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1. Introduction

In the past few decades, more and more diffusion processes have been shown to not satisfy
Fickian laws, such as signal transduction in biological cells, foraging behavior of animals, viscoelastic
and viscoplastic flow, and solute migration in groundwater. However, fractional partial differential
equations (FPDEs) play a very important role in describing anomalous diffusion Ref. [1–3], so in
recent years, FPDEs have attracted extensive attention. In this paper, we study one type of time-
fractional diffusion equation (TFDE), which can be obtained from the standard diffusion equation by
replacing the first-order time derivative with a fractional derivative of order α, 0 < α < 1.

Dα
t u(x, t) = uxx(x, t) + f (x, t), (x, t) ∈ (0, b) × (0,T ],

u(x, 0) = u0(x), x ∈ [0, b],
u(0, t) = 0), u(b, t) = 0, t ∈ [0,T ].

(1.1)
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Where u0(x) is a smooth function and Dα
t u(x, t) is the Caputo fractional derivative defined by

Definition 2.1.

The exact solutions of most fractional differential equations are difficult to obtain analytically, and
even if they can be obtained, most of them contain special functions that are difficult to calculate.
In recent years, many numerical methods have been proposed. For example, Ref. [4,5] used finite
difference to solve the fractional diffusion equation. Yang et al. [6] used the finite volume method
to solve the nonlinear fractional diffusion equation. Jin et al. studied the finite element method for
solving the homogeneous fractional diffusion equation in [7]. Some scholars have developed meshless
methods [8–11] and spectral methods [12–15] to solve fractional diffusion equations.

The reproducing kernel space and its related theories are the ideal spatial framework for function
approximation [16,17]. The function approximation in this space has uniform convergence, while the
Caputo-type fractional derivative of the approximate function still has uniform convergence. Therefore,
the reproducing kernel space is also the ideal spatial framework for the numerical processing of
Caputo-type fractional derivatives. Numerical solutions to differential equations based on orthogonal
polynomials are commonly used. For example, quartic splines and cubic splines are used, respectively,
to solve numerical solutions of differential equations in Ref. [18–20]. In Ref. [21–23], based on
the idea of wavelet, a multi-scale orthonormal basis is constructed in the reproducing kernel space by
using piecewise polynomials, and ε-approximate solutions of integer-order differential equations are
obtained.

For TFDE, most methods use the finite difference method to deal with time variables. Due to the
non-singularity of fractional differentiation, the difference scheme at the initial time needs to be further
transformed. And the results are not ideal; when the step size reaches 0.001, the error is only 10−5 in
Ref. [10]. So, the main motivation of this paper is to obtain the ε-approximation solution of TFDE.
By constructing a multiscale orthonormal basis in the multiple reproducing kernel space, a numerical
algorithm is designed to obtain the approximate solution of TFDE. In order to avoid the influence of
fractional non-singularity, this paper constructs the orthonormal basis by using Legendre polynomials,
which can be operated by the property of fractional differentiation. In addition, the method in this
paper has a good convergence order.

The paper is organized as follows: In Section 2, the fundamental definitions are provided, and
Legendre polynomials and related spaces are introduced. In Section 3, the ε-approximation solutions
are given. In Section 4, convergence analysis and time complexity are presented for the proposed
method. In Section 5, numerical solutions for several fractional diffusion equations are presented. The
paper concludes by stating the advantages of the method.

2. Caputo fractional derivative and related space

In this section, the Caputo fractional derivative and its properties are introduced. Legendre
polynomials and their associated spaces are also discussed. This knowledge will be used when
constructing the basis.
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2.1. Caputo fractional derivative

Definition 2.1. The Caputo fractional derivative is defined as follows [24]:

Dα
t u(t) =

1
Γ(n − α)

∫ t

0
(t − s)n−α−1u(n)(s)ds, n = [α] + 1, n − 1 < α < n.

For ease of calculation, a property of the Caputo differential needs to be given here.

