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Abstract: Inspired by the ROF model and the 𝐿1 𝑇𝑉⁄   image denoising model, we propose a 

combined model to remove Gaussian noise and salt-and-pepper noise simultaneously. This model 

combines the 𝐿1 -data fidelity term, 𝐿2 -data fidelity term and a fractional-order total variation  

regularization term, and is termed the 𝐿1𝐿2/𝑇𝑉𝛼 model. We have used the proximity algorithm to 

solve the proposed model. Through this method, the non-differentiable term is solved by using the 

fixed-point equations of the proximity operator. The numerical experiments show that the proposed 

model can effectively remove Gaussian noise and salt and pepper noise through implementation of the 

proximity algorithm. As we varied the fractional order 𝛼 from 0.8 to 1.9 in increments of 0.1, we 

observed that different images correspond to different optimal values of α. 
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1. Introduction 

Throughout the evolution of digital image processing, a variety of processing technologies have 

been formed, including the wavelet transform, partial differential equation (PDE), and stochastic 

model. In image processing, the edge of an image is the most important visual feature. In 1992, Rudin 

et al. proposed the well-known total variation (TV) model [1], which has been named the ROF model. 

The ROF model can balance edge preservation and noise removal because it can take advantage of the 

inherent regularity of the image. The ROF model is as follows: 
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𝑚𝑖𝑛
𝑢
∫

𝜆

2
||𝑢 − 𝑢0||2

2 + ||𝑢||𝑇𝑉
Ω

dΩ,        (1) 

where Ω ⊂ 𝑅𝑛  is an open bounded set, 𝑛 ≥ 2  [2], 𝑢0(𝑥, 𝑦)  denotes the noisy image and 𝑢(𝑥, 𝑦) 

denotes the desired clean image. λ denotes a real positive number and ‖𝑢‖𝑇𝑉  denotes the TV of 

𝑢(𝑥, 𝑦), which is defined as ‖∇𝑢‖1. The ROF model has played an important role in image denoising, 

deblurring and inpainting. However, the solution of the ROF model is a piecewise constant function, 

so it is easy to generate a blocky effect in the flat region. To reduce the block effect, scholars have 

proposed a fourth-order PDE [3] and LLT [4], which can effectively remove the noise and reduce the 

blocky effect. The LLT model is as follows: 

𝑚𝑖𝑛
𝑢
∫

𝜆

2
||𝑢 − 𝑢0||2

2 + ||Δ𝑢||1
Ω

dΩ,        (2) 

where Δ𝑢 = (𝜕𝑥
2𝑢, 𝜕𝑦

2𝑢) and ‖Δ𝑢‖1 = |𝜕𝑥
2𝑢| + |𝜕𝑦

2𝑢|. The disadvantage of the LLT model is that it 

produces excessive smoothing in the edge region. To solve this problem, an adaptive fourth-order PDE 

has been proposed [5]. Both the ROF model and LLT model have the 𝐿2-data fidelity term. The type 

of noise that corrupts the image typically affects the data fidelity term selection. In general, images are 

affected by different types of noise. If the image is only affected by a mixture of Gaussian noise and 

Poisson noise, the noises can be converted into additive Gaussian noise. This is probably why most of 

the literature is devoted to removing Gaussian noise. The 𝐿2- data fidelity term is suitable for removing 

Gaussian additive noise, but it is almost invalid for other noises. The 𝐿1 -data fidelity term can 

effectively remove non-additive Gaussian noise, such as Laplacian noise and impulse noise [6,7]. The 

𝐿1/𝑇𝑉 model is as follows: 

𝑚𝑖𝑛
𝑢
 ∫

𝜆

2
||𝑢 − 𝑢0||1 + ||𝑢||𝑇𝑉

Ω

dΩ.       (3) 

The 𝐿1/𝑇𝑉  model has some unique features. It does not destroy the geometric structures or 

morphological invariance of the images under processing [8,9]. Therefore, the 𝐿1/𝑇𝑉 denoising image 

model is widely used in practical applications, such as face recognition [10], shape denoising [11] and 

image texture decomposition [12]. In fact, images are generally not corrupted by only one type of noise. 

The mixture of Gaussian and salt-and-pepper noise is considered in this paper. In particular, salt-and-

pepper noise is a simple type of impulse noise [13]. An 𝐿1-𝐿2-data fidelity term was introduced and 

proved to be suitable for the removal of a mixture of Gaussian and impulse noise in [14]. The 𝐿1𝐿2/𝑇𝑉 

model is as follows: 

𝑚𝑖𝑛
𝑢
 ∫ 𝜆
Ω

||𝑢 − 𝑢0||2
2 + 𝜇||𝑢 − 𝑢0||1 + ||𝑢||𝑇𝑉dΩ,      (4) 

where 𝜆, 𝜇 ≥ 0. The 𝐿1𝐿2/𝑇𝑉 model (4) is a generalization of (1) and (3). For example, if we set 

𝜆 =  0  in (4) then we get the 𝐿1/𝑇𝑉  model. If we set 𝜇 = 0  then we get the 𝐿2/𝑇𝑉  model. In 

particular, the choice of parameters critically affects the quality of image restoration. Small values of 

𝜆 and 𝜇 lead to an oversmoothed reconstruction, which eliminates both noise and detail in the image. 

In contrast, large values of 𝜆 and 𝜇 retain noise [15]. An improvement of the 𝐿1𝐿2/𝑇𝑉 model has 

been proposed in [16], where ‖𝑊𝑢‖1 replaces the TV. In [17], the authors used second-order total 

generalized variation [18] as a regularization term and incorporated box constraints. 
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In this paper, the fractional-order TV regularization term is the focus. We propose a combined 

model with a fractional-order TV regularization term, an 𝐿1-data fidelity term, and an 𝐿2- data fidelity 

term, which we term the 𝐿1𝐿2/𝑇𝑉𝛼 model. This model aims to remove the mixture of Gaussian noise 

and salt-and-pepper noise. 

It is difficult to minimize the objective function because the fractional-order TV regularization term 

is non-differentiable. Numerous efforts have been devoted to addressing this issue. There are some 

methods to solve the fractional-order TV model, including the use of the primal-dual algorithm [19], 

fractional-order Euler-Lagrange equations [20], alternating projection algorithm for the fractional-order 

multi-scale variational model [21,22], and majorization-minimization algorithm [23]. The Split 

Bregman iterative algorithm [24] and alternating direction method of multipliers [25] can also 

effectively solve non-differentiable terms. Recently, proximity algorithms [26–30] for solving the ROF 

model or the 𝐿1/𝑇𝑉  denoising image model have attracted widespread attention in digital image 

processing. The method mainly combines a convex function with a linear transformation to represent 

the non-differentiable term ‖𝑢‖𝑇𝑉. The issue of solving the proximity operator of the convex function 

can be reformulated into solving a fixed-point equation. Consequently, the proximity operator of the 

convex function can be obtained. The convergence of the fixed-point proximity algorithm has been 

proven [26]. The 𝐿1/𝑇𝑉  model requires solving two fixed point equations due to the non-

differentiability of the L1-data fidelity term [28]. In this paper, the proximity algorithm is used to solve 

the 𝐿1𝐿2/𝑇𝑉𝛼 model. 

