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Abstract: Agricultural decision-making involves a complex process of choosing strategies and options 

to enhance resource utilization, overall productivity, and farming practices. Agricultural stakeholders 

and farmers regularly make decisions at various levels of the farm cycle, ranging from crop selection 

and planting to harvesting and marketing. In agriculture, where crop health has played a central role in 

economic and yield outcomes, incorporating deep learning (DL) techniques has developed as a 

transformative force for the decision-making process. DL techniques, with their capability to discern 

subtle variations and complex patterns in plant health, empower agricultural experts and farmers to make 

informed decisions based on data-driven, real-time insights. Thus, we presented a Bayesian optimizer 

with deep learning based pepper leaf disease detection for decision making (BODL-PLDDM) approach 

in the agricultural sector. The BODL-PLDDM technique aimed to identify the healthy and bacterial spot 

pepper leaf disease. Primarily, the BODL-PLDDM technique involved a Wiener filtering (WF) approach 

for pre-processing. Besides, the complex and intrinsic feature patterns could be extracted using the 

Inception v3 model. Also, the Bayesian optimization (BO) algorithm was used for the optimal 
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hyperparameter selection process. For disease detection, a crayfish optimization algorithm (COA) with 

a long short-term memory (LSTM) method was employed to identify the precise presence of pepper 

leaf diseases. The experimentation validation of the BODL-PLDDM system was verified using the 

Plant Village dataset. The obtained outcomes underlined the promising detection results of the BODL-

PLDDM technique over other existing methods.  

Keywords: Bayesian optimization; deep learning; pepper leaf disease detection; crayfish optimization 

algorithm; agricultural sector 

Mathematics Subject Classification: 11Y40 

 

1. Introduction 

Worldwide crop losses are predicted to be in the billion dollars that can be allotted for plant 

diseases [1]. Various agricultural diseases block the development of farming. Agriculturalists identify 

diseases via noticeable signs in plants. It must be more understood and corrected in most instances. It 

causes the unauthorized usage of plant chemicals and pesticides [2]. The catastrophic impact of plant 

disease can produce loss and yield in a few complex cases. Black pepper is a therapeutic plant. It is a 

significant central element in India, and various foods have several medical and health advantages [3]. 

Diseases like yellowing, quick wilt, slow wilt, foot rot, and phytophthora have impacted black pepper 

plants. It is a native spice of Kerala, Tamil Nadu, and a few of northeast India’s forest states. Hence, there 

is a critical requirement to make an accurate, quick, and suitable technique for identifying pepper leaf 

diseases [4]. To resolve the issue above, traditional ML methods like random forest (RF), artificial neural 

networks (ANN), K-nearest neighbour (KNN), and support vector machine (SVM) have been extensively 

employed in the field of crop leaf disease identification [5]. Although present research is supportive, it has 

limitations like suboptimum performance (computational efficiency, inaccuracy) and shortage of 

generalization ability.  

Furthermore, the method becomes more complex while handling large leaf disease datasets and 

several categories of diseases, making the proper utilization and application of the methods more 

challenging [6]. With the expansion of the artificial intelligence (AI) concept, deep learning (DL) has 

been developed to resolve complex visible tasks. In the domain of agriculture, various DL methods, 

namely Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and Convolutional Neural 

Networks (CNNs), were examined for the identification of the indications of central diseases that will 

affect the crops [7]. As one of the most promising methods, CNN has been effectively employed in 

crop leaf disease identification. Numerous CNN methods have been strongly associated with 

identifying crop leaf diseases. Later, the DL method was constructed, frequently requiring it to be 

transferred into an external model [8]. Consequently, when considering the detection accuracy, the 

difficulty of training must have a high potential to build the system into a lightweight one. However, 

accomplishing a higher identification rate often needs to improve the network’s capacity, resulting in 

the complexity of the training task [9]. In addition, diverse regularization techniques, optimizers, and 

activation functions have varied impacts under model training. Thus, continuously balancing the 

training complexity and network depth and electing the suitable activation function and optimization 

for the network model will be a complex problem [10]. 

We present a Bayesian optimizer with deep learning based pepper leaf disease detection for 

decision making (BODL-PLDDM) approach in the agricultural sector. The BODL-PLDDM technique 
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aims to identify the presence of healthy and bacterial spot pepper leaf disease. Primarily, the BODL-

PLDDM technique involves a Wiener filtering (WF) approach to pre-processing the pepper leaf images. 

Besides, the complex and intrinsic feature patterns can be extracted using the Inception v3 model. 

Followed by the Bayesian optimization (BO) algorithm is used for the optimal hyperparameter 

selection process. A crayfish optimization algorithm (COA) with a long short-term memory (LSTM) 

method is employed for disease detection, which correctly perceives the presence of pepper leaf 

diseases. The experimentation validation of the BODL-PLDDM model is verified utilizing the Plant 

Village dataset: 

 An intelligent BODL-PLDDM technique comprising of pre-processing, Inception v3 feature 

extractor, BO based hyperparameter tuning, and COA with LSTM model for pepper leaf disease 

detection and classification is presented. To the best of our knowledge, the BODL-PLDDM model 

has never been presented in the literature. 

 Employing the Inception v3 technique for feature extraction enables the capture of complex and 

intrinsic patterns from pepper leaf images, enabling more robust disease recognition. 