Property 2.1.

Dα(tγ) =

{ Γ(γ+1)
Γ(γ+1−α) t

γ−α, γ , 0,
0, γ = 0.

(2.1)

Proof. According to the definition of Caputo differentiation, the conclusion can be obtained using
integration by parts. �

2.2. Legendre polynomials and the related spaces

Legendre polynomials are known to be orthogonal on L2[−1, 1]. Since the variables being analyzed
are often defined in different intervals, it is necessary to transform Legendre polynomials on [0, b].
Legendre polynomials defined on [0,b] are shown below

l0(x) = 1, l1(x) = 2x
b − 1,

l j+1(x) =
2 j+1
j+1 ( 2x

b − 1)l j(x) − j
j+1 l j−1(x), j = 1, 2, · · ·

Clearly, {l j(x)}∞j=0 is orthogonal on L2[0, b], and∫ b

x
li(x)l j(x)dx =

{ b
2 j+1 , i = j,
0, i , j.

Let p j(x) =

√
2 j+1

b l j(x), {p j(x)}∞j=0 is an orthonormal basis on L2[0, b].
Consider Eq (1.1); this section gives the following reproducing kernel space. For convenience, the

absolutely continuous function is denoted as AC.

Definition 2.2. W1[0,T ] = {u(t) | u(0) = 0, u is AC, u′ ∈ L2[0,T ]}, and

〈u, v〉W1 =

∫ T

0
u′v′dt, u, v ∈ W1[0,T ].

If b = T and T j(t) = p j(t), note that T j(t) =
j∑

k=0
cktk. Let

J0T j(t) =

∫ t

0
T j(τ)dτ =

j∑
k=0

ck
tk+1

k + 1
.

Theorem 2.1. {J0T j(t)}∞j=0 is an orthonormal basis on W1[0,T ].
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Definition 2.3. W2[0, b] = {u(x) | u(0) = u(b) = 0, u is AC, u′′ ∈ L2[0, b]}, and

〈u, v〉W2 =

∫ b

0
u′′v′′dx, u, v ∈ W2[0, b].

Similarly, denote p j(x) =
j∑

k=0
dkxk. Integrating p j(x) twice yields J2

0 p j(x), if J2
0 p j(x) ∈ W2[0, b], then

J2
0 p j(x) =

j∑
k=0

dk
xk+2 − bk+1x

(k + 1)(k + 2)
.

Obviously, {J2
0 p j(x)}∞j=0 is an orthonormal basis on W2[0, b].

2.3. Introduction of W(Ω)

Put Ω = [0, b] × [0,T ], and let’s define the space W(Ω).

Definition 2.4. W(Ω) = {u(x, t) | u(x, 0) = 0, u(0, t) = u(b, t) = 0, ∂u
∂x is continuous f unctions, ∂3u

∂t∂x2 ∈

L2(Ω)}.

Clearly, W(Ω) is an inner product space, and

〈u, v〉W(Ω) =

"
Ω

∂3u
∂t∂x2

∂3v
∂t∂x2 dσ, u, v ∈ W(Ω).

Theorem 2.2. If u(x, t), v(x, t) ∈ W(Ω), and v(x, t) = v1(x)v2(t), then

〈u, v〉W(Ω) = 〈〈u, v2〉W1 , v1〉W2 = 〈〈u, v1〉W2 , v2〉W1 .

Proof. Clearly,

〈u, v〉W(Ω) =

"
Ω

∂3u
∂t∂x2

∂3v
∂t∂x2 dσ

=

"
Ω

∂

∂t
(
∂2u
∂x2 )

∂v2

∂t
∂2v1

∂x2 dσ

=

∫ b

0

∂2

∂x2 (〈u, v2〉W1)
∂2v1

∂x2 dx

= 〈〈u, v2〉W1 , v1〉W2 .

