -monotone extremely falling function if

℘(h+1)< σ℘(h), ∀h ∈ N j. (5.4)

Remark 5.1. It is evident that for σ ∈ (0,1], if ℘(h) is rising or falling on N j, then we have

℘(h+1)≥℘(h)≥ σ℘(h) ∀h ∈ N j, (5.5)

or
℘(h+1)≤℘(h)≤ σ℘(h), ∀h ∈ N j. (5.6)

This indicates that on N j, ℘(h) is either σ -monotone rising or falling.
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Theorem 5.1. Assume that σ ∈ (0, 1
2). When functions {S,E,A,C,T,R} : N j→ R fulfill

S( j) = 0 and abc
j ∇

σ S(t)≥ 0,

E( j) = 0 and abc
j ∇

σ E(t)≥ 0,

A( j) = 0 and abc
j ∇

σ A(t)≥ 0,

C( j) = 0 and abc
j ∇

σ C(t)≥ 0,

T( j) = 0 and abc
j ∇

σ T(t)≥ 0,

R( j) = 0 and abc
j ∇

σ R(t)≥ 0,

(5.7)

∀t ∈ N j+1, then S(t),E(t),A(t),C(t),T(t),R(t) > 0. Moreover, on N j, S,E,A,C,T,R are χ2-
monotone rising functions.

Proof. From Definition 2.7 and Remark 2.1, we have ∀t ∈ N j

ab
j ∇σ [S(t)] = ab(σ)

1−σ

t

∑
ω= j+1

∇S(ω) Eσ (ψ, t +1−ω),

ab
j ∇σ [E(t)] = ab(σ)

1−σ

t

∑
ω= j+1

∇E(ω) Eσ (ψ, t +1−ω),

ab
j ∇σ [A(t)] = ab(σ)

1−σ

t

∑
ω= j+1

∇A(ω) Eσ (ψ, t +1−ω),

ab
j ∇σ [C(t)] = ab(σ)

1−σ

t

∑
ω= j+1

∇C(ω) Eσ (ψ, t +1−ω),

ab
j ∇σ [T(t)] = ab(σ)

1−σ

t

∑
ω= j+1

∇T(ω) Eσ (ψ, t +1−ω),

ab
j ∇σ [R(t)] = ab(σ)

1−σ

t

∑
ω= j+1

∇R(ω) Eσ (ψ, t +1−ω).

(5.8)

Using function S, we determine

mabc
j ∇

σ [X(t)] =
ab(σ)

1−σ

(
X(t)−Eσ (ψ, t− j)X( j)+ψ

t

∑
ω= j+1

Eσ ,σ (ψ, t +1−ω)X(ω)
)

, ∀t ∈ N j.

(5.9)
ab
j ∇

σ [S(t)] =
ab(σ)

1−σ

t

∑
ω= j+1

∇S(ω) Eσ (ψ, t +1−ω) =
ab(σ)

1−σ

t

∑
ω= j+1

[S(ω)−S(ω−1)] Eσ (ψ, t +1−ω),

=
ab(σ)

1−σ

{ t

∑
ω= j+1

S(ω) Eσ (ψ, t +1−ω)−
t

∑
ω= j+1

S(ω−1) Eσ (ψ, t +1−ω)
}
,

=
ab(σ)

1−σ

{
Eσ (ψ,1)S(t)−Eσ (ψ, t− j)S( j)+

t−1

∑
ω= j+1

S(ω) Eσ (ψ, t +1−ω)

−
t−1

∑
ω= j+1

S(ω) Eσ (ψ, t−ω)
}
,

=
ab(σ)

1−σ

{
(1−σ)S(t)−Eσ (ψ, t− j)S( j)+

t−1

∑
ω= j+1

[
Eσ (ψ, t +1−ω)−Eσ (ψ, t−ω)

]
S(ω)

}
.

(5.10)
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With the knowledge we have ab(σ)
1−σ

> 0 and ab
j ∇σ [S(t)]≥ 0, we can write

S(t)≥ 1
1−σ

{
Eσ (ψ, t− j)S( j)+

t−1

∑
ω= j+1

[
Eσ (ψ, t−ω)−Eσ (ψ, t +1−ω)

]
S(ω)

}
, t ∈ N j+1.