 The implementation of the BO automates the process of choosing the optimal hyperparameters for 

model training, paving the way to enhanced performance and effectiveness in disease classification. 

 Incorporating COA and LSTM methodologies presents an innovative model for disease 

recognition in agricultural settings. 

 The COA-LSTM framework efficiently learns temporal reliabilities in image sequences, 

improving the accuracy and reliability of disease detection. 

The remaining sections of the article are arranged as follows: Section 2 offers the literature review, 

and Section 3 represents the proposed method. Then, Section 4 elaborates on the results evaluation, 

and Section 5 completes the work. 

2. Related works 

In [11], an innovative DL-based technique was developed, which can be proficient in identifying 

healthy and diseased leaves through various crops, while the system will not be trained in them. To 

effectively classify and leverage the superiority of the Inception system during disease identification, 

the method utilizes a minor Inception system that must be appropriate for processing minimum fields 

without diminished performance. In [12], a solution was developed by employing a DL-based 

technique through the image data of plant leaves. A model has been deployed for DL that is dependent 

upon a currently established CNN employing a supervised learning technique for identifying and 

detecting diverse tomato diseases through the Inception Net architecture in this exploration. Two recent 

semantic segmentation techniques are Adapted U-Net and U-Net for the detection and segmentation. 

In [13], a concatenated NN of the mined features of AlexNet and VGG16 frameworks was presented, 

and a classification of the pepper disease method was developed employing fully connected (FC) layers. 

The expansion of the developed CNN method comprises stages like classification, noise removal, 

feature extraction, segmentation, image pre-processing, and dataset collection. In conclusion, the 

developed integrated CNN method has been assessed. 

Begum and Syed [14] presented an innovative optimized DL method employing an efficient 

feature learning method that undergoes four main phases. The input images were primarily re-

dimensioned and the ICLAHE method was presented. Subsequently, the Kernelized Gravity-based 

Density Clustering (KGDC) method was deployed for segmentation. A new osprey optimization 

algorithm (Os-OA) has also been given for tuning. Lee et al. [15] presented an enhanced crop disease 

diagnosis solution. The developed solution comprises two representative DL-based techniques like 
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Object Recognition and Image Captioning. This system in the developed solution utilizes the 

Transformer system as a decoder and Inception v3 architecture as an encoder, whereas the Object 

Detection method of the developed solution utilizes the YOLOv5 framework. In [16], an ensemble 

stacked DL method was introduced to solve the issue of automated recognition of mango-leaf illnesses. 

Primarily, the images have been segmented in the region of interest (RoI) and input to many diverse DNN 

methods. The outcome of the DNN has been combined with an ML model for perceiving the leaf disease. 

Ashwinkumar et al. [17] projected an automatic method for identifying and categorizing plant leaf 

diseases utilizing an optimum mobile network-based CNN (OMNCNN) approach. Moreover, the 

MobileNet method was implemented as the feature extraction algorithm wherein the hyperparameter has 

been enhanced through the emperor penguin optimization (EPO) method. In conclusion, an ELM-based 

technique was deployed for assigning suitable class labels. In [18], a Hierarchical DL-CNN (HDLCNN) 

was developed. Initially, a pre-processing stage was executed employing the Median Filtering (MF) 

technique. Next, an Intuitionistic Fuzzy Local Binary pattern (IFLBP) was presented, which can extract 

the features of the leaves. Afterward, the HDL-CNN was employed for identifying and categorizing 

the illness, and Decision Support Systems aided in executing proficient treatment schemes. 

Krishnamoorthy et al. [19] proposed a model utilizing InceptionResNetV2, a kind of CNN technique 

employed with a transfer learning approach to detect rice leaf image diseases. In [20], the application 

of VGG16, a CNN variant, is explored for the classification purpose of the infected and healthy leaves. 

The research also implements the Bayesian optimizing model for choosing optimal hyperparameters and 

examines the transfer learning model to improve the accomplishment and mitigate the training time.  

3. The proposed method 

We present a BODL-PLDDM approach to the agricultural sector. The technique’s purpose is to 

identify the presence of healthy and bacterial spot pepper leaf disease. Figure 1 shows the work process 

of the presented BODL-PLDDM approach. 

3.1. Image preprocessing 

Primarily, the BODL-PLDDM technique involves the WF approach to preprocess the pepper leaf 

images. WF develops as a basis for pre-processing pepper leaf images, proposing a classy technique 

to moderate noise and improve image clarity [21]. In agricultural study, where precise image analysis 

is critical, WF offers a strong structure for removing significant data from noisy datasets.  
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Figure 1. Overall process of BODL-PLDDM approach. 

By leveraging arithmetical models, WF efficiently separates noise and signal components, 

certifying the protection of vital details in pepper leaf imagery. This method optimally adjusts to the 

exclusive features of every image, allowing exact noise decrease while upholding reliability to the 

original content. Through spectral density assessment, WF builds an optimum filter, personalized to 

the precise noise profile of pepper leaf images, thus enabling enhanced image quality. Combining WF 

into the pre-processing pipeline allows researchers to attain more trustworthy and consistent outcomes 

in disease recognition and crop monitoring tasks. 

