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Abstract: Modern technology makes it easier to store datasets, but extracting and isolating useful 

information with its full meaning from this data is crucial and hard. Recently, several algorithms for 

clustering data have used complex fuzzy sets (CFS) to improve clustering performance. Thus, adding 

a second dimension (phase term) to the range of membership avoids the problem of losing the full 

meaning of complicated information during the decision-making process. In this research, the notion 

of the complex shadowed set (CSHS) was introduced and considered as an example of the three region 

approximations method simplifying processing with the support of CFS and improving the 

representation of results attained within. This notion can be founded by extending the shadowed set 

codomain from {0, [0, 1], 1} into {0𝑒𝑖𝜃, [0, 1]𝑒𝑖𝜃 , 1𝑒𝑖𝜃}. The significance of CSHS was illustrated by 

giving an example. Additionally, some properties of the CSHS were examined. The basic CSHS 
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operations, complement, union, and intersection were investigated with their properties. Finally, an 

application in decision-making was illuminated to support the present notion. 

Keywords: fuzzy sets; shadowed sets; complex fuzzy sets; complex shadowed sets; thresholds 

approximation 
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1. Introduction 

The problem that arises in daily life tends to concentrate on making appropriate, intelligent decisions 

in a variety of circumstances and environments. To address this problem, Zadeh [1] introduced fuzzy sets 

(FSs) theory. As a decision-making process, the FS plays a major role in dealing with uncertain and vague 

information and represents the characteristics of human nature. Fuzzy sets map each object in the universe 

to a value in the interval [0, 1]. Applications on FS were introduced by Maiers and Sherif’s [2]. A 

combination between the FS and possibility theory was studied by Klir [3]. Later, Mendel [4] introduced 

fuzzy relations (FRs) and Cartesian products of FS. Zho et al. [5] used fuzzy relation analysis (FRS) 

to investigate the application of a hybrid method. Recently, several scholars applied and generalized 

FS to different fields [6–11]. 

In the beginning, Zadeh [1] offered two thresholds, α and β, to split a universe into three disjoint 

regions. He divided the membership degrees into three regions: (a) Complete belonging when degrees 

are equal to or greater than α; (b) complete exclusion when degrees are equal to or less than β; and (c) 

uncertainty when degrees are between β and α. Besides, the three disjoint regions (a), (b), and (c) in 

FS are analogous to those of the three-way decision theory, called the positive, negative, and boundary 

regions, respectively [12–15]. Hirota [16] found that most membership values are associated with 

grades around 0.5. In contrast, assigning values close to “1” or “0” is more confident in human 

mentality. On the other hand, the membership values that lie around 0.5 always lead to some hesitation 

and some difficulties to be substituted on a simple numeric scale. This finding helps Pedrycz [12] 

develop the notion of a shadowed set (SHS). Shadowed sets specify an impact of vagueness 

allocation instead of the whole space as in FS. The SHS approximates the FS to a set with some 

marked vagueness zones or named shadows, and SHS is considered an example of three-way or 

three-valued approximations of FSs. The structure of approximating the memberships maps the 

universe set U to 1, 0, or [0, 1]. The elements with membership degrees close to 1 are elevated to 1, 

the elements with membership degrees close to 0 are reduced to 0, and the elements with membership 

degrees around 0.5 are assigned to [0, 1]. Recently, several methods of uncertainty sets have been 

widely used based on the Pedrycz approach. In 2020, Zhang et al. [17] defined the notion of interval-

shadowed sets based on the interval fuzzy entropy. In 2021, Yang and Yao [18] constructed SHS from 

Atanassove intuitionistic FSs by introducing two methods. In 2023, Jin and Hu [19] introduced three-

way decisions based on hesitant sets. 

The FS is unable to convey complex information combining two variables, notably uncertainty 

and periodicity data, at the same time. Ramot et al. [20] solved this difficulty by introducing complex 

fuzzy set (CFS). CFS maps any object in the universe to a value located inside the unit disk in the 

complex plane. As a result, a complex membership function contains two components: amplitude and 

phase terms. Furthermore, Ramot et al. [21] studied the complex fuzzy relations (CFRs) and Cartesian 
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products of CFSs. Some operations of CFS were proposed and examined by Zhang et al. [22]. In 2011, 

Ma et al. [23] employed CFS to solve multiple periodic factor prediction problems. Additionally, many 

scholars utilized and expanded the notion of broadening the range of membership degrees from the 

interval [0, 1] to a unit disk inside the complex plane across a variety of fields and uncertainty sets. 

Al-Qudah and Hassan [24, 25] proposed and studied the notion of complex multi-fuzzy sets and soft 

sets with their operations and properties. Yazdanbakhsh and Dick [26] made a review of CFS and logic. 

Li and Tu [27] applied CFS to the neural fuzzy system and gave an application to multi-class prediction 

by using CFS. The notions of bipolar δ-equal complex fuzzy concept lattice and complex fuzzy concept 

lattice were introduced by Singh [28, 29]. Alkouri and Salleh [30] introduced complex intuitionistic 

FSs by adding phase terms to both membership and nonmembership functions with some constraints. 

Also, Alkouri and Salleh [31] defined the notion of complex fuzzy soft multisets. Talafha et al. [32] 

presented the complex hesitant FSs with an application in decision-making. 

The limitation of the ability to solve two-dimensional phenomena was solved by using CFS. 

Therefore, complex fuzzy information needs two variables to be represented and illustrated. This 

representation costs the decision-makers a lot of time and calculations during the complex fuzzy 

decision process. Hence, a new trend in CFS is motivated by the approximations of CFS with a smaller 

number of complex membership values. This can be constructed by combining CFS and SHS to reduce 

the decision partition cost and calculation amount of the uncertain object in the CF decision process. 