(5.11)
Strong induction is used to show that S(t) > 0 for each t ∈ N j. Since S( j) > 0 is the underlying
assumption, if we further assume that S(t) > 0 for each t ∈ Nω

j = { j, j + 1, ...,ω}, then for some
ω ∈ N j, we can deduce from Eq (5.11) that

S(ω +1)≥ 1
1−σ

{
Eσ (ψ, t− j)S( j)+

ω

∑
ω= j+1

[
Eσ (ψ, t−ω)−Eσ (ψ, t +1−ω)︸                                        ︷︷                                        ︸

>0

]
S(ω)︸ ︷︷ ︸
>0

}
> 0, t ∈ N j+1. (5.12)

It follows from Remark 2.1 that

Eσ (ψ, t−ω)−Eσ (ψ, t +1−ω)> 0. (5.13)

Therefore, as required, we draw the conclusion that S(t)> 0 for t ∈ N j.
We rewrite Eq (5.11) as follows in order to demonstrate the χ2-monotonicity of S:

S(t)≥ 1
1−σ

{
Eσ (ψ, t− j)S( j)+

[
Eσ (ψ,1)−Eσ (ψ,2)

]
S(t−1)

+
t−2

∑
ω= j+1

[
Eσ (ψ, t−ω)−Eσ (ψ, t +1−ω)

]
S(ω)

}
=

1
1−σ

{
Eσ (ψ, t− j)S( j)+χ

2S(t−1)+
t−2

∑
ω= j+1

[
Eσ (ψ, t−ω)−Eσ (ψ, t +1−ω)

]
S(ω)

}
(5.14)

for each t ∈N j+1. For every t ∈N j, it is demonstrated that S(t)> 0. Additionally, from Remark 2.1, we
know that Eσ (ψ, t) is monotonically decreasing for every t = 0,1, ... Consequently, Eq (5.14) indicates
that

S(t)≥ χ
2S(t−1), ∀t ∈ N j+1. (5.15)

This proves χ2-monotone increasing of S on N j. Likewise, we can demonstrate it for E, A, C, T, and
R. �

Remark 5.2. We can infer that S,E,A,C,T,R are χ2-monotone strictly increasing on N j by
limiting the conditions in Theorem (5.1) and S( j),E( j),A( j),C( j),T( j),R( j) > 0, abc

j ∇σ S(t) > 0,
abc
j ∇σ E(t)> 0, abc

j ∇σ A(t)> 0, abc
j ∇σ C(t)> 0, abc

j ∇σ T(t)> 0, and abc
j ∇σ R(t)> 0 for each t ∈N j+1.

Theorem 5.2. Let S,E,A,C,T,R be defined onN j and increasing onN j+1 with S( j) =E( j) =A( j) =
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C( j) = T( j) = R( j) = 0. For σ ∈ (0, 1
2), we thus have



abc
j ∇σ S(t)≥ 0, ∀t ∈ N j+1,
abc
j ∇σ E(t)≥ 0, ∀t ∈ N j+1,
abc
j ∇σ A(t)≥ 0, ∀t ∈ N j+1,
abc
j ∇σ C(t)≥ 0, ∀t ∈ N j+1,
abc
j ∇σ T(t)≥ 0, ∀t ∈ N j+1,
abc
j ∇σ R(t)≥ 0, ∀t ∈ N j+1.

(5.16)

Proof. Using Theorem 5.1, we have



ab
j ∇σ [S(t)] = ab(σ)

1−σ

{
(1−σ)S(t)−Eσ (ψ, t− j)S( j)+

t−1

∑
ω= j+1

[
Eσ (ψ, t +1−ω)−Eσ (ψ, t−ω)

]
S(ω)

}
,

ab
j ∇σ [E(t)] = ab(σ)

1−σ

{
(1−σ)E(t)−Eσ (ψ, t− j)E( j)+

t−1

∑
ω= j+1

[
Eσ (ψ, t +1−ω)−Eσ (ψ, t−ω)

]
E(ω)

}
,

ab
j ∇σ [A(t)] = ab(σ)

1−σ

{
(1−σ)A(t)−Eσ (ψ, t− j)A( j)+

t−1

∑
ω= j+1

[
Eσ (ψ, t +1−ω)−Eσ (ψ, t−ω)

]
A(ω)

}
,

ab
j ∇σ [C(t)] = ab(σ)

1−σ

{
(1−σ)C(t)−Eσ (ψ, t− j)C( j)+

t−1

∑
ω= j+1

[
Eσ (ψ, t +1−ω)−Eσ (ψ, t−ω)

