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Abstract: Electroencephalography (EEG) is essential for diagnosing neurological disorders such as
epilepsy. This paper introduces a novel approach that employs the Allen-Cahn (AC) energy function for
the extraction of nonlinear features. Drawing on the concept of multifractals, this method facilitates
the acquisition of features across multi-scale. Features extracted by our method are combined with
a support vector machine (SVM) to create the AC-SVM classifier. By incorporating additional
measures such as Kolmogorov complexity, Shannon entropy, and Higuchi’s Hurst exponent, we
further developed the AC-MC-SVM classifier. Both classifiers demonstrate excellent performance
in classifying epilepsy conditions. The AC-SVM classifier achieves 89.97% accuracy, 94.17%
sensitivity, and 89.95% specificity, while the AC-MC-SVM reaches 97.19%, 97.96%, and 94.61%,
respectively. Furthermore, our proposed method significantly reduces computational costs and
demonstrates substantial potential as a tool for analyzing medical signals.
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1. Introduction

The electroencephalogram (EEG) stands as one of the most crucial non-invasive tools in
neuroscience for imaging the brain, serving to measure its electrical activity [1]. Commonly employed
for various purposes, EEG aids in the diagnosis and detection of signs indicating brain injuries [2, 3],
brain tumors [4, 5], epilepsy, and related seizure types [6–8]. Furthermore, given the complexity
of EEG data, it is challenging for physicians to make efficient and accurate judgments. Hence, a
robust automatic classification method can aid physicians and mitigate the risk of misdiagnosis [9].
The World Health Organization released a report highlighting epilepsy as one of the most prevalent
chronic neurological disorders globally, affecting approximately 50 million people worldwide [10].
The brain discharges abnormally during a seizure, resulting in differences in EEG signal presentation.
In addition to this, recurrent and sudden seizures in epilepsy are very dangerous and can lead to life-
threatening situations [11]. In addition to its pivotal role in medical diagnosis, EEG has emerged as an
indispensable tool in the realm of brain-machine interface research and emotion recognition [12–15].
The rapid development of artificial intelligence combined with the advancement of medical device
technology highlights the importance of using artificial intelligence for EEG signal classification. The
analysis of voluminous EEG datasets to unearth novel features and patterns of cerebral activity is
instrumental in unlocking latent knowledge. In recent epochs, a multitude of scholars have dedicated
efforts towards the innovation of sophisticated classifiers for EEG signal processing. These endeavors
can be broadly categorized into classifiers rooted in traditional machine learning techniques and those
predicated on deep learning paradigms [16–19].

This section aims to meticulously review the literature to elucidate the research advancements in
EEG signal classifiers, focusing on both traditional machine learning and deep learning approaches.
Through this examination, we endeavor to highlight the distinct advantages and inherent challenges
of these methodologies. The advancement of deep learning techniques has greatly propelled the
field of EEG signal classification due to their remarkable capacity for automatic feature extraction
and processing large-scale EEG datasets. Acharya et al. [20] pioneered the use of convolutional
neural networks (CNN) for EEG classification for epilepsy diagnosis. Xin et al. [21] utilized multi-
scale wavelet analysis for decomposing EEG signal into frequency components before classification.
Author Roy employed CNN to extract discriminative features from multiple scales across several
non-overlapping standardized frequency bands for the classification of motor imagery in the
EEG [22]. Following this, the scholar seamlessly integrated an adaptive transfer learning model
while synergistically fusing multi-scale features to craft a top-tier classifier. Dalin et al. [23] proposed
a graph-based convolutional Recurrent Attention Model for motor imagery classification from EEG
signal, aiming to directly extend pre-trained models to new users without subject-specific adaptation.
In the realm of epilepsy diagnosis, certain researchers have innovatively merged brainwave signals
with two-dimensional imagery. Dissanayake et al. [24] proposed a subject-independent seizure
prediction model based on Geometric Deep Learning and discussed its potential contribution to
epilepsy localization using scalp EEG.