The structure of the paper is as follows. Section 1 introduces the prior works and our motivation. 

Section 2 proposes the 𝐿1𝐿2/𝑇𝑉𝛼  model and proves the existence of its solution. The proximity 

algorithm is applied to solve the model and the convergence of the algorithm is proved. Section 3 

presents several numerical experiments and shows the results. Finally, Section 4 concludes the paper. 

2. 𝑳𝟏𝑳𝟐/𝑻𝑽𝒂 denoising model and proximity algorithm 

2.1. Proximity operator 

This section first introduces two very important concepts of convex functions: the proximity 

operator and the subdifferential. The relationship between them will also be given. 

Initially, we introduce some notations. We denote the 𝑚-dimensional Euclidean space by 𝑅𝑚. 

For 𝑥, 𝑦 ∈ 𝑅𝑚 , we define the standard inner product of 𝑅𝑚 as < 𝑥, 𝑦 >≔ ∑ 𝑥𝑖𝑦𝑖
𝑚
𝑖=1  and the 𝑝 −

norm of a vector 𝑥 ∈ 𝑅𝑚as ||𝑥||𝑝 ≔ (∑ |𝑥𝑖|
𝑚
𝑖=1

𝑝
)
1

𝑝. The proximity operator was introduced in [31]. 

We recall its definition as follows. 

Definition 2.1. (Proximity operator): Let 𝑓 be a proper lower-semi-continuous convex function on 

𝑅𝑚, where 𝑅𝑚 is 𝑚-dimensional Euclidean space. The proximity operator of 𝑓 is defined for any 

𝑥 ∈ 𝑅𝑚 by 𝑝𝑟𝑜𝑥𝑓(𝑥) = arg𝑚𝑖𝑛
𝑢

{
1

2
‖𝑢 − 𝑥‖2

2 + 𝑓(𝑢): 𝑢 ∈ 𝑅𝑚}. 

Definition 2.2. (Subdifferential): Let 𝑓 be a proper lower-semi-continuous convex function on 𝑅𝑚, 

where 𝑅𝑚 is 𝑚-dimensional Euclidean space. The subdifferential of 𝑓 is defined for 𝑦 ∈ 𝑅𝑚 by 

𝜕𝑓(𝑥) ≔ {𝑦 ∈ 𝑅𝑚𝑎𝑛𝑑𝑓(𝑧) ≥ 𝑓(𝑥) + 〈𝑦, 𝑧 − 𝑥〉, ∀𝑧 ∈ 𝑅𝑚}. 

The following lemma describes the relationship between the proximity operator and the convex 

function subdifferential. 
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Lemma 2.1. (Proposition 2.6 in [27]): If 𝑓 is a convex function on 𝑅𝑚 and 𝑥 ∈ 𝑅𝑚, then 

𝑦 ∈ ∂𝑓(𝑥) 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 = 𝑝𝑟𝑜𝑥𝑓(𝑥 + 𝑦).      (5) 

The proof of this lemma is given in [27]. Based on the Lemma 2.1, we can get that 

𝑦 ∈ ∂𝑓(𝑥) 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑦 = (𝐼 − 𝑝𝑟𝑜𝑥𝑓)(𝑥 + 𝑦).     (6) 

2.2. Model description and analysis 

Recently in [13], it has been demonstrated that the 𝐿1𝐿2/𝑇𝑉  model is effective at removing 

mixtures of Gaussian and impulse noise. In this approach, an image is restored by solving the following 

equation: 

𝑚𝑖𝑛
𝑝
 ∫ 𝜆||𝑝 − 𝑝0||2

2 + 𝜇||𝑝 − 𝑝0||1 + ||𝑝||𝑇𝑉Ω
𝑑Ω,      (7) 

where 𝑝0 ∈ 𝑅
𝑁×𝑁 denotes the noise image, 𝑁 is a positive integer, 𝑝 ∈ 𝑅𝑁×𝑁 denotes the denoising 

image, and 𝜆, 𝜇 are the parameters of 𝐿2-data and 𝐿1-data fidelity terms respectively. This model 

combines two kinds of data fidelity terms, 𝐿1 and 𝐿2, which can combine the advantages of both 

norms. Therefore, it has a significant effect in the removal of mixtures noise of Gaussian noise and 

salt-and-pepper noise. 

However, we observe that the numerical solution produced by the 𝐿1𝐿2/𝑇𝑉  model yields a 

substantial block effect. Additionally, this model fails to completely remove salt-and-pepper noise. The 

fractional-order TV regularization term has been proved to effectively reduce the block effect. This 

section introduces a minimum optimization denoising model, termed the 𝐿1𝐿2/𝑇𝑉𝛼  model. The 

𝐿1𝐿2/𝑇𝑉𝛼 model includes three terms: an 𝐿2-data fidelity term for Gaussian noise, an 𝐿1-data fidelity 

term for salt-and-pepper noise, and a fractional-order TV regularization term for a balance between 

detail preservation and noise reduction. The model is as follows: 

𝑚𝑖𝑛
𝑝
 𝐸(𝑝) = 𝑚𝑖𝑛

𝑝
∫ (𝜆||𝑝 − 𝑝0||2

2 + 𝜇||𝑝 − 𝑝0||1 + ||𝑝||𝑇𝑉𝛼)Ω
dΩ,    (8) 

where 𝑝0 ∈ 𝑅
𝑁×𝑁 denotes the noise image and 𝑝 ∈ 𝑅𝑁×𝑁 denotes the denoising image. ‖𝑝‖𝑇𝑉𝛼 is 

the 𝛼 fractional-order TV of 𝑝, and ‖𝑝‖𝑇𝑉𝛼 is defined as ‖𝛻𝛼𝑝‖1, where 𝛻𝛼𝑝 = (𝜕𝑥
𝛼𝑝, 𝜕𝑦

𝛼𝑝) and 

‖𝛻𝛼𝑝‖1 = |𝜕𝑥
𝛼𝑝| + |𝜕𝑦

𝛼𝑝|. In particular , note the following: 

·When setting 𝜆 = 0, the model (8) simplifies 𝐿1/𝑇𝑉𝛼. 

·When setting 𝜇 = 0, the model (8) simplifies 𝐿2/𝑇𝑉𝛼. 

The parameter settings of 𝜆 and 𝜇 for these specialized models demonstrates the flexibility of the 

𝐿1𝐿2/𝑇𝑉𝛼 model. 

To prove the existence of a solution to the 𝐿1𝐿2/𝑇𝑉𝛼  model, it is critical to prove the 

boundedness of the potential solution [33]. 