]
C(ω)

}
,

ab
j ∇σ [T(t)] = ab(σ)

1−σ

{
(1−σ)T(t)−Eσ (ψ, t− j)T( j)+

t−1

∑
ω= j+1

[
Eσ (ψ, t +1−ω)−Eσ (ψ, t−ω)

]
T(ω)

}
,

ab
j ∇σ [R(t)] = ab(σ)

1−σ

{
(1−σ)R(t)−Eσ (ψ, t− j)R( j)+

t−1

∑
ω= j+1

[
Eσ (ψ, t +1−ω)−Eσ (ψ, t−ω)

]
R(ω)

}
.

(5.17)

By applying Remark 2.1 and raising S on N j+1, it is evident that

ab
j ∇

σ [S(t)] =
ab(σ)

1−σ

{
(1−σ)S(t)−Eσ (ψ, t− j)S( j)−σ

2(1−σ)S(t−1)

+
t−2

∑
ω= j+1

[
Eσ (ψ, t +1−ω)−Eσ (ψ, t−ω)

]
S(ω)

}
=

ab(σ)

1−σ

{
(1−σ)S(t)−Eσ (ψ, t− j)S( j)−σ

2(1−σ)S(t−1)

+
t−2

∑
ω= j+1

[
Eσ (ψ, t +1−ω)−Eσ (ψ, t−ω)

]
S(t−1)

)}
+

t−2

∑
ω= j+1

[
Eσ (ψ, t +1−ω)−Eσ (ψ, t−ω)︸                                        ︷︷                                        ︸

<0

](
S(ω)−S(t−1)︸                ︷︷                ︸

≤0

)
︸                                                                     ︷︷                                                                     ︸

≥0

}
.

(5.18)
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This yields

ab
j ∇

σ [S(t)]≥ ab(σ)

1−σ

{
(1−σ)S(t)−Eσ (ψ, t− j)S( j)

+
t−1

∑
ω= j+1

[
Eσ (ψ, t +1−ω)−Eσ (ψ, t−ω)

]
S(t−1)

)}
.

(5.19)

Given that S increases on N j+1 and S( j) = 0, we can infer

S(t)≥ S(t−1)≥ S( j)≥ 0, ∀t ∈ N j+1. (5.20)

This implies that

ab
j ∇

σ [S(t)]≥ ab(σ)

1−σ

{
(1−σ)S(t)−Eσ (ψ, t− j)S( j)− (1−σ)S(t−1)+(1−σ)S(t−1)

+
t−1

∑
ω= j+1

[
Eσ (ψ, t +1−ω)−Eσ (ψ, t−ω)

]
S(t−1)

)}
=

ab(σ)

1−σ

{
(1−σ)︸     ︷︷     ︸

>0

(
S(t)−S(t−1)︸               ︷︷               ︸

≥0︸                           ︷︷                           ︸
≥0

)
−Eσ (ψ, t− j)S( j)+(1−σ)S(t−1)

+
t−1

∑
ω= j+1

[
Eσ (ψ, t +1−ω)−Eσ (ψ, t−ω)

]
S(t−1)

)}
≥ ab(σ)

1−σ

{
(1−σ)S(t−1)−Eσ (ψ, t− j)S( j)

+
t−1

∑
ω= j+1

[
Eσ (ψ, t +1−ω)−Eσ (ψ, t−ω)

]
S(t−1)

)}
=

ab(σ)

1−σ

{
Eσ (ψ,1)S(t−1)−Eσ (ψ, t− j)S( j)+S(t−1)

[
Eσ (ψ, t− j)−Eσ (ψ,1)

])}
=

ab(σ)

1−σ︸   ︷︷   ︸
>0

Eσ (ψ, t− j)︸           ︷︷           ︸
>0

[
S(t−1)−S( j)︸               ︷︷               ︸

≥0

]
︸                                              ︷︷                                              ︸

≥0

.