Although deep learning techniques have made significant advancements in the field of EEG
signal processing, some researchers still emphasize the potential advantages of traditional machine
learning methods in data interpretation and explicit feature characterization of EEG signal. Therefore,
these scholars have invested a considerable amount of research effort in the feature extraction of
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EEG signal to explore feature sets that can enhance the interpretability and accuracy of models.
Yuan et al. [30] extracted approximate entropy, Hurst exponent, and scaling index obtained from
Multifractal Detrended Fluctuation Analysis (MF-DFA) and classified them using an extreme learning
machine with a satisfactory recognition accuracy of 96.5%. Zhang et al. [31] utilized common
spatial patterns for feature extraction, followed by implementing a CNN to distinguish seizure
periods and make predictions for epilepsy seizures. Tuncer [32] used the Substitution Box of the
Hamsi Hash Function to generate multi-level features and combined iterative domain component
analysis to establish an automatic EEG classifier. Sethy et al. [33] evaluated the classification
performance of machine learning for EEG signal and concluded that the best classifier is a fine KNN.
Varlı and Yılmaz [34] created a combined deep learning model that utilizes both time-frequency
component images of EEG signal and raw EEG signal for automatic classification. To reduce
dimensionality and enhance classification accuracy and generalization, many scholars have researched
feature extraction [35, 36].

Multifractals function as powerful tools for data analysis and pattern recognition across diverse
fields, adept at capturing the multifractal structure of data and extracting valuable features to address
complex and irregular problems. One specific realization of multifractals is multifractal detrended
fluctuation analysis (MF-DFA), a proven effective technique for assessing multifractal scale in non-
stationary data [37]. Researchers have successfully applied MF-DFA to analyze EEG signal with
promising outcomes [38, 39]. Zorick and Mandelkern [40] conducted an analysis of EEG in
different sleep states, demonstrating that MF-DFA serves as a useful pattern classification technique
capable of distinguishing various brain functional states. Additionally, Zhang et al. [41] constructed
a classification model based on MF-DFA and SVM, utilizing a genetic algorithm to determine
SVM parameters. They applied this model to the automatic detection of seizures. Furthermore,
Wang et al. [42] integrated fractal features extracted by MF-DFA with features based on other
indicators to develop a multi-index classifier.

Despite the availability of various classification models for EEG signal classification, many of them
suffer from issues such as excessive complexity or low accuracy. Inspired by the work in [43], we
observe a similarity between the energy dissipation curve during the phase separation process of the
Alle-Cahn (AC) model and the Hurst exponent curve 2−H(2) calculated using MF-DFA. Therefore, we
propose a classification framework that leverages the AC energy function. We compute energy features
using the AC energy function and achieve multi-scale feature extraction by varying the exponent value
in the double-well potential energy function. Then, we combine energy features extracted at multi-
scale into a single vector, which is then applied to the SVM for classification. Finally, we compare the
classifier proposed in this paper with the classifier based on the multifractal method, and find that our
classifier shows better performance.

The contents of this paper are as follows: In Section 2, we describe the methodology. Section 3
presents the data information. Section 4 contains the computational experiments. In Section 5,
we juxtapose the methodology with both conventional and state-of-the-art approaches in epilepsy
automatic classification. The conclusion is put forward in Section 6.
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2. Methods

Building upon the insights presented in the article by Wang et al. [43], it is observed that the energy
dissipation curve, corresponding to the energy function in the AC model, closely aligns with the 2 −
H(2) curve in multifractal analysis. Here, 2 − H(2) serves as a measure describing the fractal features
at a specific scale. In the multifractal approach, the generalized Hurst exponent is extracted at multiple
scales by varying the q value, and these features are amalgamated to form the feature vectors of the data.
Following this conceptual framework, the current study initially computes the energy of the data using
the AC function as the standard energy feature. Subsequently, multi-scale feature extraction is achieved
by modifying the exponent of the double-well potential energy function. A novel feature vector is then
constructed by amalgamating the energy features at different scales, effectively portraying the self-
similarity and complexity of the data. Ultimately, this vector is utilized as input for classification in
an SVM.