Lemma 2.2. (Boundedness) Let 𝑝0 ∈ 𝐿
2(𝛺), where Ω ⊂ 𝑅𝑛(𝑛 ≥ 2) is an open bounded set. Given  

𝑖𝑛𝑓
𝛺
 𝑝0 > 0, if the model has a solution 𝑝̂, then 𝑖𝑛𝑓

𝛺
 𝑝0 < 𝑝̂ < 𝑠𝑢𝑝

𝛺
 𝑝0. 

Proof of Lemma 2.2. Let 𝜔 = 𝑖𝑛𝑓
𝛺
 𝑝0  and 𝜈 = 𝑠𝑢𝑝

𝛺
 𝑝0 . When 𝑝 > 𝑝0 , functions |𝑝 − 𝑝0|  and 
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(𝑝 − 𝑝0)
2 increase monotonically. Then, 

∫ ||𝑖𝑛𝑓(𝑝, 𝜈) − 𝑝0||1dΩΩ
≤ ∫ ||𝑝 − 𝑝0||1dΩΩ

,      (9) 

∫ ‖𝑖𝑛𝑓(𝑝, 𝜈) − 𝑝0‖2
2dΩ

Ω
≤ ∫ ‖𝑝 − 𝑝0‖2

2dΩ
Ω

,      (10) 

where 𝑖𝑛𝑓(𝑝, 𝜈) is the lower bound of 𝑝 and 𝜈. That is, 𝑖𝑛𝑓(𝑝, 𝜈) is the minimum value of 𝑝 and 

𝜈. 

Moreover, based on Lemma 2 in the literature [34], there exists 𝑇𝑉𝛼(𝑖𝑛𝑓(𝑝, 𝜈)) ≤ 𝑇𝑉𝛼(𝑝). Thus, 

we have 

𝐸(𝑖𝑛𝑓(𝑝, 𝜈)) ≤ 𝐸(𝑝),        (11) 

and the equation holds if and only if 𝑝 ≤ 𝜈. 

Since 𝑝̂ is the minimum solution of optimization problem (8), the equation holds when 𝑝 = 𝑝̂ 

and hence 𝑝̂ ≤ 𝜈 . Similarly, 𝐸(𝑝) ≤ 𝐸(𝑠𝑢𝑝(𝑝, 𝜔)) ; then, 𝑝̂ ≥ 𝜔  can be obtained. In summary, 

𝑖𝑛𝑓
𝛺
 𝑓 < 𝑝̂ < 𝑠𝑢𝑝

𝛺
 𝑓. 

In what follows, we will give the existence of a solution for the optimization problem (8). 

Lemma 2.3. (Existence): Let 𝑝0 ∈ 𝐿
2(𝛺) , where Ω ⊂ 𝑅𝑛 (𝑛 ≥ 2 ) is an open bounded set. Given 

𝑖𝑛𝑓
𝛺
 𝑝0 > 0, the optimization problem (8) has at least one solution in the solution space 𝐵𝑉𝛼(𝛺). 

Proof of Lemma 2.3. The space of bounded variational functions 𝐵𝑉𝛼(𝛺) can be defined as follows: 

𝐵𝑉𝛼(𝛺) = {𝑓: 𝑓 ∈ 𝐿1(𝛺)} , forming Banach spaces under the 𝐵𝑉𝛼  norm ‖𝑓‖𝐵𝑉𝛼 = ‖𝑓‖𝐿1 +

𝑇𝑉𝛼(𝑓). 

Define 𝜔 = 𝑖𝑛𝑓
𝛺
 𝑝0  and 𝜈 = 𝑠𝑢𝑝

𝛺
 𝑝0 . Because 𝑝 = 𝜈 ∈ 𝐵𝑉𝛼(Ω)， the solution space is not 

empty [35]. Consider that the optimization problem (8) has a minimization sequence {𝑝𝑛} ∈ 𝐵𝑉
𝛼(𝛺) 

with 𝜔 ≤ 𝑝𝑛 ≤ 𝜈. 

Because 𝐵𝑉𝛼(𝛺) is a Banach space and Ω is bounded, it follows that 

‖𝑝𝑛‖𝐿1 = ∫ |𝑝𝑛|dΩΩ
≤ +∞.        (12) 

Moreover, because {𝑝𝑛}  is a minimization sequence, there exists a constant 𝐶 > 0  such that 

𝐸(𝑝𝑛) ≤ 𝐶. Because ∫ ||𝑝 − 𝑝0||2
2 + ||𝑝 − 𝑝0||1𝑑𝛺𝛺

 is nonnegative, there is a constant 𝐶′ > 0 and 

𝑇𝑉𝛼(𝑝𝑛) ≤ 𝐶′.         (13) 

Equations (12) and (13) yield that {𝑝𝑛}  is consistently bounded. Due to the compactness of 

𝐵𝑉𝛼(𝛺), there exists a subsequence {𝑝𝑛𝑗} of {𝑝𝑛} and a function 𝑝𝜖𝐵𝑉𝛼(𝛺) such that 

{𝑝𝑛𝑗} → 𝑝, 𝑖𝑛 𝐿1(Ω). 

Using the Lebesgue control convergence theorem, we obtain 
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∫ ||𝑝 − 𝑝0||1𝑑𝛺𝛺
= 𝑙𝑖𝑚

𝑗→∞
∫||𝑝𝑛𝑗 − 𝑝0||1𝑑𝛺
𝛺

,     (14) 

∫ ||𝑝 − 𝑝0||2
2𝑑𝛺

𝛺
= 𝑙𝑖𝑚

𝑗→∞
∫||𝑝𝑛𝑗 − 𝑝0||2

2𝑑𝛺
𝛺

.     (15) 

According to the lower semi-continuity of the function, the following inequality holds: 

𝐸(𝑝) ≤ 𝑙𝑖𝑚
𝑛→∞

𝑖𝑛𝑓 𝐸(𝑝𝑛).         (16) 

Since {𝑝𝑛} is a minimization sequence, 𝑝 is the smallest solution to the optimization problem (8). 