The sheer number of research and the practical uses of CFS, coupled with the problem of 

efficiently representing multivariable information, have been the key motivation behind the 

development of complex shadowed sets (CSHS). CSHS introduced pioneering research in the 

framework of integrating the ideas of CFS and SHS. This notion can be founded by extending the 

shadowed set codomain from {0, [0, 1], 1}  to {0𝑒𝑖𝜃 , [0, 1]𝑒𝑖𝜃 , 1𝑒𝑖𝜃} . Our methodology can be 

highlighted by dividing the unit disk into three disjoint regions. In other words, the disjoint regions 

can be conveyed as a disk and two rings in the unit disk of a complex plane. Choosing two suitable 

thresholds, α and β, 0 ≤ 𝛽 <  𝛼 ≤ 1, and 𝜃 is any real value belonging to [0, 2π], to split a universe 

into a disk and two rings in the unit disk of a complex plane. 

We divide the complex membership degrees into regions: (𝑎’) is the accepted region (acceptance/ 

core zone) that elevates values which are close to 1𝑒𝑖𝜃  to exactly 1𝑒𝑖𝜃 , when the modulus of 

complex degrees are equal to or greater than α, (𝑏’) is the rejected region (rejection/ dropped zone) that 

decreases values which are close to 0𝑒𝑖𝜃 to exactly 0𝑒𝑖𝜃, when the modulus of complex degrees are 

equal to or less than β, and (𝑐’) is the complex shadowed region (complex shadowed zone) that contains 

the values which retained inside the closed interval [0, 1]𝑒𝑖𝜃  or 𝑎𝑒𝑖𝜃  , where 𝑎 ∈ [0, 1]  and 𝜃 ∈

[0, 2𝜋], when the modulus of complex degrees are between β and α. As well, the three disjoint regions 

(𝑎’), (𝑏’), and (𝑐’) in CFS are analogous to SHS. Therefore, CSHS offers an example of a three-way 

approximation that can handle complex information with multivariable. 

This research aims to enhance the SHS model by dividing the complex fuzzy membership grades 

into three disjoint regions. So, a formal definition of CSHS is constructed and illustrated. After that, 

some basic mathematical operations are proposed with arithmetical examples. Definitively, an 

application to decision-making is clarified to verify the effectiveness and advantages of the proposed 

CSHS method. 
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2. Preliminaries 

Definition 2.1. [1] A is called a FS if there is a function 𝜇𝐴 defined over the universal set U, 𝜇𝐴: 𝑈 →

[0, 1] and called the membership function of 𝐴. 

Definition 2.2. [12] The SHS approximates the FS by approximating the memberships as follows: The 

set 𝐴: 𝑈 → {0, [0, 1], 1} is said to be a SHS on the universe U and 

𝐴(𝑥) = {

0                𝑖𝑓 𝜇𝐴(𝑥) ≤ 𝛽𝑟 ,
[0,1]        𝑖𝑓 𝛼𝑟 < 𝜇𝐴(𝑥) < 𝛽𝑟 ,

1                 𝑖𝑓 𝜇𝐴(𝑥) ≥ 𝛼𝑟 ,

 

where 𝛼𝑟 and 𝛽𝑟 are optimal pairs of thresholds chosen to satisfy the following equation: 

𝑆ℎ𝑎𝑑𝑜𝑤𝑒𝑑 𝑎𝑟𝑒𝑎(𝛼𝑟,𝛽𝑟)(𝜇𝐴) = 𝐸𝑙𝑒𝑣𝑎𝑡𝑒𝑑 𝑎𝑟𝑒𝑎(𝛼𝑟,𝛽𝑟)(𝜇𝐴) + 𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝑎𝑟𝑒𝑎(𝛼𝑟,𝛽𝑟)(𝜇𝐴), 

and we have 0 ≤ 𝛽𝑟 < 𝛼𝑟 ≤ 1. These three areas are defined on the shadow set 𝐴 where the elevated 

area is the region where the membership is defined to be 1, the reduced area is the region where the 

membership is defined to be 0 and the shadowed area is the region where the membership is defined 

to be [0,1]. 

Some properties of SHSs 

1) Complement: Let 𝐴 be a shadow set, 𝐴: 𝑈 → {0, [0,1], 1}, then the complement of 𝐴 is 𝐴̅ 

and defined from 𝐴 by 

 

 

 

It is important to note from definition of the complement for SHSs that the property 𝑥 ∈ 𝐴 ⇔

𝑥 ∉ 𝐴̅ does not satisfy since the element [0,1] belongs to both sets at the same time, but we notice that 

the property is satisfied only for = {0, 1}. 

2) Union: Let 𝐴  and 𝐵  be SHSs. Then, the union of 𝐴  and 𝐵  is 𝐴 ∪ 𝐵  and assigns as 

follows: 

𝐴 ∪ 𝐵 = max {𝐴, 𝐵} by assuming that 0 < [0,1] < 1. 

3) Intersection: Let 𝐴  and 𝐵  be SHSs. Then, the intersection of 𝐴  and 𝐵  is 𝐴 ∩ 𝐵  and 

assigns as follows: 

𝐴 ∩ 𝐵 = min {𝐴, 𝐵} by assuming that 0 < [0,1] < 1. 

Definition 2.3. [20] A CFS 𝑆, defined on a universe of discourse 𝑈, is characterized by a membership 

function 𝜇𝑠(𝑥) that assigns any element 𝑥 ∈ 𝑈 a complex-valued grade of membership in 𝑆. By 

definition, the values 𝜇𝑠(𝑥) may all lie within the unit circle in the complex plane, and are thus of the 

form 𝑟𝑠(𝑥). 𝑒𝑖𝑤𝑠(𝑥)  , where (𝑖 = √−1) ,  𝑟𝑠(𝑥) , and 𝑤𝑠(𝑥)  are both real-valued, and 𝑟𝑠(𝑥) ∈

[0,1], 𝑤𝑠(𝑥) ∈ [0,2𝜋]. The CFS 𝑆 may be represented as the set of ordered pairs: 

𝑆 = {(𝑥, 𝜇𝑠(𝑥))|𝑥 ∈ 𝑈}. 

𝐴 0 [0,1] 1 

𝐴̅ 1 [0,1] 0 
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Some basic properties of CFSs are presented: 

If 𝐴 and 𝐵 are CFSs on 𝑈 with memberships 𝜇𝐴(𝑥) = 𝑟𝐴(𝑥)𝑒𝑖𝜔𝐴(𝑥), 𝜇𝐵(𝑥) = 𝑟𝐵(𝑥)𝑒𝑖𝜔𝐵(𝑥), 

respectively. 