2.1. Allen-Cahn energy function

The AC model was first proposed by Allen and Cahn in 1979 [44]. This model was used to describe
the process of phase separation and interface evolution in material phase transition, and it is one of
the important models in the fields of solid-state physics and material science. However, in this paper,
we just focus on AC energy function. This function is mainly used to describe the energy distribution
of the phase field separation system. The AC energy function usually consists of two main terms, the
gradient term and the free energy density term, and this function is shown in Eq (2.1):

ε(φ(x)) =

∫ b

a

E(φ(x))
ε2 +

1
2

(|∇φ(x)|)2dx. (2.1)

Among them, where [a, b] ⊂ R. φ(x) is the value of the sequence at point x. ∇φ is a gradient
term, which represents the spatial variation of the phase field variable φ. ε is a positive parameter
related to the interfacial transition thickness. E(φ(x))

ε2 as an energy term in the energy function. Where
E(φ(x)) represents a potential energy function, typically a smooth function of φ(x), used to describe
the interaction potential energy. The double-well potential energy function is one of the most useful
energy potentials in the phase field model [45]. Figure 1 shows the energy curve of the double-well
potential energy function. When φ takes 1 or −1, it is the minimum energy state. In this paper, the
function with a double-well potential form is selected,

E(φ) =
1
4

(φ2 − 1)2. (2.2)

Our novel model delineates multiple scales by introducing variability into the exponential value of
the original double-well potential energy function, represented as a variable exponent denoted by M.

EM(φ) =
1
4

(φ2 − 1)M. (2.3)

In this model, the parameter M represents the concept of multi-scale analysis. Assume that energy
features are extracted at n different scales. To clarify, we designate the values of M across n scales
as {m j}, where j = 1, 2, . . . , n, corresponding to the j-th scale. Based on different datasets, adjusting
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the value of M to achieve the best performance is necessary. After numerous numerical experiments,
we have observed that the choice of scale significantly impacts the quality of feature extraction.
Typically, selecting n evenly spaced numbers within the range [10, 15] or [1, 3] yields satisfactory
results. Therefore, the multi-scale double-well potential energy function is represented by Eq (2.3).
Accordingly, we have refined Eq (2.1) to derive the multi-scale energy equation as follows:

εM(φ(x)) =

∫ b

a

EM(φ(x))
ε2 +

1
2

(|∇φ(x)|)2dx. (2.4)
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(a)
Figure 1. The energy curve of the double-well potential energy function.

In numerical calculations, we discretize the equation in one dimension. Assuming there are N EEG
signal in a sample set, we denote φ(xi) as the EEG signal at the i − th position, where i = 1, 2, ...N. Let
φi = φ(xi). Subsequently, we discretize the gradient term in a central difference format. Then, the AC
energy value of the EEG signal at the i − th position at scale M can be calculated as follows:

εM(φi) =
EM(φi)
ε2 +

1
2

(φi+1 − φi−1)2

4h2 . (2.5)

The ultimate AC energy expression is shown in Eq (2.6). By means of this function, the energy
features of the sample set across n different scales can be computed.

εM(φ(x)) =

n−1∑
i=2

εM(φi). (2.6)

2.2. Support vector machine

SVM was originally conceived and developed by Vapnik and Cortes in the late 1960s and early
1970s [46]. SVM is a common tool for data classification and image classification [47, 48]. When
dealing with nonlinear multi-scale features for EEG classification, SVM can leverage kernel functions
to map the data into a high-dimensional space. This transformation effectively converts the nonlinear
problem into a linear one, ensuring the linear separability of the data in the high-dimensional space.
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Moreover, employing the kernel trick to compute kernel function values eliminates the necessity of
explicitly calculating feature vectors and their corresponding inner products in the high-dimensional
feature space. This strategic approach significantly mitigates computational complexity.