Similarly, 〈u, v〉W(Ω) = 〈〈u, v1〉W2 , v2〉W1 . �

Note
φi j(x, t) = J2

0 pi(x)J0T j(t), i, j = 0, 1, 2, · · · .

Theorem 2.3. {φi j(x, t)}∞i, j=0 is an orthonormal basis on W(Ω).

Proof. First of all, orthogonality. For ∀φi j(x, t), φmn(x, t) ∈ W(Ω), according to Theorem 2.2,

〈φi j(x, t), φmn(x, t)〉W(Ω) = 〈J2
0 pi(x), J2

0 pm(x)〉W2〈J0T j(t), J0T j(t)〉W1

=

{
1, i = m, j = n,
0, others.
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Second, completeness. ∀u ∈ W(Ω), if 〈u, φi j〉W(Ω) = 0 means u ≡ 0. In fact, by Theorem 2.4,

〈u, φi j〉W(Ω) = 〈u, J2
0 pi(x)J0T j(t)〉W(Ω)

= 〈〈u, J2
0 pi(x)〉W2 , J0T j(t)〉W1 = 〈〈u, J0T j(t)〉W1 , J

2
0 pi(x)〉W2 = 0.

Since {J2
0 pi(x)}∞i=0 and {J0T j(t)}∞j=0 are complete systems of W2[0, b] and W1[0,T ], respectively,

〈u, J2
0 pi(x)〉W2 = 0 and 〈u, J0T j(t)〉W1 = 0. So u ≡ 0. �

3. Numerical algorithms

Let L : W(Ω)→ L2(Ω),
Lu = Dα

t u − uxx.

Then Eq (1.1) is
Lu = f . (3.1)

Theorem 3.1. Operator L is a bounded and linear operator.

Proof. Clearly, L is linear, and one only needs to prove boundedness. According to Cauchy Schwartz’s
inequality, we derive that

‖Lu‖L2 ≤ ‖Dα
t u‖L2 + ‖uxx‖L2 .

Put K(x, t, y, s) = r(x, y)q(t, s) be the RK function in W(Ω), then

|uxx| = |
〈
u(x, t),

∂2K
∂x2

〉
W(Ω)| = |〈u(x, t),

∂2r(x, y)
∂x2 q(t, s)〉W(Ω)|

≤ ‖
∂2r(x, y)
∂x2 q(t, s)‖W(Ω)‖u‖W(Ω).

(3.2)

Similarly

|ut| ≤ ‖
∂q(t, s)
∂t

r(x, y)‖W(Ω)‖u‖W(Ω). (3.3)

By Eq (3.2), there exists positive constants M1 such that

‖uxx‖
2
L2 =

"
Ω

(uxx)2dσ ≤ ‖
∂2r(x, y)
∂x2 q(t, s)‖2W(Ω)S Ω‖u‖2W(Ω) = M1‖u‖2W(Ω), (3.4)

where M1 = ‖
∂2r(x,y)
∂x2 q(t, s)‖2W(Ω)S Ω, S Ω represents the area of the region Ω.

By Eq (3.3), there exist positive constants M2,M3, such that

|Dα
t u| =

∣∣∣ 1
Γ(1 − α)

∫ t

0
(t − s)−αut(x, s)ds

∣∣∣ ≤ 1
Γ(1 − α)

∫ t

0
(t − s)−α

∣∣∣ut(x, s)
∣∣∣ds

≤
1

Γ(1 − α)

∫ t

0
(t − s)−α

∥∥∥∂q(t, s)
∂t

r(x, y)
∥∥∥

W(Ω)
‖u‖W(Ω)ds

≤
‖u‖W(Ω)

Γ(1 − α)

∥∥∥∂q(t, s)
∂t

r(x, y)
∥∥∥

W(Ω)

∫ t

0
(t − s)−αds

≤
t1−α

Γ(2 − α)