2.3. Numerical algorithm and convergence analysis 

Consider an image represented by a grid of 𝑁 × 𝑁 pixels. The discretization of the data term is 

given by 

∫ ||𝑝 − 𝑝0||2
2

Ω
dΩ ≈ ∑ (𝑝𝑖,𝑗 − 𝑝0𝑖,𝑗)

2
𝑖,𝑗 , ∫ ‖𝑝 − 𝑝0‖1Ω

dΩ ≈ ∑ |𝑝𝑖,𝑗 − 𝑝0𝑖,𝑗|𝑖,𝑗 , 

where (𝑖, 𝑗) denotes the coordinates at the points. For the fractional-order TV term, we obtain the 

following discretization: 

∫ ‖𝛻𝛼𝑝‖1Ω
dΩ ≈ ∑ |∇𝑥

𝛼𝑝𝑖,𝑗| + |∇𝑦
𝛼𝑝𝑖,𝑗|𝑖,𝑗 , 

∇𝑥
𝛼𝑝𝑖,𝑗 = ∑ (−1)𝑘𝐶𝑘

α𝑝𝑖−𝑘,𝑗
𝐾−1
𝑘=0 , ∇𝑦

𝛼𝑝𝑖,𝑗 = ∑ (−1)𝑘𝐶𝑘
α𝑝𝑖,𝑗−𝑘

𝐾−1
𝑘=0 , 

where 𝐶𝑘
(𝛼) = (−1)𝛼

Γ(𝛼+1)

Γ(𝑘+1)Γ(𝛼−𝑘+1)
 and Γ(𝑥) is the gamma function. 

Considering that the proximity algorithm is suitable for vectors, we respectively transform the 

image matrices 𝑝  and 𝑝0  into vectors 𝑢  and 𝑢0  by using the formulas 𝑝𝑖,𝑗 = 𝑢(𝑗−1)𝑛+𝑖  and 

𝑝0𝑖,𝑗 = 𝑢0(𝑗−1)𝑛+𝑖, 𝑖, 𝑗 = 1,2, … . , 𝑁. We describe the minimization problem (8) as follows: 

arg𝑚𝑖𝑛
𝑢

 {𝜆||𝑢 − 𝑢0||2
2 + 𝜇||𝑢 − 𝑢0||1 + ||∇

𝛼𝑢||1},     (17) 

where 𝑢 ∈ 𝑅𝑚 and 𝑢0 ∈ 𝑅
𝑚, 𝑚 = 𝑁2. 

The proximity operator of ‖∇𝛼𝑢‖1 is not easy to compute. To overcome this difficulty, we treat 

‖∇𝛼𝑢‖1 as the composition of a convex function with a fractional-order difference operator by using 

the formula ‖∇𝛼𝑢‖1 = (𝜙 ∘ 𝐵
𝛼)(𝑢). In the formula, 𝜙:𝑅2𝑚 → 𝑅 is defined as the norm ‖⋅‖1, 𝐵

𝛼 

is a 2𝑚 ×𝑚 matrix, and ∇𝛼𝑢 can be represented as 𝐵𝛼𝑢. The (𝑖, 𝑗) component of ∇𝛼𝑢 can thus 

be represented as a multiplication of the vector 𝑢 ∈ 𝑅𝑚  by a matrix 𝐵𝑛
𝛼 ∈ 𝑅2×𝑚  for 𝑛 =

 1, 2, . . . , 𝑚: 
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𝐵𝑛
𝛼𝑢 =

{
 
 
 

 
 
 (∑ 𝐶𝑘

(𝑎)𝑢𝑛−𝑘
𝑖−1

𝑘=0
,∑ 𝐶𝑘

(𝑎)𝑢𝑛−𝑁𝑘
𝑗−1

𝑘=0
)𝑇 𝑖 > 1, 𝑗 > 1

(𝑢𝑚,∑ 𝐶𝑘
(𝑎)𝑢𝑛−𝑁𝑘

𝑗−1

𝑘=0
)𝑇            𝑖 = 1, 𝑗 > 1

(∑ 𝐶𝑘
(𝑎)𝑢𝑛−𝑘

𝑖−1

𝑘=0
, 𝑢𝑛)

𝑇             𝑖 > 1, 𝑗 = 1

(𝑢𝑛, 𝑢𝑛)
𝑇                        𝑖 = 1, 𝑗 = 1

,   (18) 

where the matrix 𝐵𝑛
𝛼 = [𝐵1

𝛼 , 𝐵2
𝛼 , … , 𝐵𝑁

𝛼]𝑇 ∈ 𝑅2×2𝑚 [29]. Therefore, we describe the minimization 

problem as follows: 

arg𝑚𝑖𝑛
𝑢

{𝜆||𝑢 − 𝑢0||2
2 + 𝜇||𝑢 − 𝑢0||1 + (𝜙 ∘ 𝐵

𝛼)(𝑢)}.     (19) 

Consider 𝜑 to be a convex function on 𝑅𝑚 at 𝑢 ∈ 𝑅𝑚, as follows: 

𝜑(𝑢) = 𝜆||𝑢 − 𝑢0||2
2 + 𝜇||𝑢 − 𝑢0||1.       (20) 

Therefore, we can describe the above minimization problem as follows: 

arg𝑚𝑖𝑛
𝑢

{𝜑(𝑢) + (𝜙 ∘ 𝐵𝛼)(𝑢)}.       (21) 

Proposition 2.1. Let 𝜙 be a proper convex function on 𝑅𝑚; 𝐵𝛼 is a 2𝑚 ×𝑚 matrix. If 𝑢 ∈ 𝑅𝑚 

is a solution of model (21), then for any positive numbers 𝛽1, 𝛽2  >  0, there exists a vector 𝑏 ∈ 𝑅2𝑚 

such that 

𝑢 = 𝑝𝑟𝑜𝑥1
𝛼
𝜑
(𝑢 −

𝛽2

𝛽1
(𝐵𝛼)𝑇𝑏),        (22) 

𝑏 = (𝐼 − 𝑝𝑟𝑜𝑥 1

𝛽2
𝜙
) (𝐵𝛼𝑢 + 𝑏).       (23) 

On the contrary, if 𝑏 ∈ 𝑅2𝑚 and 𝑢 ∈ 𝑅𝑚 satisfies (22) and (23) for some positive 𝛽1, 𝛽2  >

 0, then 𝑢 is a solution of (21). 

Proof. If 𝑢 ∈ 𝑅𝑚 is a solution of (21), then, by Fermat’s theorem on convex analysis, it follows that 

0 ∈ 𝜕(𝜑(𝑢) + (𝜙 ∘ 𝐵𝛼)(𝑢)). 