3.2. Inception v3 based feature extraction 

The complex and intrinsic feature patterns can be extracted using the Inception v3 model in this 

work. IV3 is a form of CNN model developed for tasks including image identification and object 

classification [22]. This is presented as an enhanced form of the novel Inception framework, with 
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higher practical usage and accuracy of computational resources. Assume, that X is the input image 

data that has the extent 𝐻𝑥𝑊𝑥𝐶, whereas W (breadth) and H (height), and C means the channels 

of images (for example, RGB images). The 1st layer of Inception v3 is a convolutional (Conv) layer 

with 32 filters, every size 3 × 3 × 3 (3 × 3 represents the filter size and 3 becomes the total quantity 

of input image channels). Consider 𝐹1 as the set of filters. The output is expressed below: 

𝑍1 = 𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣 (𝑋, 𝐹1) + 𝑏1).       (1) 

Here, b1 refers to the bias term, 𝑐𝑜𝑛𝑣()  describes the convolution process, and 𝑅𝑒𝐿𝑢()  represents 

rectified linear activation function. The following layer becomes a sequence of Inception components. 

An Inception component has a multi‐branch system that integrates the outputs of numerous Conv filters 

of various dimensions and diverse accessible domains. An Inception segment is an output of every 

branch. The mathematical equation for the Inception component will be denoted as given below: 

𝑧(in𝑐) = 𝐶𝑜𝑛𝐶𝑎𝑡 

(

 
 

[
 
 
 
 

𝐶𝑜𝑛𝑣(𝑋, 𝐹1×1),

𝐶𝑜𝑛𝑣(𝑋, 𝐹3×3,𝑟),

𝐶𝑜𝑛𝑣(𝑋, 𝐹5×5,𝑟),

Max−𝑃𝑜𝑜𝑙(𝑋, 𝑘),]
 
 
 
 

, 𝑎𝑥𝑖𝑠 = 𝐶ℎ𝑎𝑛𝑛𝑒𝑙

)

 
 

,     (2) 

where the reduction parameters 𝐹1×1,  𝐹3×3,𝑟, and 𝐹5×5,𝑟 define the set of filters with dimensions of 1 ×

1, 3 × 3 and 5 × 5, respectively. 
The reduction parameter was utilized to decrease the amount of input channel to the 3 × 3 and 

5 × 5 Conv, which will be the computational rate. 𝑘 means the dimensions of the max pooling layer. 

The output of an Inception model will be provided via a batch normalization layer and ReLU can be 

given by 

𝑧(𝑖𝑛𝑐) = 𝑅𝑒𝐿𝑈 (𝐵𝑎𝑡𝑐ℎ−𝑁𝑜𝑟𝑚(𝑍(𝑖𝑛𝑐))).       (3) 

Next, the Inception components, the output is driven by applying a global average pooling layer 

for reducing the spatial sizes and then dual FC layers with 2048 neurons: 

𝑧(𝑓𝑐1) = 𝑅𝑒𝐿𝑈 ((𝑊𝐹𝑐1 ∗ 𝐺𝑙𝑜𝑏𝑎𝑙−𝐴𝑣𝑔−𝑃𝑜𝑜𝑙(𝑍(�̇�𝑐))) + 𝑏𝐹𝑐1),    (4) 

𝑧(𝑓𝑐2) = 𝑅𝑒𝐿𝑈 ((𝑊𝐹𝑐2 ∗ 𝑧(𝑓𝑐1)) + 𝑏𝐹𝑐2),       (5) 

where 𝑊𝐹𝑐1 𝑎𝑛𝑑 𝑊𝐹𝑐2 represent the weight matrices that can be connected with the FC layers for the 

preceding layer, 𝑏𝐹𝑐1 𝑎𝑛𝑑 𝑏𝐹𝑐2 describe the bias terms, and 𝐺𝑙𝑜𝑏𝑎𝑙−𝐴𝑣𝑔−𝑃𝑜𝑜𝑙() denotes the function 

that averages the feature map through the spatial dimension. Then, the softmax layer output will be 

denoted as: 

𝑌 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 ((𝑊𝑆𝑀 ∗ 𝑧(𝑓𝑐2)) + 𝑏𝑆𝑀).       (6) 

𝑊𝑆𝑀 means the weight matrix connecting the softmax layer to the prior layer, and 𝑏𝑆𝑀 represents 

the bias. The softmax standardizes the probability distribution output through the class labels. Figure 2 

denotes the infrastructure of Inception v3. 
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Figure 2. Structure of Inception v3 model. 

3.3. BO-based hyperparameter selection process 

The BO is used for the optimum hyperparameter selection process in this stage. BO is a sample 

effective plan for a worldwide optimizer of black boxes, which is costly and has multi‐external 

functions [23], and is usually controlled over a box‐bound searching space 𝛺: 

min
𝜃𝜖Ω

𝑔(𝜃).          (7) 

To resolve the problem of (1), BO utilizes dual major modules such as a probabilistic replacement 

method of an acquisition function 𝑛𝑓𝑖𝑙𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑜𝑟 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, and the objective function 

𝑔(𝜃) depends upon the present estimation of 𝑔(𝜃). The acquisition function’s optimizer permits the 

choice of the subsequent capable 𝜃′ used to assess the objective function. The experimental value, 

𝑔(𝜃′)  (or 𝑔(𝜃′) + 𝜀  that the objective function is also loud), is next utilized to upgrade the 

probabilistic method resembling 𝑔(𝜃), and the procedure is repeated until assumed conclusion norms 

are attained (e.g., a maximal amount of function estimations). 