∥∥∥∂q(t, s)
∂t

r(x, y)
∥∥∥

W(Ω)
‖u‖W(Ω) = M2‖u‖W(Ω),

and
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‖Dα
t u‖2L2 =

"
Ω

(Dα
t u)2dσ ≤ M2

2S Ω‖u‖2W(Ω) = M3‖u‖2W(Ω). (3.5)

From Eqs (3.4) and (3.5), we can get

‖Lu‖L2 ≤ M‖u‖W(Ω),

where M =
√

M1 +
√

M3. �

Definition 3.1. uε is named the ε-approximate solution for Eq (3.1), ∀ε > 0, if

‖Luε − f ‖2L2 < ε
2.

Ref. [21–22] proved the existence of ε−approximate solutions to boundary value problems of linear
ordinary differential equations. Using the same method, we can prove that the ε-approximate solution
of Eq (3.1) exists.

Theorem 3.2. ∀ ε > 0, ∃ N1,N2 > 0, when n1 > N1, n2 > N2,

uεn1n2
(x, t) =

n1∑
i=0

n2∑
j=0

c∗i jφi j(x, t)

is the ε-approximate solution of Eq (3.1), where c∗i j satisfies

‖

n1∑
i=0

n2∑
j=0

c∗i jLφi j(x, t) − f (x, t)‖2L2 = min
ci j
‖

n1∑
i=0

n2∑
j=0

ci jLφi j(x, t) − f (x, t)‖2L2 .

Proof. Let u(x, t) be the solution of Eq (3.1),

u(x, t) =

∞∑
i=0

∞∑
j=0

ci jφi j(x, t),

where ci j = 〈u, φi j〉W(Ω), and un1n2(x, t) =
∑n1

i=0

∑n2
j=0 ci jφi j(x, t).

Because L is a bounded operator, ∀ ε > 0, ∃ N1,N2 > 0, when n1 > N1, n2 > N2,

‖u − un1n2‖
2
W(Ω) = ‖

∞∑
i=n1+1

∞∑
j=n2+1

ci jφi j(x, t)‖2W(Ω) ≤
ε

‖L‖2
,

so

‖Luεn1n2
− f ‖2L2 = ‖

n1∑
i=0

n2∑
j=0

c∗i jLφi j − f ‖2L2 = min
di j
‖

n1∑
i=0

n2∑
j=0

di jLφi j − f ‖2L2

≤ ‖

n1∑
i=0

n2∑
j=0

ci jLφi j − f ‖2L2 ≤ ‖Lun1n2 − Lu‖2L2

≤ ‖L‖2‖un1n2 − u‖2L2 ≤ ε.

�
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From Theorem 3.2, note

J(c00, c01, c02, · · · , cN1N2) = ‖

n1∑
i=0

n2∑
j=0

ci jLφi j(x, t) − f (x, t)‖2L2 ,

J is a quadratic form about c = (ci j)
n1,n2
i, j=0, and c∗ = (c∗i j)

n1,n2
i, j=0 is the minimum value of J. To find c∗, just

need ∂J
∂ci j

= 0. That is

∂J
∂ci j

= 2
n1∑
i=0

n2∑
k=0

cik〈Lφi j, Lφkl〉L2 − 2ci j〈Lφi j, f 〉L2 ,

so
n1∑
i=0

n2∑
k=0

cik〈Lφi j, Lφkl〉L2 = 〈Lφi j, f 〉L2 . (3.6)

Put N = (n1 + 1) × (n2 + 1), and the N-order matrix A and the N-order vector b,

A =
(
〈Lφi j, Lφkl〉L2

)
N×N

,

b =
(
〈Lφi j, f 〉L2

)
N
,

so Eq (3.6) is
Ac = b. (3.7)

From Property 2.1,

Lφi j = Dα
t φi j −

∂2φi j

∂x2 = J2
0 pi(x)Dα

t J0T j(t) − pi(x)J0T j(t)

= J2
0 pi(x)

j∑
k=0

ck

k + 1
Γ(k + 2)tk+1−α

Γ(k + 2 − α)
− pi(x)J0T j(t).