By the chain rule 

𝜕((𝜙 ∘ 𝐵𝛼)(𝑢)) = (𝐵𝛼)𝑇𝜕𝜙(𝐵𝛼𝑢), 

then 

0 ∈ ∂𝜑(𝑢) + (𝐵𝛼)𝑇 ∂𝜙(𝐵𝛼𝑢).       (24) 

For any 𝛽1, 𝛽2  >  0, we choose two vectors 𝑎 ∈
1

𝛽1
𝜕𝜑(𝑢) and 𝑏 ∈

1

𝛽2
𝜕𝜙(𝐵𝑎𝑢) such that 
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0 = 𝛽1𝑎 + 𝛽2(𝐵
𝛼)𝑇𝑏.        (25) 

By (5) and 𝑎 ∈
1

𝛽1
𝜕𝜑(𝑢), we have that 

𝑢 = 𝑝𝑟𝑜𝑥 1

𝛽1
𝜑
(𝑢 + 𝑎).        (26) 

Using (25), we conclude that 𝑎 = −
𝛽2

𝛽1
(𝐵𝛼)𝑇𝑏; by substituting 𝑎 into (26), we obtain (22). By 

applying the definition of the proximity operator and 𝑏 ∈
1

𝛽2
𝜕𝜙(𝐵𝛼𝑢), we obtain (23). Conversely, if 

there exist 𝛽1, 𝛽2 > 0 , 𝑏 ∈ 𝑅2𝑚 , and 𝑢 ∈ 𝑅𝑚  satisfying (22) and (23), then by Lemma 2.1, we 

obtain that 𝑏 ∈
1

𝛽2
𝜕𝜙(𝐵𝛼𝑢) and −

𝛽2

𝛽1
(𝐵𝛼)𝑇𝑏 ∈

1

𝛼
𝜕𝜑(𝑢). We can yield that 

0 = 𝛽1 (−
𝛽2

𝛽1
(𝐵𝛼)𝑇𝑏) + 𝛽(𝐵𝛼)𝑇𝑏 ∈ 𝜕𝜑(𝑢) + (𝐵𝛼)𝑇𝜕𝜑(𝐵𝛼𝑢). 

This implies that 𝑢 ∈ 𝑅𝑚 is a solution of (21). 

According to Proposition 2.1, we can conclude the following corollary. 

Corollary 2.1. Suppose that 𝑢0 ∈ 𝑅
𝑚  is given, 𝜆 , 𝜇  are two positive numbers, 𝐵𝛼  is a 

2𝑚 ×  𝑚 matrix, 𝜑 is the function defined by (12), and 𝜙 is a differentiable convex function on 

𝑅2𝑚. If 𝑢 ∈ 𝑅𝑚 is a solution of (21), then for any 𝛽1 > 0, 

𝑢 = 𝑝𝑟𝑜𝑥 1

𝛽1
𝜑
(𝑢 −

1

𝛽1
(𝐵𝛼)𝑇 ∂𝜙(𝐵𝛼𝑢)).      (27) 

Conversely, if for some 𝛽1 > 0 there exists 𝑢 ∈ 𝑅𝑚 satisfying (27), then 𝑢 ∈ 𝑅𝑚 is a solution 

to (21). 

Proof. By Proposition 2.1, a solution 𝑢 ∈ 𝑅𝑚  of (21) satisfies (22) and (23). If the function 𝜙  is 

differentiable, then 𝜕𝜙(𝑢) = {∇𝜙(𝑢)}, where 𝜕𝜙(𝑢) is the gradient of 𝜙 at 𝑢. Therefore, (6) and (23) 

imply that 𝑏 =
1

𝛽2
𝜕𝜙(𝐵𝛼𝑢). Hence, (22) yields the fixed-point equation (27). 

The fixed-point equation (27) can be viewed as an instance of the split forward-backward formula [31]. 

Suppose that ∂ϕ is Lipschitz continuous with a Lipschitz constant 𝐿, that is 

||∂𝜙(𝑝) − ∂𝜙(𝑞)||2 ≤ 𝐿||𝑝 − 𝑞||2, ∀𝑝, 𝑞 ∈ 𝑅
𝑚,     (28) 

and that 𝛽1 is chosen to satisfy 

1

𝛽1
<

2

𝐿||𝐵𝛼||2
2.          (29) 

It was proved in [33], that for any initial point 𝑢0 ∈ 𝑅𝑚, the Picard iteration 

𝑢𝑘+1 = 𝑝𝑟𝑜𝑥 1

𝛽1
𝜑
(𝑢𝑘 −

1

𝛽1
(𝐵𝛼)𝑇 ∂𝜙(𝐵𝛼𝑢𝑘)),      (30) 

converges to a fixed point of (27), which is a minimum of (21). 
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Let 𝐻𝑢:= 𝑢 −
1

𝛽1
(𝐵𝛼)𝑇 ∂𝜙(𝐵𝛼𝑢𝑘)  and 𝑄𝑢:= (𝑝𝑟𝑜𝑥 1

𝛽1
𝜑
∘ 𝐻)𝑢 . To prove that (30) is 

convergent, we only need to prove that 𝐻 and 𝑄 are non-expansive averaged operators. We recall the 

definitions of non-expansive operators [31]. 

Definition 2.3. (Non-expansive operator): An operator 𝑇 on 𝑅𝑚 is non-expansive if it satisfies the 

following condition ∀𝑥, 𝑦 ∈ 𝑅𝑚: ‖𝑇𝑥 − 𝑇𝑦‖2 ≤ ‖𝑥 − 𝑦‖2. 

Both 𝑝𝑟𝑜𝑥𝑓(𝑥) and (𝐼 − 𝑝𝑟𝑜𝑥𝑓)(𝑥) are operators; see [31]. 

Definition 2.4. (Firmly non-expansive operator): An operator 𝑇 on 𝑅𝑚 is firmly non-expansive if it 

satisfies the following condition ∀𝑥, 𝑦 ∈ 𝑅𝑚: ‖𝑇𝑥 − 𝑇𝑦‖2 ≤ < 𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦 >. 

Definition 2.5. (Non-expansive averaged operators): A non-expansive operator 𝑄 on 𝑅𝑚 is a non-

expansive averaged operator if there exists 𝑘 ∈ (0,1) and it satisfies the following condition ∀𝑥, 𝑦 ∈

𝑅𝑚: 𝑄 = 𝑘𝐼 + (1 − 𝑘)𝑃 , where 𝑃  is a non-expansive operator. If 𝑘 =
1

2
 , then 𝑄  is a firmly non-

expansive operator. 

Both 𝑝𝑟𝑜𝑥𝑓(𝑥) and (𝐼 − 𝑝𝑟𝑜𝑥𝑓)(𝑥) are firmly non-expansive operators; see [32]. 

Proposition 2.2. If 𝜙  is a convex function and 𝐵𝛼  is a 2𝑚 ×𝑚  matrix, then 𝐻  is firmly non-

expansive. 