(5.21)

The outcome is therefore proved. We may also prove it for the other compartments in our suggested
model. �

Remark 5.3. By equivalent requirements with their accompanying difference operators, the approach
outlined above may also be utilized to get all of the aforementioned outcomes for decreasing (or strictly
decreasing) functions.
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5.2. Discrete modifications of the discrete Atangana-Baleanu derivative of the Liouville-Caputo-type

Theorem 5.1. [38] For σ ∈ (0, 1
2), the following results hold true:

ab
j ∇−σ{ mabc

j ∇σ S(t)}= S(t)−S( j),
ab
j ∇−σ{ mabc

j ∇σ E(t)}= E(t)−E( j),
ab
j ∇−σ{ mabc

j ∇σ A(t)}= A(t)−A( j),
ab
j ∇−σ{ mabc

j ∇σ C(t)}= C(t)−C( j),
ab
j ∇−σ{ mabc

j ∇σ T(t)}= T(t)−T( j),
ab
j ∇−σ{ mabc

j ∇σ R(t)}= R(t)−R( j).

(5.22)

and 

mabc
j ∇σ{ ab

j ∇−σ S(t)}= S(t)−S( j)Eσ (ψ, t− j),
mabc
j ∇σ{ ab

j ∇−σ E(t)}= E(t)−E( j)Eσ (ψ, t− j),
mabc
j ∇σ{ ab

j ∇−σ A(t)}= A(t)−A( j)Eσ (ψ, t− j),
mabc
j ∇σ{ ab

j ∇−σ C(t)}= C(t)−C( j)Eσ (ψ, t− j),
mabc
j ∇σ{ ab

j ∇−σ T(t)}= T(t)−T( j)Eσ (ψ, t− j),
mabc
j ∇σ{ ab

j ∇−σ R(t)}= R(t)−R( j)Eσ (ψ, t− j),

(5.23)

for t ∈ N j+1.

Proof. Define the following ∀t ∈ N j+1:

mabc
j ∇σ S(t) = Ψ1(t,S,E,A,C,T,R),
mabc
j ∇σ E(t) = Ψ2(t,S,E,A,C,T,R),
mabc
j ∇σ A(t) = Ψ3(t,S,E,A,C,T,R),
mabc
j ∇σ C(t) = Ψ4(t,S,E,A,C,T,R),
mabc
j ∇σ T(t) = Ψ5(t,S,E,A,C,T,R),
mabc
j ∇σ R(t) = Ψ6(t,S,E,A,C,T,R).

(5.24)

Taking discrete Laplace transform f j on both sides of first equation of (5.24) and utilizing
Lemma (2.6), we have

ab(σ)

1−σ

[
S(ω)− ωσ−1(1−ω)σ

ωσ −ψ
S( j)+

ψ

ωσ −ψ
S(ω)

]
= Ψ1(ω,S,E,A,C,T,R)

ab(σ)

1−σ

[
ωσ

ωσ −ψ
S(ω)− ωσ−1(1−ω)σ

ωσ −ψ
S( j)

]
= Ψ1(ω,S,E,A,C,T,R). (5.25)

Solving for S(ω), we have

S(ω) =
( 1−σ

ab(σ)
+

σ

ab(σ)ωσ

)
Ψ1(ω,S,E,A,C,T,R)+

(1−ω)σ

ω
S( j). (5.26)

It follows from [38] that

S(ω) = f j[
ab
j ∇
−σ

Ψ1(ω,S,E,A,C,T,R)]+
(1−ω)σ

ω
S( j). (5.27)
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Taking discrete inverse Laplace transform on both sides of (5.27), we have

S(t) = ab
j ∇
−σ{Ψ1(t,S,E,A,C,T,R)}+S( j) = ab

j ∇
−σ{mabc

j ∇
σ S(t)}+S( j). (5.28)

Also, we can find

E(t) = ab
j ∇−σ{Ψ2(t,S,E,A,C,T,R)}+E( j) = ab

j ∇−σ{mabc
j ∇σ E(t)}+E( j),

A(t) = ab
j ∇−σ{Ψ3(t,S,E,A,C,T,R)}+A( j) = ab

j ∇−σ{mabc
j ∇σ A(t)}+A( j),

C(t) = ab
j ∇−σ{Ψ4(t,S,E,A,C,T,R)}+C( j) = ab

j ∇−σ{mabc
j ∇σ C(t)}+C( j),

T(t) = ab
j ∇−σ{Ψ5(t,S,E,A,C,T,R)}+T( j) = ab

j ∇−σ{mabc
j ∇σ T(t)}+T( j),

R(t) = ab
j ∇−σ{Ψ6(t,S,E,A,C,T,R)}+R( j) = ab

j ∇−σ{mabc
j ∇σ R(t)}+R( j).