A Gaussian Process (GP) is usually selected for the probabilistic replacement method. A substitute 

is produced by RF, an ensemble learning model which, opposite to 𝐺𝑃, can handle complex search 

spaces 𝛺, covered by assorted, definite, and uncertain modules of (𝜃). Uncertain means that the value 

of solution vector 𝜃[𝑖] is based on the smallest module value 𝜃[𝑗], with 𝑖 ≠ 𝑗. 

Its exact execution and the main goal of the probabilistic replacement technique is to offer an 

estimation of 𝑔(𝜃), ∀𝜃 ∈ 𝛺, beside by a scale of uncertainty regarding such estimation. These dual 

units are namely the standard deviation and mean of the forecast delivered by the probabilistic 

surrogate method signified by 𝜇(𝜃) and 𝜎(𝜃), respectively. 

The acquisition function is intended to drive the collection of the following 𝜃′ to be assessed on 

the objective function, balancing among 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛,that is selecting 𝜃′ whose related forecast is not 

inferior to the finest function value and 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 is picking 𝜃′ whose forecast is chiefly indefinite. 

The exploitation and exploration are related to local and global search, respectively. The primary and 

secondary are expressively compelled by 𝜇(𝜃) and 𝜎(𝜃), respectively. Many functions of acquisition 

have developed a summary is delivered. Each one provides a dissimilar device to stabilize the 

exploration and exploitation trade-off. The commonly utilized acquisition functions are lower 

confidence bound (LCB), maximal probability of improvement (MPI), and expected improvement (EI). 

LCB controls both exploration and exploitation by positive in the aspect of uncertainty: 

𝐿𝐶𝐵(𝜃) = 𝜇(𝜃) − 𝜉𝜎(𝜃),         (8) 
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where 𝜇(𝑥)  denotes the mean value, 𝜎(𝑥)  signifies the standard deviation. 𝜉 ≥ 0  refers to the 

parameter to control the trade-off between exploitation and exploration. Exactly, 𝜉 = 0 is for clean 

exploitation, and high values of 𝜉 highlight exploration. A plan of 𝜉 is planned with converge proof. 

EI processes the probability of the development on 𝑔(𝜃) with esteem to an analytical distribution. 

𝐸𝐼(𝜃) = {
(𝑔(𝜃+) − 𝜇(𝜃) − 𝜉)𝛷(𝑍) + 𝜎(𝜃)𝜙(𝑍)  𝑖𝑓  𝜎(𝜃) > 0,

0  𝑖𝑓   𝜎(𝜃) = 0.
   (9) 

𝑔(𝜃+) denotes the finest value, 𝜉 is employed to stable among exploitation and exploration, 𝜙(𝑍) 

and 𝛷(𝑍) refer to the prospect and increasing dispersal of the uniform normal, correspondingly by 𝑍 

definite as below: 

𝑍 = {
𝑔(𝜃+)−𝜇(𝜃)

𝜎(𝜃)
 𝑖𝑓 𝜎(𝜃) > 0,

0  𝑖𝑓  𝜎(𝜃) = 0.
        (10) 

MPI is the primary acquisition function projected. As it is essentially inclined near exploitation, 

it is adapted with a parameter 𝜉 to permit a superior exploitation and exploration trade-off: 

𝑀𝑃𝐼(𝜃) = 𝑃(𝑔(𝜃) ≤ 𝑔(𝜃+) + 𝜉) = 𝛷 (
𝑔(𝜃+)+𝜇(𝜃)+𝜉

𝜎(𝜃)
).     (11) 

At last, picking 𝜃′ needs to resolve an auxiliary optimizer problem on the similar searching space 

𝛺 but is more inexpensive than one, which minimizes 𝐿𝐶𝐵(𝜃) or maximizes 𝐸𝐼(𝜃) or 𝑀𝑃𝐼(𝜃). 

Signify by 𝐷1:𝑛 a set of initial solutions. For instance, experimented by employing the Latin 

Hypercube Sampling (LHS) model. The component 𝐷𝑖 is (𝜃𝑖 , 𝑔(𝜃𝑖)), by 𝑖 = 1, 𝑛 (i.e., we consider 

the set of noise‐free deprived of generalization loss. Besides, reflect 𝑁 as the maximal number of 

function estimates. 

3.4. Leaf disease detection process  

The COA with LSTM model is applied for disease detection, which accurately detects the 

presence of pepper leaf diseases. The COA is a new optimization metaheuristics approach stimulated 

by crayfish’s foraging, avoidance, and social behaviors [24]. Using three different operating stages, 

this technique influences principles from the biological field to address optimizer issues in other areas. 