Proof. First, by the definition of the operator 𝐻, ∀𝑥, 𝑦 ∈ 𝑅𝑚, we have 

𝐻𝑥 − 𝐻𝑦 = 𝑥 − 𝑦 −
1

𝛽1
(𝐵𝛼)𝑇(∂𝜙(𝐵𝛼𝑥) − ∂𝜙(𝐵𝛼𝑦)),     (31) 

(𝐼 − 𝐻)𝑥 − (𝐼 − 𝐻)𝑦 =
1

𝛽1
(𝐵𝛼)𝑇(∂𝜙(𝐵𝛼𝑥) − ∂𝜙(𝐵𝛼𝑦)).     (32) 

We have 

∥ 𝐻𝑥 − 𝐻𝑦 ∥2=∥ 𝑥 − 𝑦 ∥2−
2

𝛽1
〈(𝐵𝛼)𝑇(𝜕𝜙(𝐵𝛼𝑥) − 𝜕𝜙(𝐵𝛼𝑦)), 𝑥 − 𝑦〉 

+
1

𝛽1
2 ‖(𝐵

𝛼)𝑇(𝜕𝜙(𝐵𝛼𝑥) − 𝜕𝜙(𝐵𝛼𝑦))‖
2
,      (33) 

‖(𝐼 − 𝐻)𝑥 − (𝐼 − 𝐻)𝑦‖2 =
1

𝛽1
2 ∥ (𝐵

𝛼)𝑇(∂𝜙(𝐵𝛼𝑥) − ∂𝜙(𝐵𝛼𝑦)) ∥2.   (34) 

According to the sub-gradient inequalities of convex functions, we have 

⟨∂𝜙(𝐵𝛼𝑥) − ∂𝜙(𝐵𝛼𝑦), 𝐵𝛼𝑥 − 𝐵𝛼𝑦⟩ ≥ 0.      (35) 

Substituting (35) into (33), we have 

∥ 𝐻𝑥 − 𝐻𝑦 ∥2≤∥ 𝑥 − 𝑦 ∥2+
1

𝛽1
2 ∥ (𝐵

𝛼)𝑇(∂𝜙(𝐵𝛼𝑥) − ∂𝜙(𝐵𝛼𝑦)) ∥2.   (36) 

Combining (36) with (34), we have 

∥ 𝐻𝑥 − 𝐻𝑦 ∥2≤∥ 𝑥 − 𝑦 ∥2 +∥ (𝐼 − 𝐻)𝑥 − (𝐼 − 𝐻)𝑦 ∥2.     (37) 

We have 

‖𝐻𝑥 − 𝐻𝑦‖2 ≤ < 𝑥 − 𝑦,𝐻𝑥 − 𝐻𝑦 >. 
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This completes the proof. 

If 𝐻:𝑅𝑚 → 𝑅𝑚  is firmly non-expansive, then 𝐻  is a non-expansive 
1

2
 -averaged operator (see 

Lemma 3.8 in [26]). Thus 𝑄 is a non-expansive averaged operator (see Lemma 3.7 in [26]). 

We prove the convergence of (30). To simplify (30) and find an iterative format that is equivalent 

to (30), we make the following substitution 

𝑢𝑘 −
1

𝛽1
(𝐵𝛼)𝑇 ∂𝜙(𝐵𝛼𝑢𝑘) = 𝑣.       (38) 

Let 𝑣 ∈ 𝑅𝑚 be a given vector and 𝑥 ∈ 𝑅𝑚; we denote the proximity operator of 
1

𝛽1
𝜑 for the 

given 𝑣 ∈ 𝑅𝑚 as follows 

𝑝𝑟𝑜𝑥 1

𝛽1
𝜑
(𝑣) = arg𝑚𝑖𝑛

𝑥
 {
1

2
||𝑥 − 𝑣||2

2 +
𝜆

𝛽1
||𝑥 − 𝑢0||2

2 +
𝜇

𝛽1
||𝑥 − 𝑢0||1}.   (39) 

We have 

𝑝𝑟𝑜𝑥 1

𝛽1
𝜑
(𝑣) = 𝑢0 + arg𝑚𝑖𝑛

𝑥
 {
1

2
||𝑥 − 𝑣 + 𝑢0||2

2 +
𝜆

𝛽1
||𝑥||2

2 +
𝜇

𝛽1
||𝑥||1}.   (40) 

Let 𝑔 and 𝑓 be two functions on 𝑅𝑚; then, we have 

𝑔(𝑥) =
1

2
||𝑥 − 𝑣 + 𝑢0||2

2 +
𝜆

𝛽1
||𝑥||2

2,       (41) 

𝑓(𝑥) =
𝜇

𝛽1
||𝑥||1.         (42) 

Because the function 𝑔  is differentiable, it can be expanded by applying the Taylor formula to 

(𝑣 − 𝑢0) ∈ 𝑅
𝑚: 

𝑔(𝑥) = 𝑔(𝑣 − 𝑢0)+< ∇𝑔(𝑣 − 𝑢0), 𝑥 − 𝑣 + 𝑢0 > +
1

2𝑟
||𝑥 − 𝑣 + 𝑢0||2

2,   (43) 

where 𝑟 denotes a constant greater than 1. 

We can use (43) to find the following minimum value problem: 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑥

{𝑔(𝑥) + 𝑓(𝑥)}                

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥

{𝑔(𝑣 − 𝑢0)+< 𝛻𝑔(𝑣 − 𝑢0), 𝑥 − 𝑣 + 𝑢0 > +
1

2𝑟
||𝑥 − 𝑣 + 𝑢0||2

2 + 𝑓(𝑥)}  

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥

{
1

2𝑟
||𝑥 − 𝑣 + 𝑢0 + 𝑟𝛻𝑔(𝑣 − 𝑢0)||2

2 + 𝑓(𝑥)}         

= 𝑝𝑟𝑜𝑥𝑟𝑓(𝑣 − 𝑢0 − 𝑟𝛻𝑔(𝑣 − 𝑢0)).           (44) 

By (41), we can get 

∇𝑔(𝑥) = (𝑥 − 𝑣 + 𝑢0) +
𝜆

2𝛽1
𝑥 = (1 +

2𝜆

𝛽1
) 𝑥 − 𝑣 + 𝑢0.     (45) 



16653 

AIMS Mathematics  Volume 9, Issue 6, 16643–16665. 

Using (45), we obtain 

∇𝑔(𝑣 − 𝑢0) =
2𝜆

𝛽1
(𝑣 − 𝑢0).        (46) 

Therefore, substituting (42), (44) and (46) into (40), we conclude that 

𝑝𝑟𝑜𝑥 1

𝛽1
𝜑
(𝑣) = 𝑢0 + 𝑝𝑟𝑜𝑥𝑟𝜇

𝛽1
||⋅||1

(
𝛽1−2𝜆𝑟

𝛽1
(𝑣 − 𝑢0)).     (47) 

We can combine (38) and 𝑢𝑘+1 = 𝑝𝑟𝑜𝑥 1

𝛽1
𝜑
(𝑣) with (47) to obtain 

𝑢𝑘+1 = 𝑢0 + 𝑝𝑟𝑜𝑥𝑟𝜇
𝛽1
||⋅||1

(
𝛽1−2𝜆𝑟

𝛽1
(𝑢𝑘 −

1

𝛼
(𝐵𝛼)𝑇 ∂𝜙(𝐵𝛼𝑝𝑘) − 𝑢0)).   (48) 

Substituting 𝑏𝑘 =
1

𝛽2
𝜕𝜙(𝐵𝛼𝑢𝑘) into (48) shows that (49) and (50) are equivalent iterations of (30). 