Drawing from the aforementioned considerations, this study opts for SVM, leveraging its
performance advantages, to conduct binary classification on nonlinear EEG signal for the purpose of
automated seizure detection and classification. Employing the Gaussian kernel function facilitates
the mapping of data into an infinite-dimensional feature space, ensuring relative robustness while
concurrently enhancing computational efficiency. First, build a training data set containing n samples
with m features each and denote the dataset as (x1, y1), (x2, y2), ..., (xn, yn), where xi ⊂ R

m is an m-
dimensional feature vector. yi is the corresponding label, which takes the value of +1 or −1 to denote
positive and negative categories, respectively. Define the decision function f (x) and denote it as:

f (x) = sign(w · K(xi, x j) + b), (2.7)

where w is a weight vector, K(xi, x j) is the kernel function, and b denotes the intercept. The Gaussian
kernel function was chosen for this study in the following form:

K(xi, x j) = exp(−
‖xi − x j‖

2

2σ2 ). (2.8)

Let C be a regularization parameter that controls the trade-off between the interval and the
classification error. ζi is a slack variable that is used to handle the sample points in the nonlinear
case. The objective function of SVM can be expressed as:

minimize
1
2

(‖w‖)2 + C
n∑

i=1

ζi, (2.9)

s.t.

yi(w · K(xi, x j) + b) ≥ 1 − ζi,

ζi ≥ 0, i = 1, 2, ..., n.
(2.10)

3. Database

We obtained five sets of EEG signal related to epilepsy from the publicly available database at the
University of Bonn, Germany. This database comprises EEG data from five healthy individuals and
five epilepsy patients. We collect 200 sets of normal EEG signal and 300 sets of abnormal EEG signal.
This is a single-channel database, with each sub-dataset containing 100 data fragments. Each data
fragment has a duration of 23.6 seconds and consists of 4097 data points. The signal has a resolution
of 12 bits and is sampled at a frequency of 173.61 Hz.

4. Numerical experiments

In the numerical experiment, we calculated the energy features of EEG signal at six different scales
using the proposed new model for feature extraction. These features were then tested for classification
performance using SVM. Additionally, we extracted six features from the same scale using MF-DFA
and combined them with SVM to build a classifier. All computations were performed on MATLAB,
running on an Intel(R) Core(TM) i7-10750H CPU@2.60GHz.

AIMS Mathematics Volume 9, Issue 6, 16605–16622.



16611

4.1. Energy features extraction of EEG

Now, we conduct numerical experiments on AC-SVM using a database comprising 500 EEG
sequences. Firstly, we set the parameter ε to 1 and set n = 6 as the number of multi-scale and
we choose six evenly spaced values for m j from the interval [1, 3]. Subsequently, for each scale,
we compute the AC energy features εM for 300 abnormal EEG signal and 200 normal EEG signal.
The features extracted across these scales, corresponding to each column of data, are illustrated in
Figure 2. Notably, the range of features extracted from normal EEG signal differs from that of abnormal
EEG signal. Overall, the energy features of normal EEG signal are significantly lower than those of
abnormal EEG signal. Specifically, the energy feature range for normal EEG signal spans from −0.20
to 0.15, whereas the range for abnormal EEG signal spans from −0.24 to 0.19. Additionally, the energy
features at different scales can be roughly delineated into distinct regions, with each color region in
Figure 2(b) being larger than its counterpart in Figure 2(a).

(a)