This phase establishes an equilibrium of exploitation and exploration. Initially, COA concentrates on 

discovering promising solutions. Afterward, the “foraging” and “competition” phase mimic the 

exploitation stage. Transitions among both phases were impacted by temperature regulation. High 

temperature prompts crayfish to compete for shelter or search for shelter, whereas optimum temperature 

dictates foraging strategy based on food size. Temperature control bolsters the global optimization 

abilities and improves the randomness level. The subsequent equation describes the COA functioning: 

𝑋 = [𝑋1, 𝑋2, ⋯ , 𝑋𝑁] =

[
 
 
 
 
𝑋1,1 ⋯ 𝑋1,𝑗 ⋯ 𝑋1,𝑑𝑖𝑚 

⋮ ⋯ ⋮ ⋯ ⋮
𝑋𝑖,1 ⋯ 𝑋𝑖,𝑗 ⋯ 𝑋𝑖,𝑑𝑖𝑚

⋮ ⋯ ⋮ ⋯ ⋮
𝑋𝑁,1 ⋯ 𝑋𝑁,𝑗 ⋯ 𝑋𝑁,dim ]

 
 
 
 

.      (12) 

Here, 𝑁 is the population limit, 𝑃 indicates the population, and 𝑘 is the problem’s dimensionality, 

𝑋𝑖,𝑗  denotes the agent’s location in 𝑖𝑡ℎ  and 𝑗𝑡ℎ  coordinates. An agent is arbitrarily disseminated 

through the search range: 
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𝑋𝑖,𝑗 = 𝑙𝑏𝑗 + (𝑢𝑏𝑗 − 𝑙𝑏𝑗) × 𝑟𝑎𝑛𝑑,        (13) 

where 𝑙𝑙 and 𝑢𝑙 are the lower and upper limits and 𝑟𝑛𝑑 denotes the random number.  

𝑡𝑒𝑚𝑝 = 𝑟𝑎𝑛𝑑 × 15 + 20.        (14) 

When the temperature exceeds 30, agents select to find an excellent place to break and restart 

foraging at a suitable climate. Agent intakes are almost assumed to be uniformly distributed, and it is 

defined as follows: 

𝑝 = 𝐶1 × (
1

√2×𝜋×𝜎)
×  exp (−

(𝑡𝑒𝑚𝑝−𝜇)2

2𝜎2 )).      (15) 

Equation (15), 𝜇  indicates the optimum agent temperature, and 𝜎  and 𝐶  are the control 

parameters. Crayfish fight for cave space. This is based on the randomly generated event with a 0.5 

probability of arising when the temperatures surpass 30 as: 

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝑖,𝑗

𝑡 − 𝑋𝑧,𝑗
𝑡 + 𝑋𝑠ℎ𝑎𝑑𝑒,        (16) 

where 𝑧 denotes a random agent. The position is adjusted according to other competing agents. 

The agent position is updated as: 

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝑖,𝑗

𝑡 + 𝑋food × 𝑝 × (cos(2 × 𝜋 × 𝑟𝑎𝑛𝑑) − 𝑠𝑖𝑛(2 × 𝜋 × 𝑟𝑎𝑛𝑑)).   (17) 

COA progresses toward the best solution during the foraging stage, which bolsters the capability 

of the algorithm to exploit resources and ensure strong convergence ability. 

The fitness function (FF) is the significant factor prompting the performance of COA. The 

hyperparameter range procedure includes the solution encoder technique to assess the efficacy of the 

candidate solution. In this work, the COA reveals that accuracy is the leading standard to project the 

FF conveyed below.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  max (𝑃),        (18) 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
.          (19) 

Here, 𝐹𝑃 represents the false positive value and 𝑇𝑃 signifies the true positive. 

LSTM is the elaborate variant of the RNN model that can be a recursive neural network method [25]. 

It is implanted for the modeling of successive data. The main feature of RNN is the network delay 

recursion that allows it to define the dynamic effectiveness of models. Nevertheless, it is generally 

complex to train RNNs to learn the extended dependences from time sequence data because of the 

blast and vanishing gradient complexity. Both difficulties have been produced by RNN, whose incline 

will be equivalent to the matrix of recurrent weight and then increased to a higher supremacy.  

On the other hand, it was proved that the exploding gradient complexity is comparatively easy to 

handle by employing a method called gradient clipping, which merely decreases the gradients whose 

standards surpass a threshold. A significant benefit of the gradient clipping method is maintained as 

the gradient is smaller than a few levels for maximum learning time. In contrast, the learning or 

convergence could be affected once the gradient is decreased. Alternatively, the problems of the 

vanishing gradient are enormously complex due to the gradient’s module in the trends concerning 

extended dependencies being smaller. Furthermore, it affects the gradient element in the trends, which 

provides short‐term dependencies to be more significant. Therefore, the RNN will absorb the short‐

term dependencies simply; however, it undergoes extended dependencies. 
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The development of the LSTM creates efficient outcomes for competition in the vanishing 

gradient complexity of the RNN. This employs a memory cell proficient in signifying the continuing 

dependencies in sequential information. The LSTM memory cell includes 4 gates (or components): 

The self‐recurrent neuron, forget gate, output gate, and input gate. Such gates can be accountable for 

controlling the connections between various memory modules. Remarkably, the input gate manages 

whether the input signal will change the condition of the memory cell or not, while the output gate manages 

if it could alter the condition of the alternative memory unit. The forget gate must be selected to forget (or 

recollect) its prior status. The hidden output, gates, and cell status are signified as given below: 

𝑓𝑡 = 𝜎(𝑋𝑡𝑈
𝑓 + 𝑆𝑡−1𝑊

f + 𝑏𝑓),       (20) 