𝑢𝑘+1 = 𝑢0 + 𝑝𝑟𝑜𝑥𝑟𝜇
𝛽1
||⋅||1

(
𝛽1−2𝜆𝑟

𝛽1
(𝑢𝑘 −

𝛽2

𝛽1
(𝐵𝛼)𝑇𝑏𝑘 − 𝑢0)),    (49) 

𝑏𝑘+1 = (𝐼 − 𝑝𝑟𝑜𝑥 1

𝛽2
𝜙
) (𝐵𝛼𝑢𝑘+1 + 𝑏𝑘).      (50) 

Hence, according to the iterative equations (48) and (49), We can propose the following algorithm. 

Algorithm 

1. Noisy image 𝑢0 ∈ 𝑅
𝑚; choose λ ≥ 0, 𝜇 ≥ 0, 𝛽1 > 0, 𝛽2 > 0; 

2. Initialization: 𝑢0 = 𝑝0, 𝑏
0 = 0; 

3. For 𝑘 ∈ 𝑁, update u and b as follows: 

𝑢𝑘+1 ← 𝑢0 + 𝑝𝑟𝑜𝑥𝑟𝜇
𝛽1
‖∙‖1
(
𝛽1 − 2𝜆𝑟

𝛽1
(𝑢𝑘 −

1

𝛽1
(𝐵𝛼)𝑇𝑏𝑘 − 𝑢0)) 

𝑏𝑘+1 ← (𝐼 − 𝑝𝑟𝑜𝑥 1
𝛽2

𝜙)(𝐵𝛼𝑢𝑘+1 + 𝑏) 

4. Stop if the preset stop criteria are met; otherwise, return to 2 to continue iteration. 

3. Numerical results 

This section describes several image denoising experiments that were conducted to demonstrate 

the behavior of the proposed algorithm. The peak signal to noise ratio (PSNR) is currently the most 

widely used tool for objectively evaluating image quality, and it is consistent with human subjective 

perception. A larger value of PSNR indicates better quality of the recovered image. It is defined as 

follows: 

PSNR = 10𝑙𝑜𝑔10
2552𝑛2

||𝑢∗−𝑢||2
2 (𝑑𝐵),       (51) 

where 𝑢∗ is the original image and 𝑢 is the denoised image. All experiments’ iterations were ceased 
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when the following criterion was satisfied: 

||𝑢𝑘−𝑢𝑘+1||

||𝑢𝑘+1||
≤ 0.001.         (52) 

In this study, images of size 256×256 pixels were used to conduct numerical experiments with 

𝑟 =
𝛽1

𝛽1+2𝜆
 . We used the 𝐿1𝐿2/𝑇𝑉𝛼  model to remove Gaussian noise, salt-and-pepper noise, and 

mixed noise. Original images of the experiment are shown in Figure 1. In particular, the different noise 

regimes yielded different results, as shown in Figure 2. Salt-and-pepper noise involves setting a value 

of a pixel to the minimal or maximal value of the image intensity range. Gaussian noise may extend 

this intensity range. We considered adding salt-and-pepper noise to the original image after Gaussian 

noise. 

 

Figure 1. Original images. 

 

Figure 2. (a) image is affected by salt-and-pepper noise after Gaussian noise; (b) image 

affected by Gaussian noise after salt-and-pepper noise. 

This study included a total of four groups of experiments. The first experiment was to restore 
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images affected with 𝜎 =  20, which is the level of Gaussian noise. The second experiment was to 

restore images affected with 𝑠 =  0.03 , which is the level of salt-and-pepper noise. The third 

experiment was to restore images affected by the mixed noise. The fourth experiment was to explore 

the convergence of our proposed fractional-order TV denoising algorithm. 

We began by investigating the effects of different parameters on the experimental results. Inspired 

by [27], we consistently chose 𝛼 =  6, 𝛽 =  128. We determined the most suitable values 𝜆 and µ 

through trial and error. When Gaussian noise with 𝜎 =  20 was added to the image ‘Lena’, we found 

that 𝜆 =  0.07, 𝜇 =  0 performed better. When salt-and-pepper noise with 𝑠 =  0.03 was added to 

the image ‘Square’, we found that 𝜆 =  0, 𝜇 =  3 performed better. We verified that these selected 

parameters were effective for other images with the same noise levels. Additionally, we increased 𝛼 

from 0.8 to 1.9 in increments of 0.1. 

In the first experiment, the Gaussian noise was added to the ‘Lena’ image at different levels. We 

chose 𝜆 = 0.07, 𝜇 = 0 to deal with noisy images. Table 1 shows the values of PSNR, while Figure 3 

shows the experimental results. In addition, Gaussian noise was added to the other images at 𝜎 =  20. 

Table 2 shows the values of PSNR. The first experimental results demonstrated that 𝛼 has an impact 

on the denoising results. The best denoising result often did not appear when 𝛼 = 1. Therefore, the 

fractional-order TV model can be applied to improve the denoising performance of the TV model. 

 

Figure 3. Comparison of visual results with different values of 𝛼 for the noisy image at 𝜎 = 20. 

Table 1. PSNR values for the different Gaussian noise levels. 

𝛼 𝜎 = 15 𝜎 = 20 𝜎 = 25 𝜎 = 30 

0.8 29.7892 27.4593 25.0759 23.0262 

0.9 30.2569 27.8891 25.4172 23.3055 

1 30.5238 28.2065 25.7044 23.5671 

1.1 30.5492 28.3853 25.9207 23.7875 

1.2 30.5086 28.5046 25.1172 24.0012 

1.3 30.4731 28.6112 26.3034 24.2273 

1.4 30.4378 28.7046 26.4887 24.4474 

1.5 30.3991 28.7886 26.6701 24.6726 

1.6 30.3599 28.8649 26.8453 24.8976 

1.7 30.3170 28.9319 27.0052 25.1174 

1.8 30.2558 28.9798 27.1521 25.3290 

1.9 30.1917 29.0035 27.2755 25.5298 
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Table 2. PSNR values for the noisy images with 𝜎 = 20. 

𝛼 Man Pepper Square 

0.8 27.5666 27.3701 29.7428 

0.9 27.9925 27.8178 30.4608 

1 28.2736 28.1412 31.8894 

1.1 28.3151 28.1936 31.1472 

1.2 28.2914 28.3959 31.3280 

1.3 28.2809 28.4796 31.4950 

1.4 28.2808 28.5583 31.6557 

1.5 28.2824 28.6456 31.8110 

1.6 28.2666 28.7134 31.9377 

1.7 28.2452 28.7684 32.0184 

1.8 28.2056 28.8044 32.0599 

1.9 28.1466 29.8223 32.0439 

In the second experiment, we chose 𝜆 =  0, 𝜇 = 4.8 to deal with the ‘Square’ image corrupted 

by the salt-and-pepper noise at noise levels of 0.01, 0.02, 0.03, 0.05. Table 3 shows the values of PSNR, 

while Figure 4 shows the experimental results. In addition, salt-and-pepper noise was applied to the 

other images at 𝑠 =  0.03. Table 4 shows the values of PSNR. The experimental results indicate that 

when 𝛼 is larger, the effect is better. 