From Ref. [21], if L is reversible, then Eq (3.7) exists and is unique.

4. Convergence analysis and complexity analysis

4.1. Convergence analysis

Let u(x, t) be the exact solution to Eq (3.1), and

u(x, t) =

∞∑
i=0

∞∑
j=0

ci jφi j(x, t).

Fourier truncation of u(x, t) is uN1,N2(x, t), and

uN1N2(x, t) =

N1∑
i=0

N2∑
j=0

ci jφi j(x, t).

In Ref. [25], if u(m)(x) ∈ L2[0, b] , then

‖u − un‖L2 ≤ Cn−m

 m∑
k=min{m,n+1}

‖u(k)‖2L2


1
2

. (4.1)
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Theorem 4.1. Assume ∂m+nu(x,t)
∂tm∂xn ∈ L2(Ω), then

‖u(x, t) − uN1(x, t)‖W(Ω) ≤ C1N−m
1 , ‖u(x, t) − uN2(x, t)‖W(Ω) ≤ C2N−n

2 ,

where C1,C2 are constants.

Proof. Recalling the definition of W(Ω), we get

‖u(x, t) − uN1(x, t)‖2W(Ω) =

"
Ω

∂3(u − uN1)
∂t∂x2

∂3(u − uN1)
∂t∂x2 dxdt

=

∫ b

0

∫ T

0

∂

∂t
(
∂2(u − uN1)

∂x2 )
∂

∂t
(
∂2(u − uN1)

∂x2 )dtdx

=

∫ b

0
‖
∂2u
∂x2 −

∂2uN1

∂x2 ‖
2
W1

dx.

According to Eq (4.1), it follows that∥∥∥∥∥∥∂2u
∂x2 −

∂2uN1

∂x2

∥∥∥∥∥∥
W1

=

∥∥∥∥∥∥ ∂3u
∂x2∂t

−
∂3uN1

∂x2∂t

∥∥∥∥∥∥
L2[0,T ]

≤ C(x)N−m
1

 m∑
k=min{m,N1+1}

‖u(k+1)
xx ‖

2
L2[0,T ]


1/2

,

so

‖u(x, t) − uN1(x, t)‖2W(Ω) ≤

∫ b

0
C2(x)N−2m

1

 m∑
k=min{m,N−1+1}

‖u(k+1)
xx ‖

2
L2[0,T ]

 dx

≤ N−2m
1

∫ b

0
C2(x)

 m∑
k=min{m,N1+1}

‖u(k+1)
xx ‖

2
L2[0,T ]

 dx ≤ C0N−2m
1 ,

where C0 =
∫ b

a
C2(x)

(
m∑

k=min{m,N1+1}
‖u(k+1)

xx ‖
2
L2[0,T ]

)
dx. Assume C1 =

√
C0; that is

‖u(x, t) − uN1(x, t)‖W1 ≤ C1N−m
1 .

Similarly,
‖u(x, t) − uN2(x, t)‖W(Ω) ≤ C2N−n

2 .

�

Theorem 4.2. Assume ∂m+nw(x,t)
∂tm∂xn ∈ L2(Ω), uεN1N2

(x, t) is the approximate solution of Eq (3.1), then

‖u(x, t) − uεN1N2
(x, t)‖W(Ω) ≤ CN−γ,

where C = 2M2 max{C1,C2} , N = min{N1,N2}, and γ = min{m, n}.