(5.29)

The first portion of the theorem is satisfied.
Now let ∀t ∈ N j+1 

ab
j ∇−σ S(t) = ϒ1(t,S,E,A,C,T,R),
ab
j ∇−σ E(t) = ϒ2(t,S,E,A,C,T,R),
ab
j ∇−σ A(t) = ϒ3(t,S,E,A,C,T,R),
ab
j ∇−σ C(t) = ϒ4(t,S,E,A,C,T,R),
ab
j ∇−σ T(t) = ϒ5(t,S,E,A,C,T,R),
ab
j ∇−σ R(t) = ϒ6(t,S,E,A,C,T,R).

(5.30)

⇒



mabc
j ∇σ{ ab

j ∇−σ S(t)}= mabc
j ∇σ ϒ1(t,S,E,A,C,T,R),

mabc
j ∇σ{ ab

j ∇−σ E(t)}= mabc
j ∇σ ϒ2(t,S,E,A,C,T,R),

mabc
j ∇σ{ ab

j ∇−σ A(t)}= mabc
j ∇σ ϒ3(t,S,E,A,C,T,R),

mabc
j ∇σ{ ab

j ∇−σ C(t)}= mabc
j ∇σ ϒ4(t,S,E,A,C,T,R),

mabc
j ∇σ{ ab

j ∇−σ T(t)}= mabc
j ∇σ ϒ5(t,S,E,A,C,T,R),

mabc
j ∇σ{ ab

j ∇−σ R(t)}= mabc
j ∇σ ϒ6(t,S,E,A,C,T,R).

(5.31)

Applying discrete Laplace transform f j on mabc
j ∇σ ϒ1, we get

f j {mabc
j ∇

σ
ϒ1(t,S,E,A,C,T,R]}= ab(σ)

1−σ

[
ωσ

ωσ −ψ
ϒ1(ω,S,E,A,C,T,R)− ωσ−1(1−ω)σ

ωσ −ψ
ϒ1( j)

]
.

(5.32)
From (5.26) and (5.27), we have

ϒ1(ω,S,E,A,C,T,R) =
1−σ

ab(σ)
S(ω)+

σ

ab(σ)ωσ
S(ω). (5.33)

Also, from (2.19), we find

ϒ1( j) = ab
j ∇
−σ S( j) =

1−σ

ab(σ)
S( j). (5.34)

Equation (5.32) becomes:

f j{mabc
j ∇

σ
ϒ1(t,S,E,A,C,T,R)}
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=
ab(σ)

1−σ

[
ωσ

ωσ −ψ

( 1−σ

ab(σ)
+

σ

ab(σ)ωσ

)
S(ω)− ωσ−1(1−ω)σ

ωσ −ψ

( 1−σ

ab(σ)

)
S( j)

]
= S(ω)−

(
ωσ−1(1−ω)σ

ωσ −ψ

)
S( j). (5.35)

Taking inverse Laplace transform on both sides of (5.35), we find

mabc
j ∇

σ
ϒ1(t,S,E,A,C,T,R) = S(t)−S( j)f−1

j

[
ωσ−1(1−ω)σ

ωσ −ψ

]
= S(t)−Eσ (ψ, t− j)S( j), (5.36)

and, also,



mabc
j ∇σ ϒ2(t,S,E,A,C,T,R) = E(t)−E( j)f−1

j

[
ωσ−1(1−ω)σ

ωσ−ψ

]
= E(t)−Eσ (ψ, t− j)E( j),

mabc
j ∇σ ϒ3(t,S,E,A,C,T,R) = A(t)−A( j)f−1

j

[
ωσ−1(1−ω)σ

ωσ−ψ

]
= A(t)−Eσ (ψ, t− j)A( j),

mabc
j ∇σ ϒ4(t,S,E,A,C,T,R) = C(t)−C( j)f−1

j

[
ωσ−1(1−ω)σ

ωσ−ψ

]
= C(t)−Eσ (ψ, t− j)C( j),

mabc
j ∇σ ϒ5(t,S,E,A,C,T,R) = T(t)−T( j)f−1

j

[
ωσ−1(1−ω)σ

ωσ−ψ

]
= T(t)−Eσ (ψ, t− j)T( j),

mabc
j ∇σ ϒ6(t,S,E,A,C,T,R) = R(t)−R( j)f−1

j

[
ωσ−1(1−ω)σ

ωσ−ψ

]
= R(t)−Eσ (ψ, t− j)R( j).