1) The complex union of A and B, 𝐴 ∪ 𝐵 is defined as 

𝜇𝐴∪𝐵(𝑥) = 𝑟𝐴∪𝐵(𝑥)𝑒𝑖𝜔𝐴∪𝐵(𝑥) = max {𝑟𝐴(𝑥), 𝑟𝐵(𝑥)}𝑒𝑖𝑚𝑎𝑥{𝜔𝐴(𝑥),𝜔𝐵(𝑥)}. 

2) The complex intersection of A and B, 𝐴 ∩ 𝐵 is defined as 

𝜇𝐴∩𝐵(𝑥) = 𝑟𝐴∩𝐵(𝑥)𝑒𝑖𝜔𝐴∩𝐵(𝑥) = min {𝑟𝐴(𝑥), 𝑟𝐵(𝑥)}𝑒𝑖𝑚𝑖𝑛{𝜔𝐴(𝑥),𝜔𝐵(𝑥)}. 

3) The complement of A, 𝐴̅ is defined as 

𝜇𝐴̅(𝑥) = 𝑟𝐴̅(𝑥)𝑒𝑖𝜔𝐴̅(𝑥) = (1 − 𝑟𝐴(𝑥))𝑒𝑖(2𝜋−𝜔𝐴(𝑥)) = (1 − 𝑟𝐴(𝑥))𝑒𝑖(𝜔𝐴(𝑥)). 

Proposition 2.1. [20] If A, B, and C are CFSs on U, then the following properties are satisfied: 

a. 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶), 

b. 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶), 

c. 𝐴 ∩ (𝐴 ∪ 𝐵) = 𝐴, 

d. 𝐴 ∪ (𝐴 ∩ 𝐵) = 𝐴, 

e. 𝐴̿ = 𝐴, 

f. 𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅ = 𝐴̅ ∪ 𝐵̅ and 𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅ = 𝐴̅ ∩ 𝐵̅. 

3. Complex shadowed sets 

In this section, we define the concept CSHS, which is a combination of the SHSs and the CFSS. 

Some definitions and properties are given. 

Definition 3.1. Let U be a universal set. The set 𝐴𝐶𝑆𝐻𝑆 is said to be a CSHS of the universe U if it 

is a function mapping as follows: 

𝐴𝐶𝑆𝐻𝑆: 𝑈 → {0𝑒𝑖[0,2𝜋], [0,1]𝑒𝑖[0,2𝜋], 1𝑒𝑖[0,2𝜋]}, 

where the codomain of 𝐴𝐶𝑆𝐻𝑆  is denoted as polar form in the complex plane by 𝐴𝐶𝑆𝐻𝑆(𝑥) =

𝑟𝐴𝐶𝑆𝐻𝑆
(𝑥)𝑒

𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

. We may denote the phase term 𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥) by using the property of periodic 

in complex number as 𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥) = 𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥) + 2𝑘𝜋, 𝑘 = 0, ±1, ±2, …. Based on proper values of 

threshold 𝛼 and 𝛽, the codomain function of CSHS divides the codomain of CFSs into three disjoint 

regions; the disk and two rings in the unit disk in the complex plane are as follows: 

𝐴𝐶𝑆𝐻𝑆(𝑥) = {

0𝑒𝑖𝜔(𝑥) , 𝑖𝑓|𝑟 (𝑥)𝑒𝑖𝜔(𝑥)| = 𝑟 (𝑥) ≤ 𝛼𝑟

1𝑒𝑖𝜔(𝑥), 𝑖𝑓 |𝑟 (𝑥)𝑒𝑖𝜔(𝑥)| = 𝑟 (𝑥) ≥ 𝛽
𝑟

[0, 1]𝑒𝑖𝜔(𝑥), 𝑖𝑓 𝛼𝑟  < |𝑟 (𝑥)𝑒𝑖𝜔(𝑥)| = 𝑟 (𝑥) < 𝛽
𝑟

,    (1) 
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where 𝑥 ∈ 𝑈, 𝑟(𝑥) ∈ [0, 1], and 𝜔(𝑥) has any value in the interval [0, 2π]. 

All CFSs values lie in the unit disk of the complex plane. The aim of presenting CSHS in 

Definition 3.1 is dividing CFS values in the unit disk to three disjoint regions. These regions represent 

the accepted region (acceptance/ core zone) that elevates values which are close to 1𝑒𝑖𝜔(𝑥) to exactly 

1𝑒𝑖𝜔(𝑥), the rejected region (rejection/ dropped zone) that decreases values which are close to 0𝑒𝑖𝜔(𝑥) 

to exactly 0𝑒𝑖𝜔(𝑥) , and the complex shadowed region (complex shadowed/ vagueness zone) that 

contains the values which are retained inside the closed interval [0, 1]𝑒𝑖𝜔(𝑥) or 𝑎𝑒𝑖𝜔(𝑥) where 𝑎 ∈

[0, 1] and 𝜃 ∈ [0, 2𝜋]. 

We keep the phase values that have appeared in the structure of CSHS. That is to keep the 

advantage of periodicity within the unit disk. This allows us to assign each approximation value a 

phase and can represent the full meaning of the approximation of CF information. For example, to 

study climate change in a region, we must measure the temperature on a daily basis during different 

seasons or years to determine the change that is occurring. Take note that some temperatures can be 

repeated numerous times per year. For example, a 25-degree Celsius temperature is expressed the same 

way in FSs throughout the year, as does the amplitude term in CFS. This temperature can be given full 

meaning in CFS by including the phase term, which represents the season. As a result, 25 degrees 

Celsius in the summer indicates cold or cool weather, but the same amount (25 degrees Celsius) in the 

winter indicates warm weather. So the phase term lies in the interval [0, 2] in CSHS to keep the ability 

to approximate complex fuzzy information to the form of CFS without losing the full meaning of 

the information that occurs from adding the phase term. On the other hand, the value of  phase term 

lies in [0, 2] and is used to confine the performance of the phases within the unit disk and can be 

graphed to three regions in polar form as in Figure 1. 