Proof. We know

‖u(x, t) − uεN1,N2
(x, t)‖W(Ω) = ‖L−1‖‖L‖‖u(x, t) − uN1,N2(x, t)‖W(Ω)

≤ M2

∥∥∥∥∥∥∥
N1∑
i=0

∞∑
j=N1+1

ci jφi j(x, t) +

∞∑
i=N1+1

∞∑
j=0

ci jφi j(x, t)

∥∥∥∥∥∥∥
W(Ω)

= M2

 N1∑
i=0

∞∑
j=N1+1

c2
i j +

∞∑
i=N1+1

∞∑
j=0

c2
i j

 ,
AIMS Mathematics Volume 9, Issue 6, 16773–16789.
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where M2 = ‖L−1‖‖L‖. Moreover,

‖u(x, t) − uN1(x, t)‖W(Ω) =

∥∥∥∥∥∥∥
∞∑

i=0

∞∑
j=0

ci jφi j(x, t) −
N1∑
i=0

∞∑
j=0

ci jφi j(x, t)

∥∥∥∥∥∥∥
W(Ω)

=

∥∥∥∥∥∥∥
∞∑

i=N1+1

∞∑
j=0

ci jφi j(x, t)

∥∥∥∥∥∥∥
W(Ω)

=

∞∑
i=N1+1

∞∑
j=0

c2
i j.

‖u(x, t) − uN2(x, t)‖W(Ω) =

∥∥∥∥∥∥∥
∞∑

i=0

∞∑
j=0

ci jφi j(x, t) −
∞∑

i=0

N2∑
j=0

ci jφi j(x, t)

∥∥∥∥∥∥∥
W(Ω)

=

∥∥∥∥∥∥∥
∞∑

i=0

∞∑
j=N2+1

ci jφi j(x, t)

∥∥∥∥∥∥∥
W(Ω)

=

∞∑
i=0

∞∑
j=N2+1

c2
i j.

So

‖u(x, t) − uεN1,N2
(x, t)‖W(Ω) ≤ M2

 N1∑
i=0

∞∑
j=N1+1

c2
i j +

∞∑
i=N1+1

∞∑
j=0

c2
i j


≤ M2

 ∞∑
i=0

∞∑
j=N1+1

c2
i j +

∞∑
i=N1+1

∞∑
j=0

c2
i j


= M2(‖u(x, t) − uN2(x, t)‖W(Ω) + ‖u(x, t) − uN1(x, t)‖W(Ω))
≤ M2(C1N−m

1 + C2N−n
2 )

≤ CNγ.

�

So, the proposed method is γ-order convergence, and the convergence rate depends on N.

4.2. Complexity analysis

The proposal of an algorithm requires not only a reliable theory but also the feasibility of
calculation. The huge calculation process is costly. Next, the time complexity of the algorithm will be
analyzed.

According to the analysis in Section 3, the complexity of the algorithm depends on Eqs (3.6)
and (3.7). Next, the algorithm can be illustrated in four steps, as follows:

(1) A of Eq (3.7). We know A =
(
〈Lφi j, Lφkl〉L2

)
N×N

, and

〈Lφi j, Lφkl〉L2 =

∫ 1

0
J2

0 pi(x)J2
0 pk(x)dx

∫ 1

0
J0T j(t)J0Tl(t)dt.

Set the number of multiplications required to compute 〈Lφi j, Lφkl〉L2 as C1, where C1 is constant.
Clearly, the computing time needed for A is Num1 = C1N2.

(2) b of Eq (3.7). We know b =
(
〈Lφi j, f 〉L2

)
N×N

, and

〈Lφi j, f 〉L2 =

∫ 1

0

∫ 1

0
J2

0 pi(x)J0T j(t)dtdx.
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Set the number of multiplications required to compute 〈Lφi j, f 〉L2 as C2, where C1 is constant. Clearly,
the computing time needed for b is Num2 = C2N.

(3) We use the Gaussian elimination method to solve Eq (3.7). From my mathematical knowledge,
Gaussian elimination requires operations

Num3 =
N(N + 1)(2N + 1))

6
.

(4) To the ε−approximation solution uεN(x, t), the number of computations is N.
In summary, the multiplication times of this algorithm in the execution process are

Num = Num1 + Num2 + Num3 + N = O(N3).