𝑖𝑡 = 𝜎(𝑋𝑡𝑈
𝑖 + 𝑆𝑡−1𝑊

𝑖 + 𝑏𝑖),        (21) 

𝑜𝑡 = 𝜎(𝑋𝑡𝑈
𝑜 + 𝑆𝑡−1𝑊

𝑜 + 𝑏𝑜),       (22) 

�̃�𝑡 = tanh(𝑋𝑡𝑈
𝑐 + 𝑆𝑡−1𝑊

𝑐 + 𝑏𝑐),       (23) 

𝐶𝑡 = 𝐶𝑡−1 ⊗ 𝑓𝑡 ⊕ 𝑖𝑡 ⊗ �̃�𝑡,        (24) 

𝑆𝑡 = 𝑜𝑡 ⊗ tanh(𝐶𝑡).         (25) 

Here, 𝐶𝑡, 𝑆𝑡, and 𝑋𝑡 are cell states, hidden and input at time step 𝑡, individually, (𝑊𝑓 ,𝑊𝑗 ,𝑊𝑜 ,𝑊𝑐), 

(𝑈𝑓 , 𝑈𝑗 , 𝑈𝑜 , 𝑈𝑐),  and (𝑏𝑓 , 𝑏𝑗 , 𝑏𝑜 , 𝑏𝑐)  describe recurrent weights, input weights, and biases, 

correspondingly. 𝑆𝑡−1  and 𝐶𝑡−1  indicate the cell and hidden status at time step 𝑡 − 1 , 𝜎  ⊗,  and  ⊕ 

denote sigmoid activation, pointwise multiplication, and pointwise addition, respectively. 

It is verified that several efforts exist to address the vanishing gradient complexity of RNN, but 

the LSTM is a significant and effective effort. The LSTM resolves such an issue by shortening the 

gradients at the system, wherein it is inoffensive to perform, thereby applying the constant error flows 

via carousels with distinct multiplication components. Such particular non‐linear modules are acquired 

to alter the continual error flow. 

4. Performance validation  

The experimental validation of the BODL-PLDDM model is verified using the Plant Village 

dataset [26]. The dataset contains 2475 samples under two classes as demonstrated in Table 1. Figure 3 

illustrates the sample images. The suggested technique is simulated using Python 3.6.5 tool on PC i5-

8600k, 250GB SSD, GeForce 1050Ti 4GB, 16GB RAM, and 1TB HDD. The parameters settings are 

provided: Learning rate: 0.01, activation: ReLU, epoch count: 50, dropout: 0.5, and batch size: 5. 

Table 1. Details on database. 

Classes No. of Instances 

Bacterial Spot 997 

Healthy 1478 

Total Instances 2475 
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Figure 3. Sample images (a) Healthy, (b) Bacterial spot. 

Figure 4 demonstrates the confusion matrices formed by the BODL-PLDDM approach under 

80:20 and 70:30 of TRAS/TSES. The results indicate that the BODL-PLDDM approach has effectual 

recognition in two classes: Bacterial spot and healthy. 
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Figure 4. Confusion matrices of (a–c) TRAS of 80% and 70%, and (b–d) TESS of 20% and 30%. 

Table 2 and Figure 5 show a leaf disease recognition analysis of the BODL-PLDDM approach under 

80%TRAS and 20%TESS. The experimentation value concluded that the BODL-PLDDM methodology 

has recognized two classes under bacterial spot and healthy. With 80%TRAS, the BODL-PLDDM 

method gains an average 𝑎𝑐𝑐𝑢𝑦  of 98.48%, 𝑝𝑟𝑒𝑐𝑛  of 98.50%, 𝑟𝑒𝑐𝑎𝑙  of 98.42%, 𝐹1𝑠𝑐𝑜𝑟𝑒  of 98.42%, 

and MCC of 96.84%. In addition, with 20%TESS, the BODL-PLDDM system gains an average 𝑎𝑐𝑐𝑢𝑦 

of 99.60%, 𝑝𝑟𝑒𝑐𝑛 of 99.52%, 𝑟𝑒𝑐𝑎𝑙 of 99.65%, 𝐹1𝑠𝑐𝑜𝑟𝑒 of 99.58%, and MCC of 99.17%. 

Table 2. Leaf disease detection outcome of BODL-PLDDM technique under 80%TRAS 

and 20%TESS. 

Classes 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝟏𝑺𝒄𝒐𝒓𝒆 MCC 

TRAS (80%) 

Bacterial Spot 98.48 98.60 97.60 98.09 96.84 

Healthy 98.48 98.41 99.07 98.74 96.84 

Average 98.48 98.50 98.34 98.42 96.84 

TESS (20%) 

Bacterial Spot 99.60 99.04 100.00 99.52 99.17 

Healthy 99.60 100.00 99.31 99.65 99.17 

Average 99.60 99.52 99.65 99.58 99.17 
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Figure 5. Average of BODL-PLDDM approach under 80%TRAS and 20%TESS. 

The performance of the BODL-PLDDM system is graphically offered in Figure 6 in the method 

of training accuracy (TRAA) and validation accuracy (VALA) curves below 80%TRAS and 20%TESS. 

The figure shows a beneficial interpretation into the behaviour of the BODL-PLDDM technique over 

many epoch counts, signifying its learning procedure and generalization skills. Remarkably, the figure 

infers a steady improvement in the TRAA and VALA with a growth in epochs. It certifies the adaptive 

nature of the BODL-PLDDM technique in the pattern detection procedure on both TRA and TES data. 