(5.37)
In view of Eq (5.30), the second portion of the theorem is satisfied. �

Theorem 5.2. [38] The following outcome offers a different series representation of the discrete
modified Atangana-Baleanu of the Liouville-Caputo-type fractional difference for σ ∈ (0, 1

2), which is:



mabc
j ∇σ S(t) = ab(σ)

1−σ

[
S(t)−S( j) Eσ (ψ, t− j)+

∞

∑
k=0

ψ
k+1(

j∇
−(σk+σ)S(t)

)]
,

mabc
j ∇σ E(t) = ab(σ)

1−σ

[
E(t)−E( j) Eσ (ψ, t− j)+

∞

∑
k=0

ψ
k+1(

j∇
−(σk+σ)E(t)

)]
,

mabc
j ∇σ A(t) = ab(σ)

1−σ

[
A(t)−A( j) Eσ (ψ, t− j)+

∞

∑
k=0

ψ
k+1(

j∇
−(σk+σ)A(t)

)]
,

mabc
j ∇σ C(t) = ab(σ)

1−σ

[
C(t)−C( j) Eσ (ψ, t− j)+

∞

∑
k=0

ψ
k+1(

j∇
−(σk+σ)C(t)

)]
,

mabc
j ∇σ T(t) = ab(σ)

1−σ

[
T(t)−T( j) Eσ (ψ, t− j)+

∞

∑
k=0

ψ
k+1(

j∇
−(σk+σ)T(t)

)]
,

mabc
j ∇σ R(t) = ab(σ)

1−σ

[
R(t)−R( j) Eσ (ψ, t− j)+

∞

∑
k=0

ψ
k+1(

j∇
−(σk+σ)R(t)

)]
,

(5.38)

for t ∈ Na+1.
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Proof. From Definitions 2.2 and 2.8, we have

mabc
j ∇

σ S(t) =
ab(σ)

1−σ

[
S(t)−S( j) Eσ (ψ, t− j)+ψ

t

∑
ω= j+1

Eσ ,σ (ψ, t +1−ω)S(ω)
]

=
ab(σ)

1−σ

[
S(t)−S( j) Eσ (ψ, t− j)+ψ

t

∑
ω= j+1

∞

∑
k=0

ψ
k (t +1−ω)σk+σ+1

Γ(σk+σ)
S(ω)

]
=

ab(σ)

1−σ

[
S(t)−S( j) Eσ (ψ, t− j)+

∞

∑
k=0

ψ
k+1 1

Γ(σk+σ)

t

∑
ω=a+1

(t +1−ω)σk+σ+1S(ω)
]

=
ab(σ)

1−σ

[
S(t)−S( j) Eσ (ψ, t− j)+

∞

∑
k=0

ψ
k+1{

j∇
−(σk+σ)S(t)

}]
.

(5.39)

We can demonstrate it for all of the compartments in our suggested system by means of the same
approach. �

6. Solution of proposed system

Our suggested system can be expressed as

mabc
j ∇

σ [S(t)] = ϖ1(t,S,E,A,C,T,R),

mabc
j ∇

σ [E(t)] = ϖ2(t,S,E,A,C,T,R),

mabc
j ∇

σ [A(t)] = ϖ3(t,S,E,A,C,T,R),

mabc
j ∇

σ [C(t)] = ϖ4(t,S,E,A,C,T,R), (6.1)
mabc
j ∇

σ [T(t)] = ϖ5(t,S,E,A,C,T,R),

mabc
j ∇

σ [R(t)] = ϖ6(t,S,E,A,C,T,R).

From Theorem 5.2, we obtain

mabc
j ∇

σ S(t) =
ab(σ)

1−σ

[
ϖ1(t)−Eσ (ψ, t− j)ϖ1( j)+

∞

∑
k=0

ψ
k+1[

j∇
−(σk+σ)

ϖ1(t)
]]
,

mabc
j ∇

σ E(t) =
ab(σ)

1−σ

[
ϖ2(t)−Eσ (ψ, t− j)ϖ2( j)+

∞

∑
k=0

ψ
k+1[

j∇
−(σk+σ)

ϖ2(t)
]]
,

mabc
j ∇

σ A(t) =
ab(σ)

1−σ

[
ϖ3(t)−Eσ (ψ, t− j)ϖ3( j)+

∞

∑
k=0

ψ
k+1[

j∇
−(σk+σ)