(b)
Figure 2. 6*200 AC energy (ACE) features extracted from 200 normal EEG signal in (a)
and 6*300 AC energy features extracted from 300 abnormal EEG signal in (b). Points of the
same color represent six features extracted from the same data column. The blue and green
areas each encompass energy features for two different indicators, while the pink and yellow
areas each contain features for a single indicator.
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To comprehensively assess the efficacy of the novel classifier, we employ MF-DFA to extract
fractal features at six distinct scales and use multifractal features combined with SVM and Gaussian
kernal to form a classifier named MF-SVM. The resulting multifractal features corresponding to each
data column are visually depicted in Figure 3. The graphical representation distinctly illustrates
that multifractal features in abnormal EEG signal have a broader range compared to their normal
counterparts. Nevertheless, in contrast to the discernible delineation of energy features, multifractal
features lack the clarity to demarcate a specific region, underscoring their diminished independence
across different scales. Furthermore, upon scrutinizing Figure 3(b), a notable dissimilarity in the
multifractal feature range between the latter 100 signals and the preceding 200 signals is apparent, a
contrast not evident in the energy features. This observation elucidates the superior stability exhibited
by energy features relative to multifractal features.
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(b)
Figure 3. 6*200 Multifractal (MF) features extracted from 200 normal EEG signal in (a) and
6*300 Fractal features extracted from 300 abnormal EEG signal in (b). Points of the same
color represent six features extracted from the same data column.

In addition, we summarize the features at different scales and show them in Figures 4 and 5. Both
features show that the features of abnormal EEG signal exhibit greater dispersion, whereas the features
of normal EEG signal are comparatively concentrated. Comparing the two graphs vertically, it is found
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that the distribution of multifractal features is more dispersed than that of energy features. In addition,
it can be intuitively reflected that the independence of fractal features between different scales is lower
than that of energy features.
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Figure 4. ACE features under six scales of (a) normal and (b) abnormal EEG signal.
Horizontal axis represents the i-th dimension.
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Figure 5. MF features under six scales of (a) normal and (b) abnormal EEG signal.
Horizontal axis represents the i-th dimension.

4.2. Classification using SVM

In Section 4.1, we use the AC energy function to extract the energy features at six scales. Next, we
combine the corresponding features of each set of data into a feature vector, and finally form a 500*6
matrix for SVM for classification. Considering the shortage of EEG signal, this paper uses the Leave
One Out Cross Validation (LOOCV) to evaluate the performance of the new classifier. We randomly
divide the sample into k subsets, of which (k − 1) subsets are used as the training set and the rest are
used as the test set. Therefore, the data set is tested k times; that is, each sample is used for testing.
In brief, LOOCV has a low estimation bias when evaluating the generalization ability of the model,
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and LOOCV usually provides the most accurate performance evaluation. After that, we use SVM to
calculate the following accuracy, sensitivity, and specificity:

accuracy =
T P + T N

T P + FN + FP + T N
, sensitivity =

T P
T P + FN

, speci f icity =
T N

FP + T N
. (4.1)

Among them, TP, TN, FP, and FN are true positive, true negative, false positive, and false negative,
respectively. Accuracy, sensitivity, and specificity are used to evaluate the probability, missed diagnosis
rate, and misdiagnosis rate of SVM correctly identifying samples, respectively. The performance
of AC-SVM and MF-SVM is tested by the method of LOOCV. We partitioned the samples into 10
subsets, setting k = 10 for cross-validation. The classification accuracy, sensitivity, and specificity of
AC-SVM and MF-SVM are shown in Table 1. Obviously, AC-SVM draws lessons from the idea of
extracting features at multi-scales; it shows obvious advantages in accuracy, sensitivity, and specificity.
In general, it is difficult to improve the accuracy, but AC-SVM can improve the accuracy by nearly
3% compared with MF-SVM. Of particular importance is the notable efficiency gained in extracting
multi-scale features through the AC energy function compared to MF-DFA. The temporal footprint
for feature extraction per signal unit is meticulously documented in Table 1, where each sample set
comprises a total of 4,097 data points. Additionally, we found that classification using only the Hurst
exponent and Approximate entropy both achieved an accuracy of 88% respectively, while classification
using only DFA just achieved an accuracy of 81%.

Table 1. Classification comparisons between AC-SVM and MF-SVM.