 

Figure 1. The three region of CSHS. 

For more illustration, Figure 1 illustrates three disjoint regions. These disjoint regions are divided 

to a disk and two rings. It’s clear that the union of these three regions represents the unit disk that 

contains all values of CFS. Therefore, the region of disk indicated all values/objects of CFS 

“𝑟(𝑥)𝑒𝑖𝜔(𝑥)” with amplitude terms less than the level value “𝛼𝑟”. Meanwhile, the first ring indicated 

all values/objects of CFSS “𝑟(𝑥)𝑒𝑖𝜔(𝑥)” with amplitude terms lying between level values “𝛼” and “𝛽”. 

Lastly the second ring indicated all values/objects of CFS “𝑟(𝑥)𝑒𝑖𝜔(𝑥)” with amplitude terms greater 

than the level value “𝛽” and less than or equal to “1”, where “𝜔(𝑥)” moving from “0” to “2π” as a 
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real value for all three regions. 

Note 3.1. The CSHS may reduce to a classical shadowed set if all objects in 𝑈 mapping to the values 

0𝑒𝑖𝜔𝐴(𝑥), 1𝑒𝑖0, 𝑜𝑟 [0, 1]𝑒𝑖0 . The value 0𝑒𝑖𝜔𝐴(𝑥)  represents the number 0  in the classical SHS 

(Rejection zone), where 𝑟𝐴(𝑥) = 0  and 𝜔𝐴(𝑥) has any value in the interval [0,2𝜋]. Meanwhile, 

the value 1𝑒𝑖0  represents the number 1  in the classical SHS (Core zone), where 𝑟𝐴(𝑥) = 1  and 

𝜔𝐴(𝑥) = 0 . Finally, the value [0, 1]𝑒𝑖0  represents the number 𝑎 = [0, 1]  in the classical SHS 

(Shadow zone), where 𝑟𝐴(𝑥) = 1 and 𝜔𝐴(𝑥) = 0. 

Note 3.2. The following example (Example 3.1) illustrates the type of information represented by CFS 

as demonstrated in [29]. 

Example 3.1. Let 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}  be the universal set of five undergraduate students.  

Suppose a lecturer wants to measure the academic achievement of his students in each year {𝑦1: first 

year, 𝑦2: second year, 𝑦3: third year, 𝑦4: fourth year}. It is accepted that the achievement of students 

fluctuates several times during an academic year. In this situation, CFS is the suitable tool to precisely 

convey this kind of dataset. The amplitude term could reflect the rate of improvement in academic 

performance, while the phase terms reflect the time consumed to improve student performance during 

the year. Therefore, if the value of the amplitude term is near 1 or near 0, this means that the student 

is having a maximal or minimal improvement in their academic performance, respectively. After that, 

if the value of the phase term is near zero or near 2π, it means improvement happens in the academic 

performance of students for a short or long time, respectively. We may represent the presented type of 

information (CFS 𝐴) for five students’ academic achievement regarding the four years as follows: 

𝐴(𝑦1) = {
𝑢1

0.1𝑒𝑖𝜋 ,
𝑢2

0.8𝑒𝑖0.8𝜋 ,
𝑢3

0.9𝑒𝑖0.5𝜋 ,
𝑢4

0.6𝑒𝑖1.7𝜋 ,
𝑢5

0.2𝑒𝑖2𝜋},       

𝐴(𝑦2) = {
𝑢1

0.8𝑒𝑖1.3𝜋 ,
𝑢2

0.9𝑒𝑖1.6𝜋 ,
𝑢3

0.3𝑒𝑖0.3𝜋 ,
𝑢4

0.7𝑒𝑖0.3𝜋 ,
𝑢5

0.4𝑒𝑖0.9𝜋},      

𝐴(𝑦3) = {
𝑢1

0.5𝑒𝑖1.8𝜋 ,
𝑢2

0.6𝑒𝑖1.9𝜋 ,
𝑢3

0.8𝑒𝑖1.4𝜋 ,
𝑢4

0.9𝑒𝑖2𝜋 ,
𝑢5

0.5𝑒𝑖1.5𝜋},       

𝐴 (𝑦4) = {
𝑢1

0.7𝑒𝑖0.9𝜋 ,
𝑢2

0.7𝑒𝑖2𝜋 ,
𝑢3

0.6𝑒𝑖0.2𝜋 ,
𝑢4

0.8𝑒𝑖1.5𝜋 ,
𝑢5

0.7𝑒𝑖𝜋}.       

Let the values of threshold 𝛼𝑟 = 0.3 𝑎𝑛𝑑 𝛽𝑟 = 0.7. Then, the complex shadowed set 𝐴𝐶𝑆𝐻𝑆 can be 

defined as follows: 

𝐴𝐶𝑆𝐻𝑆(𝑦1) = {
𝑢1

0𝑒𝑖𝜋 ,
𝑢2

1𝑒𝑖0.8𝜋 ,
𝑢3

1𝑒𝑖0.5𝜋 ,
𝑢4

𝑎𝑒𝑖1.7𝜋 ,
𝑢5

0𝑒𝑖2𝜋},        

𝐴𝐶𝑆𝐻𝑆(𝑦2) = {
𝑢1

1𝑒𝑖1.3𝜋 ,
𝑢2

1𝑒𝑖1.6𝜋 ,
𝑢3

0𝑒𝑖0.3𝜋 ,
𝑢4

1𝑒𝑖0.3𝜋 ,
𝑢5

𝑎𝑒𝑖0.9𝜋},       

𝐴𝐶𝑆𝐻𝑆(𝑦3) = {
𝑢1

𝑎𝑒𝑖1.8𝜋 ,
𝑢2

𝑎𝑒𝑖1.9𝜋 ,
𝑢3

1𝑒𝑖1.4𝜋 ,
𝑢4

1𝑒𝑖2𝜋 ,
𝑢5

𝑎𝑒𝑖1.5𝜋},       

𝐴𝐶𝑆𝐻𝑆(𝑦4) = {
𝑢1

1𝑒𝑖0.9𝜋 ,
𝑢2

1𝑒𝑖2𝜋 ,
𝑢3

𝑎𝑒𝑖0.2𝜋 ,
𝑢4

1𝑒𝑖1.5𝜋 ,
𝑢5

1𝑒𝑖𝜋},        

here, 𝑎 = [0, 1]. 