5. Numerical examples

This section discusses three numerical examples to reveal the accuracy of the proposed algorithm.
Compared with Ref. [26–29], the results demonstrate that our method is remarkably effective. All the
results are calculated using the mathematical software Mathematica 13.0.

In this paper, N = N1 × N2 is the number of bases, and eN(x) = |u(x) − uN(x)| is the absolute error.
MEN denotes the maximum absolute error when the number of bases is N. The convergence order can
be calculated as follows:

C.R. = Log N
M

max |eM |

max |eN |
.

Example 5.1. Consider the test problem suggested in [26,27]
Dα

t u(x, t) = uxx(x, t) + f (x, t), (x, t) ∈ (0, 1) × (0, 1],
u(x, 0) = 0, x ∈ (0, 1),
u(0, t) = 0, u(1, t) = 0,

where f (x) =
3
√
π

4Γ(2.5−α) x4(x− 1)t1.5−α − (20x3 − 12x2)t1.5, and the analytical solution is given by u(x, t) =

x4(x − 1)t1.5. The numerical results are shown in Tables 1 and 2. Table 1 shows that when α is 0.5
or 0.8, respectively, our results are better than those in Ref. [26,27]. Meanwhile, we also show the
results when α = 0.01 and α = 0.99 in Table 1 and find that the results are not much different from
those when a=0.5 and a=0.8, demonstrating the robustness of our method. Table 2 indicates that the
absolute error gets better as the number of bases increases. Figures 1 and 2 shows the absolute errors
when α = 0.01 and α = 0.99, respectively. Figures 3 and 4 show the absolute errors at different times
when α = 0.01 and α = 0.99.

Table 1. The absolute error of Example 5.1.

α(t) MEN in [26] MEN in [27] ME36 ME64

0.5 8.82 × 10−4 1.99 × 10−4 1.41 × 10−5 4.18 × 10−6

0.8 8.50 × 10−4 1.87 × 10−4 7.16 × 10−6 4.61 × 10−6

0.01 1.43 × 10−5 4.09 × 10−6

0.99 2.95 × 10−5 6.03 × 10−6
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Table 2. C.R. of Example 5.1.

n α = 0.5 C.R. α = 0.8 C.R.
9 8.08 × 10−3 7.75 × 10−3

16 6.07 × 10−4 4.50 6.12 × 10−5 8.41
25 2.75 × 10−5 6.93 2.76 × 10−5 1.78
36 1.41 × 10−5 1.83 1.41 × 10−5 1.84
49 8.10 × 10−6 1.80 8.04 × 10−6 1.82
64 4.18 × 10−6 2.48 4.61 × 10−6 2.08

Figure 1. Example 5.1, N = 64, α = 0.01.

Figure 2. Example 5.1, N = 64, α = 0.99.

Figure 3. Example 5.1, N = 64, α = 0.01, t.
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Figure 4. Example 5.1, N = 64, α = 0.99, t.

Example 5.2. We consider the same FDEs as that in [28]


Dα

t u(x, t) = uxx(x, t) + f (x, t), (x, t) ∈ (0, 1) × (0, 1],
u(x, 0) = 0, x ∈ (0, 1),
u(0, t) = 0, u(1, t) = 0.

With f (x, t) = 2
Γ(3−α) t

2−α sin(2πx) + 4π2t2 sin(2πx), the exact solution of the problem is given by u(x, t) =

t2 sin(2πx). Tables 3–5, respectively, show the comparison of absolute error and convergence order
with Ref. [28] when α is 0.2, 0.5, or 0.8. Obviously, the proposed method is superior to Ref. [28].
N × L denotes the number of bases in Ref.[28].

Table 3. The MEN and C.R. of Example 5.2, α = 0.2, L = 10000.