The emerging trend in VALA summarizes the BODL-PLDDM technique’s ability to adjust to the TRA 

data and also provides exact classification of unseen data, pointing out the robust generalization abilities. 

 

Figure 6. 𝐴𝑐𝑐𝑢𝑦 curve of BODL-PLDDM approach under 80%TRAS and 20%TESS. 

Figure 7 demonstrates a broad representation of the training loss (TRLA) and validation loss (VALL) 

outcomes of the BODL-PLDDM system over different epochs below 80%TRAS and 20%TESS. The 

progressive reduction in TRLA highlights the BODL-PLDDM system enhancing the weights and 

minimalizing the classification error on the TRA and TES data. The figure specifies a clean 

understanding into the BODL-PLDDM model’s association with the TRA data, emphasizing its ability 
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to take patterns within both datasets. Remarkably, the BODL-PLDDM technique continually enhances 

its parameters in decreasing the changes among the forecast and actual TRA class labels. 

 

Figure 7. Loss curve of BODL-PLDDM approach under 80%TRAS and 20%TESS. 

The results of inspecting the precision recall (PR) curve, as shown in Figure 8, confirmed that the 

BODL-PLDDM system gradually achieves improved PR values over every class below 80%TRAS 

and 20%TESS. It confirms the boosted capabilities of the BODL-PLDDM technique in the 

classification of dissimilar classes, displaying the ability to recognize courses. 

Also, in Figure 9, ROC curves formed by the BODL-PLDDM system outperformed in classifying 

discrete labels under 80%TRAS and 20%TESS. It offers comprehensive understanding of the tradeoff 

among TPR and FRP over distinct detection threshold values and epoch counts. The figure underlined 

the improved classifier outcomes of the BODL-PLDDM approach under all classes, outlining the 

efficiency in addressing frequent classification issues. 

 

Figure 8. PR curve of BODL-PLDDM approach under 80%TRAS and 20%TESS. 
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Figure 9. ROC curve of BODL-PLDDM approach under 80%TRAS and 20%TESS. 

Table 3 and Figure 10 show a leaf disease recognition analysis of BODL-PLDDM method below 

70%TRAS and 30%TESS. The experimental value inferred that the BODL-PLDDM system has 

recognition dual classes below bacterial spot and healthy. With 70 %TRAS, the BODL-PLDDM 

system gains an average 𝑎𝑐𝑐𝑢𝑦 of 99.21%, 𝑝𝑟𝑒𝑐𝑛 of 99.35%, 𝑟𝑒𝑐𝑎𝑙 of 99.21%, 𝐹1𝑠𝑐𝑜𝑟𝑒 of 99.28%, 

and MCC of 98.56%. Furthermore, with 30%TESS, the BODL-PLDDM technique gain average 

𝑎𝑐𝑐𝑢𝑦 of 98.64%, 𝑝𝑟𝑒𝑐𝑛 of 98.82%, 𝑟𝑒𝑐𝑎𝑙 of 98.64%, 𝐹1𝑠𝑐𝑜𝑟𝑒 of 98.73%, and MCC of 97.46%. 

The performance of the BODL-PLDDM method is graphically offered in Figure 11 in the 

procedure of TRAA and VALA curves below 70%TRAS and 30%TESS. The figure displays valuable 

clarification into the behavior of the BODL-PLDDM system over numerous epoch counts, indicating 

its learning procedure and generalization skills. Remarkably, the figure infers a steady improvement 

in the TRAA and VALA with a progress in epochs. It safeguards the adaptive nature of the BODL-

PLDDM technique in the pattern detection procedure on both TRA and TES data. The rising trend in 

VALA outlines the BODL-PLDDM system’s ability to adjust to the TRA data. Also, it shines in 

proposing accurate identification of unseen data, indicating the strong generalization capacities. 

Table 3. Leaf disease detection outcome of BODL-PLDDM model under 70%TRAS and 30%TESS. 

Classes 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝟏𝑺𝒄𝒐𝒓𝒆 MCC 

TRAS (70%) 

Bacterial Spot 98.72 99.57 98.72 99.14 98.56 

Healthy 99.71 99.13 99.71 99.42 98.56 

Average 99.21 99.35 99.21 99.28 98.56 

TESS (30%) 

Bacterial Spot 97.95 98.97 97.95 98.46 97.46 

Healthy 99.33 98.68 99.33 99.00 97.46 

Average 98.64 98.82 98.64 98.73 97.46 
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Figure 10. Average of BODL-PLDDM approach under 80%TRAS and 20%TESS. 

 

Figure 11. 𝐴𝑐𝑐𝑢𝑦 curve of BODL-PLDDM approach under 70%TRAS and 30%TESS. 

Figure 12 reveals a comprehensive representation of the TRLA and VALL outcomes of the 

BODL-PLDDM system over different epochs under 70%TRAS and 30%TESS. The advanced 

reduction in TRLA highlights the BODL-PLDDM system enhancing the weights and diminishing the 

TRA and TES data classification error. The figure specifies a clean understanding into the BODL-

PLDDM model’s link with the TRA data, emphasizing its ability to take patterns within both datasets. 