ϖ3(t)
]]
,

mabc
j ∇

σ C(t) =
ab(σ)

1−σ

[
ϖ4(t)−Eσ (ψ, t− j)ϖ4( j)+

∞

∑
k=0

ψ
k+1[

j∇
−(σk+σ)

ϖ4(t)
]]
,

mabc
j ∇

σ T(t) =
ab(σ)

1−σ

[
ϖ5(t)−Eσ (ψ, t− j)ϖ5( j)+

∞

∑
k=0

ψ
k+1[

j∇
−(σk+σ)

ϖ5(t)
]]
,

mabc
j ∇

σ R(t) =
ab(σ)

1−σ

[
ϖ6(t)−Eσ (ψ, t− j)ϖ6( j)+

∞

∑
k=0

ψ
k+1[

j∇
−(σk+σ)

ϖ6(t)
]]
,

(6.2)
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mabc
j ∇

σ S(t) =
ab(σ)

1−σ

[
ϖ1(t)−Eσ (ψ, t− j)ϖ1( j)+

∞

∑
k=0

ψ
k+1 (t− j)σk+σ

Γ(σk+σ +1)
ϖ1(t)

]
,

mabc
j ∇

σ E(t) =
ab(σ)

1−σ

[
ϖ2(t)−Eσ (ψ, t− j)ϖ2( j)+

∞

∑
k=0

ψ
k+1 (t− j)σk+σ

Γ(σk+σ +1)
ϖ2(t)

]
,

mabc
j ∇

σ A(t) =
ab(σ)

1−σ

[
ϖ3(t)−Eσ (ψ, t− j)ϖ3( j)+

∞

∑
k=0

ψ
k+1 (t− j)σk+σ

Γ(σk+σ +1)
ϖ3(t)

]
,

mabc
j ∇

σ C(t) =
ab(σ)

1−σ

[
ϖ4(t)−Eσ (ψ, t− j)ϖ4( j)+

∞

∑
k=0

ψ
k+1 (t− j)σk+σ

Γ(σk+σ +1)
ϖ4(t)

]
,

mabc
j ∇

σ T(t) =
ab(σ)

1−σ

[
ϖ5(t)−Eσ (ψ, t− j)ϖ5( j)+

∞

∑
k=0

ψ
k+1 (t− j)σk+σ

Γ(σk+σ +1)
ϖ5(t)

]
,

mabc
j ∇

σ R(t) =
ab(σ)

1−σ

[
ϖ6(t)−Eσ (ψ, t− j)ϖ6( j)+

∞

∑
k=0

ψ
k+1 (t− j)σk+σ

Γ(σk+σ +1)
ϖ6(t)

]
.

(6.3)

mabc
j ∇

σ S(t) =
ab(σ)

1−σ

[
ϖ1(t)−Eσ (ψ, t− j)ϖ1( j)+

∞

∑
k=1

ψ
k (t− j)σk

Γ(σk+1)
ϖ1(t)

]
,

mabc
j ∇

σ E(t) =
ab(σ)

1−σ

[
ϖ2(t)−Eσ (ψ, t− j)ϖ2( j)+

∞

∑
k=1

ψ
k (t− j)σk

Γ(σk+1)
ϖ2(t)

]
,

mabc
j ∇

σ A(t) =
ab(σ)

1−σ

[
ϖ3(t)−Eσ (ψ, t− j)ϖ3( j)+

∞

∑
k=1

ψ
k (t− j)σk

Γ(σk+1)
ϖ3(t)

]
,

mabc
j ∇

σ C(t) =
ab(σ)

1−σ

[
ϖ4(t)−Eσ (ψ, t− j)ϖ4( j)+

∞

∑
k=1

ψ
k (t− j)σk

Γ(σk+1)
ϖ4(t)

]
,

mabc
j ∇

σ T(t) =
ab(σ)

1−σ

[
ϖ5(t)−Eσ (ψ, t− j)ϖ5( j)+

∞

∑
k=1

ψ
k (t− j)σk

Γ(σk+1)
ϖ5(t)

]
,

mabc
j ∇

σ R(t) =
ab(σ)

1−σ

[
ϖ6(t)−Eσ (ψ, t− j)ϖ6( j)+

∞

∑
k=1

ψ
k (t− j)σk

Γ(σk+1)
ϖ6(t)

]
.