[28] Our method

N × L ME C.R. N1 × N2 MEN C.R.
25 × L 2.06 × 10−6 4.00 4 × 8 1.95 × 10−5

30 × L 1.00 × 10−6 4.00 4 × 10 3.11 × 10−7 18.54
35 × L 5.39 × 10−7 4.00 4 × 12 2.72 × 10−9 25.99
40 × L 3.15 × 10−7 4.01 4 × 14 3.21 × 10−11 28.79

Table 4. The MEN and C.R. of Example 5.2, α = 0.5, L = 20000.

[28] Our method

N × L ME C.R. N1 × N2 MEN C.R.
25 × L 2.65 × 10−6 4.01 4 × 8 1.95 × 10−5

30 × L 9.96 × 10−7 4.03 4 × 10 3.10 × 10−7 18.56
35 × L 5.35 × 10−7 4.06 4 × 12 3.72 × 10−9 24.25
40 × L 3.11 × 10−7 4.11 4 × 14 1.29 × 10−10 36.74
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Table 5. The MEN and C.R. of Example 5.2, α = 0.8, L = 60000.

[28] Our method

N × L ME C.R. N1 × N2 MEN C.R.
25 × L 2.03 × 10−6 4.13 4 × 8 1.93 × 10−5

30 × L 9.65 × 10−7 4.30 4 × 10 3.08 × 10−7 18.54
35 × L 5.04 × 10−7 4.61 4 × 12 3.08 × 10−9 24.69
40 × L 2.85 × 10−7 5.18 4 × 14 4.80 × 10−10 13.11

Example 5.3. Considering the following problem with f (x, t) =
Γ(4+α)

6 sin(πx) + π2t3+α sin(πx) +

πt3+α cos(πx) [29]: 
Dα

t u(x, t) = uxx(x, t) − ux + f (x, t), (x, t) ∈ (0, 1) × (0, 1],
u(x, 0) = 0, x ∈ (0, 1),
u(0, t) = 0, u(1, t) = 0.

The exact solution of the problem is given by u(x, t) = t3+α sin(πx). Table 6 shows the comparison of
absolute error and convergence order with Ref. [29] when α is 0.1. Obviously, the proposed method
is superior to Ref. [29]. Figures 5–7 show the absolute errors when α = 0.1, α = 0.01 and α = 0.99
respectively.

Table 6. The MEN and C.R. of Example 5.3, α = 0.1.

[29] Our method

N × L ME C.R. N1 × N2 MEN C.R.
20 × 20 1.44 × 10−3 – 3 × 3 1.40 × 10−3 –
40 × 40 3.66 × 10−4 1.98 5 × 5 1.83 × 10−5 4.01
80 × 80 9.15 × 10−5 1.98 7 × 7 2.89 × 10−6 3.09
160 × 160 2.31 × 10−5 1.98 9 × 9 2.83 × 10−7 4.62

Figure 5. Example 5.3,N = 81, α = 0.1.
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Figure 6. Example 5.3,N = 54, α = 0.01.

Figure 7. Example 5.3,N = 54, α = 0.99.

6. Conclusions

In this paper, an effective numerical algorithm based on Legendre polynomials is proposed for
TFDE. Based on Legendre polynomials, an orthonormal basis is constructed in the reproducing kernel
spaces W1[0, 1] and W2[0, b]. Then we define the multiple reproducing kernel space and develop
the orthonormal basis in this space. The ε-approximate solution of TFDE is obtained. From the
above analysis and the numerical examples, it is clear that the presented method is successfully
employed for solving TFDE. The numerical results show that our method is much more accurate
than other algorithms. In this paper, because the orthonormal basis constructed in the binary
reproducing kernel space contains power terms, the properties of fractional differentiation can be used
to calculate fractional differentiation, so as to eliminate the influence of the non-singularity of fractional
differentiation. However, the method presented in this paper is suitable for the case where the initial
boundary value condition is 0, and for the non-zero case, it needs to be further simplified to the cases
where the initial boundary value condition is 0. We are also trying to design methods for cases where
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initial boundary values are non-zero.
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