Definition 3.2. Let 𝑈  be universe of discourse and 𝐴𝐶𝑆𝐻𝑆  is the complex shadow set defined as 

𝐴𝐶𝑆𝐻𝑆: 𝑈 → {0𝑒𝑖[0,2𝜋], [0,1]𝑒𝑖[0,2𝜋], 1𝑒𝑖[0,2𝜋]} . The complement of 𝐴𝐶𝑆𝐻𝑆  is defined as follows: 

𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ = {(𝑥, 𝜇𝐴̅(𝑥)): 𝑥 ∈ 𝑈}, where 
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𝜇𝐴𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥) = 𝑟𝐴𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)𝑒
𝑖𝜔𝐴𝐶𝑆𝐻𝑆

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)
         

= [1 − 𝑟𝐴𝐶𝑆𝐻𝑆
(𝑥)]𝑒𝑖2𝜋−𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥)
          

= [1 − 𝑟𝐴𝐶𝑆𝐻𝑆
(𝑥)]𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥)
,         (2) 

and then Table 1 represents the complement CSHSs. 

Table 1. Complement CSHSs. 

𝐴𝐶𝑆𝐻𝑆 0𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥) [0,1]𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥) 1𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥) 

𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅  1𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥) [0,1]𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆  0𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆  

Note that [0,1]𝑒𝑖[0,2𝜋] belongs to both sets at the same time which implies that 𝑥 ∈ 𝐴𝐶𝑆𝐻𝑆  ⇎

𝑥 ∉ 𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅ for any CSHSs 𝐴𝐶𝑆𝐻𝑆. 

Definition 3.3. Let 𝐴𝐶𝑆𝐻𝑆 and 𝐵𝐶𝑆𝐻𝑆 be two CSHSs defined with memberships 𝐴𝐶𝑆𝐻𝑆(𝑥) and 

𝐵𝐶𝑆𝐻𝑆(𝑥) as subsets of the set {0𝑒𝑖[0,2𝜋], [0,1]𝑒𝑖[0,2𝜋], 1𝑒𝑖[0,2𝜋]}. The union of 𝐴𝐶𝑆𝐻𝑆 and 𝐵𝐶𝑆𝐻𝑆 

is denoted as 𝐴𝐶𝑆𝐻𝑆 ∪ 𝐵𝐶𝑆𝐻𝑆 and is defined as follows: 

𝐴𝐶𝑆𝐻𝑆 ∪ 𝐵𝐶𝑆𝐻𝑆(𝑥) = max {𝑟𝐴𝐶𝑆𝐻𝑆
(𝑥), 𝑟𝐵𝐶𝑆𝐻𝑆

(𝑥)}𝑒
𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)}

, (3) 

and Table 2 represents the union of two CSHSs. 

Table 2. Union of two CSHSs (𝐴𝐶𝑆𝐻𝑆 ∪ 𝐵𝐶𝑆𝐻𝑆). 

𝐵𝐶𝑆𝐻𝑆 

𝐴𝐶𝑆𝐻𝑆 
0𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)
 [0,1]𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)
 1𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)
 

0𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

 0𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)}
 [0, 1]𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)}

 1𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)}
 

[0,1]𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

 [0, 1]𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)}
 [0, 1]𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)}

 1𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)}
 

1𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

 1𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)}
 1𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)}

 1𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)}
 

Definition 3.4. Let 𝐴𝐶𝑆𝐻𝑆  and 𝐵𝐶𝑆𝐻𝑆  be two CSHSs defined with memberships 𝐴𝐶𝑆𝐻𝑆(𝑥)  and 

𝐵𝐶𝑆𝐻𝑆(𝑥) as subsets of the set {0𝑒𝑖[0,2𝜋], [0,1]𝑒𝑖[0,2𝜋], 1𝑒𝑖[0,2𝜋]}. The intersection of 𝐴𝐶𝑆𝐻𝑆 and 𝐵𝐶𝑆𝐻𝑆 

is denoted as 𝐴𝐶𝑆𝐻𝑆  ∩  𝐵𝐶𝑆𝐻𝑆 and the membership defined as follows: 

𝐴𝐶𝑆𝐻𝑆  ∩  𝐵𝐶𝑆𝐻𝑆(𝑥) = min {𝑟𝐴𝐶𝑆𝐻𝑆
(𝑥), 𝑟𝐵𝐶𝑆𝐻𝑆

(𝑥)}𝑒𝑖𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)},  (4) 
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and then Table 3 represents the union of two complex shadowed sets. 

Table 3. Intersection of two complex shadowed sets (𝐴𝐶𝑆𝐻𝑆  ∩  𝐵𝐶𝑆𝐻𝑆). 

𝐵𝐶𝑆𝐻𝑆 

𝐴𝐶𝑆𝐻𝑆 
0𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥) [0,1]𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥) 1𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥) 

0𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥) 0𝑒𝑖𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)} 0𝑒𝑖𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)} 0𝑒𝑖𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)} 

[0,1]𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥) 0𝑒𝑖𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)} [0, 1]𝑒𝑖𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)} [0,1]𝑒𝑖𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)} 

1𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥) 0𝑒𝑖𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)} [0,1]𝑒𝑖𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)} 1𝑒𝑖𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)} 

Proposition 3.1. Let 𝐴𝐶𝑆𝐻𝑆  be a CSHS defined as 𝐴𝐶𝑆𝐻𝑆: 𝑈 → {0𝑒𝑖[0,2𝜋], [0,1]𝑒𝑖[0,2𝜋], 1𝑒𝑖[0,2𝜋]} . 

Then, the following property holds 𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ = 𝐴𝐶𝑆𝐻𝑆. 

Proof. Table 4 shows how we prove 𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ = 𝐴𝐶𝑆𝐻𝑆 by using Definition 3.2. 

Table 4. The proof of the property 𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ = 𝐴𝐶𝑆𝐻𝑆. 