Table 3. PSNR values for the different salt-and-pepper noise levels. 

𝛼 𝑠 = 0.01 𝑠 = 0.02 𝑠 = 0.03  𝑠 = 0.05 

0.8 26.6361 23.5071 21.5444 19.3476 

0.9 26.8099 23.6805 21.7061 19.5088 

1 26.9692 23.8357 21.8529 19.6589 

1.1 27.184 24.0518 22.0587 19.8782 

1.2 27.3262 24.1908 22.1921 20.0358 

1.3 28.6720 25.4874 23.4443 21.2008 

1.4 30.3872 27.1640 25.0587 22.7285 

1.5 32.3797 29.0880 26.8780 24.4160 

1.6 34.7346 31.2814 26.8750 26.2035 

1.7 37.4620 33.7378 30.9774 27.7989 

1.8 40.4214 36.6253 33.2592 30.0331 

1.9 42.8820 39.2325 35.0649 31.0890 
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Table 4. PSNR values for the different salt-and-pepper noise levels. 

α Lena Man Pepper 

0.8 22.4379 22.3227 22.5437 

0.9 22.7182 22.5793 22.8359 

1 22.9806 22.8058 23.1135 

1.1 23.2306 23.0675 23.3906 

1.2 23.4360 23.2628 23.6167 

1.3 24.7680 24.4272 24.8107 

1.4 26.8144 26.1801 26.6391 

1.5 29.1850 28.1721 28.6084 

1.6 31.5879 30.1103 30.4547 

1.7 33.4039 31.3361 31.7732 

1.8 34.7360 31.8994 32.7549 

1.9 35.4855 32.2108 32.4564 

 

Figure 4. Comparison of visual results for different values of 𝛼 for the noisy image at 𝑠 = 0.02. 

In the third experiment, we added Gaussian noise at 𝜎 = 20 and salt-and-pepper noise at 𝑠 =

 0.03 to four images and explore the performance of the algorithm. We chose 𝜆 = 0.009, 𝜇 = 2.3. 

Table 5 shows the values of PSNR, while Figure 5 shows the experimental results Figure 6 shows the 

original image, the noisy image, and the denoised image for different values of 𝛼 (from 0.8 to 1.9). 

The third and fourth rows represent their corresponding contour map. The data from Table 5 indicate 

that a larger 𝛼  yields better denoising performance. Consequently, the fractional-order TV model 

outperformed the traditional TV model under mixed noise. 

Based on the PSNR values and denoised images from the first three experiments, we can see that 

the fractional-order TV model can effectively reduce the block effect and perform better than the TV 

model. 
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Figure 5. The original, noisy, and denoised images at different orders (from 0.8 to 1.9), 

where the third and fourth rows represent their corresponding contour map. 
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Figure 5. Continued. 
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Table 5. PSNR values for the noisy images with 𝜎 =  20 and 𝑠 =  0.03. 

𝛼 Lena Man Pepper Square 

0.8 23.0276 22.7010 23.0907 22.5688 

0.9 23.5519 23.128 23.5879 22.9819 

1 24.0592 23.5512 24.0694 23.4123 

1.1 24.6520 24.0576 24.6195 24.0678 

1.2 25.3215 24.6112 25.2445 24.8745 

1.3 25.8844 25.0583 25.7745 25.6832 

1.4 26.3067 25.3817 26.1841 26.4623 

1.5 26.6177 25.5930 26.4867 27.1617 

1.6 26.8404 25.7059 26.7017 27.7913 

1.7 27.0049 25.7356 26.8421 28.2917 

1.8 27.1119 25.7179 26.9169 28.6416 

1.9 27.1679 25.6679 26.9147 28.8466 

The fourth experiment focused on the convergence of the algorithm. We applied 𝛼 =  1.8 as an 

example in the 𝛼 range of 0.8 to 1.9. The PSNR value was recorded at each iteration. Figure 6 shows 

the experimental results. The blue line represents the noisy image results for 𝜎 =  15, 𝑠 =  0.01, the 

red line represents the noisy image results for 𝜎 =  20, 𝑠 =  0.03, and the yellow line represents the 

noisy image results for 𝜎 =  20, 𝑠 =  0.05. From Figure 6, it is obvious that our proposed fractional-

order TV denoising algorithm is convergent. 

 

Figure 6. Relationships between the iteration and PSNR. 
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Furthermore, we will show that our proposed model demonstrated good performance on the task 

of removing mixed noise. For this purpose, we added Gaussian noise at 𝜎 = 20 and salt-and-pepper 

noise at 𝑠 =  0.03 to image ‘Lena’. We chose 𝛼 = 1.9. Figure 7 shows the 60th and 100th rows of 

the ’Lena’ image from a one-dimensional perspective. The original, noisy and denoised images are 

represented by black, pink and blue lines, respectively. The blue solid line and the black solid line 

nearly coincide, which indicates that our proposed model exhibited good denoising performance. 

Figure 8 shows that the histogram for the noisy image was completely different from that of the original 

image, while the histogram for the denoised image was similar to the histogram for the original image. 

We took a small part of the ‘Lena’ image and marked it with a red rectangle; the experimental results 

can be seen in Figure 9. 

 

Figure 7. (a) The 60th line of the original, noisy, and restored images; (b) the 100th line of 

the original, noisy, and restored images. 

 

Figure 8. (a) Histogram of the original image; (b) histogram for the noisy image; (c) 

histogram for the denoised image. 
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Figure 9. The three-dimensional surface map in results for (a) the red rectangular area of 

the ‘Lena’ image. (b) original image; (c) noisy image; (d) denoised image. 

4. Conclusions 

In this paper, we developed a fractional-order TV (𝐿1𝐿2/𝑇𝑉𝛼 ) model to remove mixtures of 

Gaussian noise and salt-and-pepper noise, by incorporating an 𝐿1 -data fidelity term and 𝐿2 -data 

fidelity term into the model. The existence of the solution of this model has been proved. We solved 

the proposed model by using the proximity algorithm, which prevents non-differentiability of the 

fractional order TV regularization terms. The convergence of the algorithm has been proved. The 

numerical experiments revealed the following: (1) The 𝐿1𝐿2/𝑇𝑉𝛼 model can effectively reduce the 

block effect and achieve better denoising performance than the 𝐿1𝐿2/𝑇𝑉 model. (2) The 𝐿1𝐿2/𝑇𝑉𝛼 

model effectively removes the mixture of Gaussian noise and salt-and-pepper noise owing to the 

proximity algorithm. (3) In the 𝐿1𝐿2/𝑇𝑉𝛼 model, 𝛼 should range from 0.8 to 1.9. Different images 

will have different optimal values of 𝛼. 
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