(6.4)
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mabc
j ∇

σ S(t) =
ab(σ)

1−σ

[
−Eσ (ψ, t− j)ϖ1( j)+

∞

∑
k=0

ψ
k (t− j)σk

Γ(σk+1)
ϖ1(t)

]
,

mabc
j ∇

σ E(t) =
ab(σ)

1−σ

[
−Eσ (ψ, t− j)ϖ2( j)+

∞

∑
k=0

ψ
k (t− j)σk

Γ(σk+1)
ϖ2(t)

]
,

mabc
j ∇

σ A(t) =
ab(σ)

1−σ

[
−Eσ (ψ, t− j)ϖ3( j)+

∞

∑
k=0

ψ
k (t− j)σk

Γ(σk+1)
ϖ3(t)

]
,

mabc
j ∇

σ C(t) =
ab(σ)

1−σ

[
−Eσ (ψ, t− j)ϖ4( j)+

∞

∑
k=0

ψ
k (t− j)σk

Γ(σk+1)
ϖ4(t)

]
,

mabc
j ∇

σ T(t) =
ab(σ)

1−σ

[
−Eσ (ψ, t− j)ϖ5( j)+

∞

∑
k=0

ψ
k (t− j)σk

Γ(σk+1)
ϖ5(t)

]
,

mabc
j ∇

σ R(t) =
ab(σ)

1−σ

[
−Eσ (ψ, t− j)ϖ6( j)+

∞

∑
k=0

ψ
k (t− j)σk

Γ(σk+1)
ϖ6(t)

]
.

(6.5)

mabc
j ∇

σ S(t) =
ab(σ)

1−σ

[
−Eσ (ψ, t− j)ϖ1( j)+Eσ (ψ, t− j)ϖ1(t)

]
,

mabc
j ∇

σ E(t) =
ab(σ)

1−σ

[
−Eσ (ψ, t− j)ϖ2( j)+Eσ (ψ, t− j)ϖ2(t)

]
,

mabc
j ∇

σ A(t) =
ab(σ)

1−σ

[
−Eσ (ψ, t− j)ϖ3( j)+Eσ (ψ, t− j)ϖ3(t)

]
,

mabc
j ∇

σ C(t) =
ab(σ)

1−σ

[
−Eσ (ψ, t− j)ϖ4( j)+Eσ (ψ, t− j)ϖ4(t)

]
,

mabc
j ∇

σ T(t) =
ab(σ)

1−σ

[
−Eσ (ψ, t− j)ϖ5( j)+Eσ (ψ, t− j)ϖ5(t)

]
,

mabc
j ∇

σ R(t) =
ab(σ)

1−σ

[
−Eσ (ψ, t− j)ϖ6( j)+Eσ (ψ, t− j)ϖ6(t)

]
.

(6.6)

7. Conclusions

Discrete generalized Mittag-Leffler kernels were used in this study to develop a fractional-order
model of the HBV epidemic. It addressed the existence and uniqueness of solutions, the positively
invariant region, equilibrium states analysis, the fundamental reproduction number, and positivity and
boundedness of solutions. A lyapunov function was also used to investigate the global asymptotic
stability of the model. The variables that responded the best to the fundamental reproduction number
underwent sensitivity analysis. To minimize the number of variables and streamline the issue for
optimization, monotonicity analysis is utilized. In specific time scale domains, the study demonstrated
that the proposed discrete fractional operators will exhibit χ2-increasing or decreasing behavior,
allowing for effective control of HBV, based on their fundamental features and χ-monotonicity
descriptions. The study proposes that the dynamics of hepatitis B in society could be monitored through
numerical simulations. The two factors that most inhibit the spread of the disease are vaccination
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and treatment rates. Raising these rates for both chronically ill patients and newborns is a highly
efficient way to halt the spread of HBV. Vaccination, efficient treatment, and stopping the virus’s spread
all work together to make infection elimination conceivable as well as even possible. Integer-order
models lack memory and hereditary properties, while fractional-order models possess these properties.
Fractional-order models offer more freedom in derivative order, allowing for more exploration of
disease dynamics and memory effects on specific datasets, unlike integer-order models. The proposed
model enhances the prediction capacity for the hepatitis B virus in this regard. Policymakers and public
health professionals may find the results useful in stopping the spread of hepatitis B. The authors advise
more research on the suggested model using a variety of mathematical approaches, such as topological
degree theory and upper-lower solution methods, as well as a study of its numerical solution using a
variety of numerical techniques.
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