𝐴𝐶𝑆𝐻𝑆 0𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

 [0,1]𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

 1𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

 

𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅  1𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥)
 [0,1]𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥)
 0𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥)
 

𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅  0𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥)
 [0,1]𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥)
 1𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥)
 

Clearly, the third row is equal to the first row in Table 4 that proved the property 𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ = 𝐴𝐶𝑆𝐻𝑆. 

Proposition 3.2. Let 𝐴𝐶𝑆𝐻𝑆, 𝐵𝐶𝑆𝐻𝑆, and 𝐶𝐶𝑆𝐻𝑆 be three CSHSs defined as 𝐴𝐶𝑆𝐻𝑆, 𝐵𝐶𝑆𝐻𝑆 and 𝐶𝐶𝑆𝐻𝑆 ∶

𝑈 → {0, [0,1]𝑒𝑖[0,2𝜋], 1}. Then, the following property holds 

a. 𝐴𝐶𝑆𝐻𝑆 ∪ 𝐵𝐶𝑆𝐻𝑆 = 𝐵𝐶𝑆𝐻𝑆 ∪ 𝐴𝐶𝑆𝐻𝑆. 

b. 𝐴𝐶𝑆𝐻𝑆 ∩ 𝐵𝐶𝑆𝐻𝑆 = 𝐵𝐶𝑆𝐻𝑆 ∩ 𝐴𝐶𝑆𝐻𝑆. 

c. 𝐴𝐶𝑆𝐻𝑆 ∪ (𝐵𝐶𝑆𝐻𝑆 ∩ 𝐶𝐶𝑆𝐻𝑆) = (𝐴𝐶𝑆𝐻𝑆 ∪ 𝐵𝐶𝑆𝐻𝑆) ∩ (𝐴𝐶𝑆𝐻𝑆 ∪ 𝐶𝐶𝑆𝐻𝑆). 

d. 𝐴𝐶𝑆𝐻𝑆 ∩ (𝐵𝐶𝑆𝐻𝑆 ∪ 𝐶𝐶𝑆𝐻𝑆) = (𝐴𝐶𝑆𝐻𝑆 ∩ 𝐵𝐶𝑆𝐻𝑆) ∪ (𝐴𝐶𝑆𝐻𝑆 ∩ 𝐶𝐶𝑆𝐻𝑆). 

Proof. For part (a), we prove it by using Definition 3.3 as follows (Table 5): 
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Table 5. The prof of the property 𝐴𝐶𝑆𝐻𝑆 ∪ 𝐵𝐶𝑆𝐻𝑆 = 𝐵𝐶𝑆𝐻𝑆 ∪ 𝐴𝐶𝑆𝐻𝑆. 

𝐴𝐶𝑆𝐻𝑆 𝐵𝐶𝑆𝐻𝑆 𝐴𝐶𝑆𝐻𝑆 ∪ 𝐵𝐶𝑆𝐻𝑆 𝐵𝐶𝑆𝐻𝑆 ∪ 𝐴𝐶𝑆𝐻𝑆 

0𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

 0𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)

 0𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} 0𝑒𝑖𝑚𝑎𝑥{𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥)} 

[0,1]𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥) 0𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)
 [0,1]𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)} [0,1]𝑒𝑖𝑚𝑎𝑥{𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)} 

1𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥) 0𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)
 1𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)} 1𝑒𝑖𝑚𝑎𝑥{𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)} 

0𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

 [0,1]𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)

 [0,1]𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} [0,1]𝑒𝑖𝑚𝑎𝑥{𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥)} 

[0,1]𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

 [0,1]𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)

 [0,1]𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} [0,1]𝑒𝑖𝑚𝑎𝑥{𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥)} 

1𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

 [0,1]𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)

 1𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} 1𝑒𝑖𝑚𝑎𝑥{𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥)} 

0𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

 1𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)

 1𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} 1𝑒𝑖𝑚𝑎𝑥{𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥)} 

[0,1]𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

 1𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)

 1𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} 1𝑒𝑖𝑚𝑎𝑥{𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥)} 

1𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

 1𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)

 1𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} 1𝑒𝑖𝑚𝑎𝑥{𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥)} 

Clearly, the third column is equal to the fourth column in Table 5 containing all cases of CSH 

values that proved the property 𝐴𝐶𝑆𝐻𝑆 ∪ 𝐵𝐶𝑆𝐻𝑆 = 𝐵𝐶𝑆𝐻𝑆 ∪ 𝐴𝐶𝑆𝐻𝑆. 

For part (b), the proof is similarly to part (a) using Definition 3.4 instead of Definition 3.3. 

For parts (c) and (d), the proof is straightforward by using Definition 3.3 and Definition 3.4. 

Proposition 3.3. Let 𝐴𝐶𝑆𝐻𝑆  and 𝐵𝐶𝑆𝐻𝑆  be two complex fuzzy shadow sets defined as 

𝐴𝐶𝑆𝐻𝑆,  𝐵𝐶𝑆𝐻𝑆: 𝑈 → {0𝑒𝑖[0,2𝜋], [0,1]𝑒𝑖[0,2𝜋], 1𝑒𝑖[0,2𝜋]}. Then the following Demorgan’s lows properties 

hold: 

a. 𝐴𝐶𝑆𝐻𝑆 ∪ 𝐵𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐵𝐶𝑆𝐻𝑆

̅̅ ̅̅ ̅̅ ̅ ∩ 𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ , 

b. 𝐴𝐶𝑆𝐻𝑆 ∩ 𝐵𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐴𝐶𝑆𝐻𝑆

̅̅ ̅̅ ̅̅ ̅̅ ∪ 𝐵𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅. 

Proof. For part (a), the Tables 6 and 7 containing all cases of values cover the proof of property 

𝐴𝐶𝑆𝐻𝑆 ∪ 𝐵𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐵𝐶𝑆𝐻𝑆

̅̅ ̅̅ ̅̅ ̅ ∩ 𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ . 