Remarkably, the BODL-PLDDM technique repeatedly enhances its parameters in decreasing the 

variances between the forecast and actual TRA class labels. 

Inspecting the PR curve revealed in Figure 13, the outcomes certified that the BODL-PLDDM 

method gradually accomplishes greater PR values over every class under 70%TRAS and 30%TESS. 

It confirms the improved skills of the BODL-PLDDM technique in classifying distinct classes, 

displaying the ability to detect class labels. 

Furthermore, in Figure 14, ROC curves offered by the BODL-PLDDM model outperformed in 

identifying labels below 70%TRAS and 30%TESS. It comprehensively explains the tradeoff between 

TPR and FRP over different detection threshold values and epoch counts. The figure shows the superior 
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classifier outcomes of the BODL-PLDDM technique below all classes, outlining the efficiency in 

addressing many classification problems. 

 

Figure 12. Loss curve of BODL-PLDDM approach under 80%TRAS and 20%TESS. 

 

Figure 13. PR curve of BODL-PLDDM approach under 80%TRAS and 20%TESS. 

 

Figure 14. ROC curve of BODL-PLDDM approach under 80%TRAS and 20%TESS. 
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Table 4 provides an overall comparative examination of the BODL-PLDDM approach [14]. 

Figure 15 represents the 𝑎𝑐𝑐𝑢𝑦 analysis of the BODL-PLDDM approach with other recent algorithms. 

The simulation values implied that the BODL-PLDDM approach has efficient performances. Based 

on 𝑎𝑐𝑐𝑢𝑦, the BODL-PLDDM approach has a higher 𝑎𝑐𝑐𝑢𝑦 of 99.60% while the VGG16, VGGNet, 

CNN, DL-IBPDD, RPLD-CV, and GSAtt-CMNetV3 PLDC approaches have lesser 𝑎𝑐𝑐𝑢𝑦 of 99.00%, 

96.78%, 99.00%, 99.30%, 99.10%, and 99.30%, respectively. 

Table 4. Comparative analysis of BODL-PLDDM approach with recent methods. 

Technology 
𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝟏𝑺𝒄𝒐𝒓𝒆 

VGG-16 99.00 99.00 99.00 99.00 

VGGNet 96.78 98.09 98.31 98.58 

CNN 99.00 97.63 97.65 98.17 

DL-IBPDD 99.30 97.26 97.66 97.77 

RPLD-CV 99.10 95.70 95.70 95.40 

GSAtt-CMNetV3 PLDC 99.30 98.73 99.03 99.00 

BODL-PLDDM  99.60 99.52 99.65 99.58 

 

Figure 15. 𝐴𝑐𝑐𝑢𝑦 analysis of BODL-PLDDM approach with recent methods. 

Figure 16 signifies the 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , and 𝐹1𝑠𝑐𝑜𝑟𝑒  study of the BODL-PLDDM technique with 

other current algorithms. The simulation values implied that the BODL-PLDDM system has effective 

performance. Based on 𝑝𝑟𝑒𝑐𝑛 , the BODL-PLDDM methodology has developed 𝑝𝑟𝑒𝑐𝑛  of 99.52%, 

whereas the VGG16, VGGNet, CNN, DL-IBPDD, RPLD-CV, and GSAtt-CMNetV3 PLDC techniques 

have smaller 𝑝𝑟𝑒𝑐𝑛  of 99.00%, 98.09%, 97.63%, 97.26%, 95.70%, and 98.73%, respectively. 

Additionally, based on 𝐹1𝑠𝑐𝑜𝑟𝑒, the BODL-PLDDM method has a higher 𝐹1𝑠𝑐𝑜𝑟𝑒 of 99.58% while the 

VGG16, VGGNet, CNN, DL-IBPDD, RPLD-CV, and GSAtt-CMNetV3 PLDC methodologies have 

reduced 𝐹1𝑠𝑐𝑜𝑟𝑒 of 99.00%, 98.58%, 98.17%, 97.77%, 95.40%, and 99.00%, respectively. 
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Figure 16. P𝑟𝑒𝑐𝑛, R𝑒𝑐𝑎𝑙, and 𝐹1𝑠𝑐𝑜𝑟𝑒 analysis of BODL-PLDDM approach with recent methods. 

5. Conclusions 

In this paper, a BODL-PLDDM technique is proposed for the agricultural sector. The BODL-

PLDDM technique aims to identify the presence of healthy and bacterial spot pepper leaf disease. 

Primarily, the BODL-PLDDM technique involves the WF approach to preprocess the pepper leaf 

images. Moreover, the complex and intrinsic feature patterns can be extracted using the Inception v3 

model. Following this, the BO algorithm is used for the optimal hyperparameter selection process. For 

disease detection, COA with an LSTM model is applied, which accurately detects the presence of 

pepper leaf diseases. The experimentation validation of the BODL-PLDDM model is verified using 

the Plant Village database. The obtained results underlined the promising detection results of the 

BODL-PLDDM technique over other existing models. The limitations of the BODL-PLDDM 

technique comprise potential threats in adjusting to larger datasets and generalizing across various 

environmental settings. Future works may be on incorporating more image augmenting model for 

improving the robustness, exploring ensemble learning models for enhanced accomplishment, and 

performing free trials for validating the technique’s efficiency in real-time agricultural situations.  
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