Clearly, the third column in Table 6 is equal to the third column in Table 7 containing all cases of 

CSH values that proved the property 𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅ = 𝐴̅ ∩ 𝐵̅, where the phase term contains 

2𝜋 − 𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥), 𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)}          

= 𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥), 𝜔𝐵𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)}           

= 𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥), 𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} (by using Definition 3.2).   (5) 
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Table 6. The proof of the property 𝐴𝐶𝑆𝐻𝑆 ∪ 𝐵𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐵𝐶𝑆𝐻𝑆

̅̅ ̅̅ ̅̅ ̅ ∩ 𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ . 

𝐴𝐶𝑆𝐻𝑆 𝐵𝐶𝑆𝐻𝑆 𝐴𝐶𝑆𝐻𝑆 ∪ 𝐵𝐶𝑆𝐻𝑆 𝐴𝐶𝑆𝐻𝑆 ∪ 𝐵𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

0𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

 0𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)

 0𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} 1𝑒𝑖2𝜋−𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} 

[0,1]𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥) 0𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)
 [0,1]𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)} [0,1]𝑒𝑖2𝜋−𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)} 

1𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥) 0𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)
 1𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)} 0𝑒𝑖2𝜋−𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆

(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)} 

0𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

 [0,1]𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)

 [0,1]𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} [0,1]𝑒𝑖2𝜋−𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} 

[0,1]𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

 [0,1]𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)

 [0,1]𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} [0,1]𝑒𝑖2𝜋−𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} 

1𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

 [0,1]𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)

 1𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} 0𝑒𝑖2𝜋−𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} 

0𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

 1𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)

 1𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} 0𝑒𝑖2𝜋−𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} 

[0,1]𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

 1𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)

 1𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} 0𝑒𝑖2𝜋−𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} 

1𝑒𝑖𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥)

 1𝑒𝑖𝜔𝐵𝐶𝑆𝐻𝑆
(𝑥)

 1𝑒𝑖𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} 0𝑒𝑖2𝜋−𝑚𝑎𝑥{𝜔𝐴𝐶𝑆𝐻𝑆
(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆

(𝑥)} 

Table 7. The proof of the property 𝐴𝐶𝑆𝐻𝑆 ∪ 𝐵𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐵𝐶𝑆𝐻𝑆

̅̅ ̅̅ ̅̅ ̅ ∩ 𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ . 

𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅  𝐵𝐶𝑆𝐻𝑆

̅̅ ̅̅ ̅̅ ̅ 𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝐵𝐶𝑆𝐻𝑆

̅̅ ̅̅ ̅̅ ̅ 

1𝑒
𝑖𝜔𝐴𝐶𝑆𝐻𝑆

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)
 1𝑒

𝑖𝜔𝐵𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)
 1𝑒

𝑖𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)}

 

[0,1]𝑒
𝑖𝜔𝐴𝐶𝑆𝐻𝑆

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)
 1𝑒

𝑖𝜔𝐵𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)
 [0,1]𝑒

𝑖𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)}

 

0𝑒
𝑖𝜔𝐴𝐶𝑆𝐻𝑆

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)
 1𝑒

𝑖𝜔𝐵𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)
 0𝑒

𝑖𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)}

 

1𝑒
𝑖𝜔𝐴𝐶𝑆𝐻𝑆

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)
 [0,1]𝑒

𝑖𝜔𝐵𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)
 [0,1]𝑒

𝑖𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)}

 

[0,1]𝑒
𝑖𝜔𝐴𝐶𝑆𝐻𝑆

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)
 [0,1]𝑒

𝑖𝜔𝐵𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)
 [0,1]𝑒

𝑖𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)}

 

0𝑒
𝑖𝜔𝐴𝐶𝑆𝐻𝑆

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)
 [0,1]𝑒

𝑖𝜔𝐵𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)
 0𝑒

𝑖𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)}

 

1𝑒
𝑖𝜔𝐴𝐶𝑆𝐻𝑆

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)
 0𝑒

𝑖𝜔𝐵𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)
 0𝑒

𝑖𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)}

 

[0,1]𝑒
𝑖𝜔𝐴𝐶𝑆𝐻𝑆

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)
 0𝑒

𝑖𝜔𝐵𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)
 0𝑒

𝑖𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)}

 

0𝑒
𝑖𝜔𝐴𝐶𝑆𝐻𝑆

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)
 0𝑒

𝑖𝜔𝐵𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)
 0𝑒

𝑖𝑚𝑖𝑛{𝜔𝐴𝐶𝑆𝐻𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥),𝜔𝐵𝐶𝑆𝐻𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑥)}
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4. Application 

The data in the following example is recalled from reference [29]. Also, Example 3.1. used the 

same data, where the significance of the phase term in CFS is clear and illustrated. 

The significance of the phase term in CFS is clear and illustrated in Example 3.1. In this section, 

we employ complex fuzzy data (CFD) in Example 3.1. to represent the rate of improvement in 

academic performance and consume time on the improvement of some students's performance during 

the year simultaneously. Then we apply CSHS to approximate their CFD to minimize the calculation 

and process to obtain the most eminent student(s) to be funded to continue their graduate studies. 

Example 4.1. Suppose a university or academic center wants to award scholarships to some 

undergraduate students to continue their graduate studies. After a long analysis of the academic 

performance during the final year of an undergraduate program, we consider five possible candidate 

students listed as 𝑥1:  Mohammed, 𝑥2:  Mona, 𝑥3:  Tariq, 𝑥4:  Azeez, and 𝑥5:  Aless. Analogously, 

they supposed six courses (attributes) denoted by 𝑦1:  Public culture, 𝑦2:  Mathematics, 

𝑦3:  Advanced English, 𝑦4:  Chemistry, 𝑦5:  Management, and 𝑦6:  Physics, to evaluate the rate of 

improvement in academic performance of these students among these courses during the final year of 

an undergraduate program. Now, we may get the decision matrix with CFS as follows in Table 8. 

Table 8. The decision matrix with CFS. 

 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 

𝑥1 0.9𝑒𝑖1.6𝜋 0.3𝑒𝑖0.4𝜋 0.2𝑒𝑖0.8𝜋 0.3𝑒𝑖0.4𝜋 0.1𝑒𝑖0.2𝜋 0.2𝑒𝑖0.5𝜋 

𝑥2 0.91𝑒𝑖1.8𝜋 0.2𝑒𝑖0.4𝜋 0.3𝑒𝑖0.9𝜋 0.1𝑒𝑖1.2𝜋 0.2𝑒𝑖0.6𝜋 0.3𝑒𝑖𝜋 

𝑥3 0.92𝑒𝑖1.8𝜋 0.6𝑒𝑖0.4𝜋 0.1𝑒𝑖𝜋 0.2𝑒𝑖0.5𝜋 0.3𝑒𝑖0.6𝜋 0.8𝑒𝑖1.2𝜋 

𝑥4 0.73𝑒𝑖1.82𝜋 0.5𝑒𝑖0.5𝜋 0.2𝑒𝑖1.1𝜋 0.1𝑒𝑖1.5𝜋 0.1𝑒𝑖𝜋 0.7𝑒𝑖1.5𝜋 

𝑥5 0.74𝑒𝑖1.84𝜋 0.5𝑒𝑖0.6𝜋 0.3𝑒𝑖1.4𝜋 0.6𝑒𝑖0.5𝜋 0.2𝑒𝑖1.2𝜋 0.2𝑒𝑖1.6𝜋 

Now, by letting the threshold values 𝛼𝑟 = 0.4 and 𝛽𝑟 = 0.7, we may get the decision matrix with 

CSHS as follows in Table 9. 

Table 9. The decision matrix with CSHS. 

 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 

𝑥1 1𝑒𝑖1.6𝜋 0𝑒𝑖0.4𝜋 0𝑒𝑖0.8𝜋 0𝑒𝑖0.4𝜋 0𝑒𝑖0.2𝜋 0𝑒𝑖0.5𝜋 

𝑥2 1𝑒𝑖1.8𝜋 0𝑒𝑖0.4𝜋 0𝑒𝑖0.9𝜋 0𝑒𝑖1.2𝜋 0𝑒𝑖0.6𝜋 0𝑒𝑖𝜋 

𝑥3 1𝑒𝑖1.8𝜋 [0, 1]𝑒𝑖0.4𝜋 0𝑒𝑖𝜋 0𝑒𝑖0.5𝜋 0𝑒𝑖0.6𝜋 1𝑒𝑖1.2𝜋 

𝑥4 1𝑒𝑖1.82𝜋 [0, 1]𝑒𝑖0.5𝜋 0𝑒𝑖1.1𝜋 0𝑒𝑖1.5𝜋 0𝑒𝑖𝜋 1𝑒𝑖1.5𝜋 

𝑥5 1𝑒𝑖1.84𝜋 [0, 1]𝑒𝑖0.6𝜋 0𝑒𝑖1.4𝜋 [0,1]𝑒𝑖0.5𝜋 0𝑒𝑖1.2𝜋 0𝑒𝑖1.6𝜋 

The ranking values getting by score 𝑥𝑗, 𝑗 =  1, 2, 3, 4, and 5. 

According to the illustration in Example 3.1, the amplitude term could reflect the rate of 

improvement in academic performance while the phase terms reflect the consumed time on the 
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improvement of student performance during the year. Therefore, if the value of amplitude term is near 

to 1 or near to 0, this means that the student has a maximal or minimal improvement in academic 

performance, respectively. After that, if the value of phase term is near to zero or near to 2π, this means 

improvement happens in academic performance of students at a short or long time, respectively. 

Now, we find the score of each student of 𝑥𝑗 , 𝑗 = 1, 2, 3, 4, and 5 as in Table 10, where 𝑆0 is 

the number of repetitions of (0) in the amplitude terms, 𝑆1 is the number of repetitions of (1) in the 

amplitude terms, and S[0,1] is the number of repetitions of ([0, 1]) in the amplitude terms. So, according 

to Table 10, student 𝑥1 and 𝑥2 have the highest rejection scores, whereas the student 𝑥5 has the 

highest waiting scores and 𝑥3 and 𝑥4 have the highest acceptance score. 

Table 10. Score 𝑥𝑗. 

 𝑆1 𝑆[0,1] 𝑆0 

𝑥1 1 0 5 

𝑥2 1 0 5 

𝑥3 2 1 3 

𝑥4 2 1 3 

𝑥5 1 2 3 

Additionally, the student 𝑥3  and 𝑥4  have the highest acceptance scores. The average phase 

values of 𝑆1 for the student 𝑥3 is equal to 1.5π, which is less than the average phase values of 𝑆0 

for the student 𝑥4  which is equal 1.66π. Since the average phase term of 𝑆1  for the student 𝑥3 

“which is equal 1.5π” is near to 0π, this means improvement happens in academic performance of the 

student who needed a shorter time. Therefore, the most accepted student will be student 𝑥3: Tariq. 

Also, the student 𝑥1 and 𝑥2 have the highest rejection scores. The average phase values of 𝑆0 

for the student 𝑥1is equal to 0.46π, which is less than the average phase values of 𝑆0 for the student 

𝑥2 which is equal 0.82π. Since the average phase term of 𝑆0 for the student 𝑥2 “which is equal 0.82π” 

is near to 2π, which means improvement happens in academic performance of the student who needed 

a longer time. Therefore, the most rejected student will be student 𝑥2:Mona. 

5. Conclusions 

This research recognized the notion of CSHSs as an exceptional type of threshold approximation 

example to deal with dataset clustering performance employing CFS. CSHS faced the difficulty of 

keeping the full meaning of complex information during the decision making process by presenting a 

phase term into the codomain of membership. The classical SHS codomain extended to 

{0𝑒𝑖2𝜋𝜃, [0, 1]𝑒𝑖𝜃, 1𝑒𝑖𝜃} , which offered three disjoint regions for CSHS. Furthermore, the basic 

mathematical operations of CSHS, such as complement, union, and intersection, were introduced. Also, 

the relation between classical SHS and CSHS was highlighted when we substituted the phase value 

𝜔𝐴(𝑥) by “0” in the structure of CSHS, and then CSHs were reduced to the classical SHS. In addition, 

an application of CSHS in DM processes has been demonstrated, and we highlighted its potential to 

improve the representation of meaningful information from complicated datasets. 
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