Methods Accuracy Sensitivity Specificity Time(s)
MF-SVM 87.40% 89.28% 88.11% 0.356934
AC-SVM 89.97% 94.17% 89.95% 0.007738

4.3. Incorporating other nonlinear features for classification

To further optimize classification performance, we will integrate the features extracted from AC
energy with Kolmogorov complexity, Shannon entropy, and Higuchi’s Hurst exponent into a new
feature set. This combination results in a classifier named AC-MC-SVM. The conceptual framework
for this approach draws inspiration from prior literature that utilizes SVM for multivariate classification
of EEG signal, forming the MC-SVM classifier [42]. Introduced by Claude Shannon in 1948, Shannon
entropy measures dataset uncertainty and guides data compression and cryptography [50]. Kolmogorov
complexity, proposed by Andrei Nikolaevich Kolmogorov in 1963 and formally developed by Lempel
and Ziv in 1976 through LZ78, quantifies the minimal bit-length required for sequence generation
and reflects sequence complexity [51, 52]. Higuchi’s Hurst exponent, which measures long-range
dependencies in time series, indicates persistence with values over 0.5, playing a crucial role in
analyzing data patterns [53].

We employed the AC-MC-SVM classifier for testing on the same database and contrasted the results
with those obtained using MC-SVM. The specific outcomes are delineated in Table 2. The comparison
reveals that our method not only diminishes computational expenses but also enhances accuracy by
approximately 2% compared to the MC-SVM.
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Table 2. Classification comparisons between MC-SVM and AC-MC-SVM.

Methods Accuracy Sensitivity Specificity Time(s)
MC-SVM 95.29% 96.28% 94.55% 0.996189

AC-MC-SVM 97.19% 97.96% 94.61% 0.735338

5. Discussion

Firstly, we assess our method against other traditional machine learning approaches by conducting
a comprehensive comparison across three key metrics: Accuracy, sensitivity, and specificity. The
results of this evaluation are presented in Table 3. Acharya et al. [54] utilized continuous wavelet
transform (CWT), higher-order spectra (HOS), and texture features, combined with SVM (CWT-HOS-
SVM), for automatic classification of EEG signal. Brari et al. [55] proposed a method based on the A.
Wolf method for determining the maximum lyapunov exponent (LLE) algorithm, used for analyzing
chaotic signals disturbed by noise. This method achieved a classification accuracy of 96.48% for
classes AB-CDE in the Bonn dataset. Subsequently, we conducted a survey of cutting-edge EEG
classification methods based on DL and summarized the statistical overview in rows 4–6 of Table 3.
Acharya et al. [20] pioneered the application of CNN in analyzing EEG signal. They developed a
deep convolutional neural network algorithm comprising 13 layers to automatically identify EEG
signal corresponding to normal, pre-ictal, and ictal states. In the study by Türk and Özerdem [56],
two-dimensional frequency-time scale diagrams were generated by applying a continuous wavelet
transform to EEG records. Subsequently, they employed CNN to analyze these scale diagrams for
feature extraction and classification. We demonstrated the effectiveness of this approach in classifying
classes A-C in the Bonn dataset. Bajpai et al. [57] employed time-frequency spectrograms to convert
EEG signal into the image domain. Subsequently, they conducted model fusion, integrating three
prominent CNN models (MC-CNN) for the classification task on EEG datasets sourced from Temple
University Hospital.

Table 3. Compare the classification performance with other methods.

Author Methods Accuracy Sensitivity Specificity
Wang et al. (2023) [42] MC-SVM 95.29% 96.28% 94.55%

Acharya et al. (2013) [54] CWT-HOS-SVM 96.00% 96.90% 97.00%
Brari et al. (2022) [55] LLE-SVM 96.48% / /

Acharya et al. (2018) [20] CNN 88.67% 90.00% 95.00%
Türk et al. (2019) [56] CNN-Scalogram 96.50% 98.94% 94.28%

Bajpai et al. (2021) [57] MC-CNN 96.65% 90.48% 100.00%
The method proposed in this paper AC-MC-SVM 97.19% 97.96% 94.61%

Remarkably, the AC-SVM classifier exhibits a substantial advantage in processing speed,
significantly enhancing classification efficiency. This improvement markedly accelerates the diagnostic
process in practical applications. The extraction of complex nonlinear eigenvalues, such as the largest
lyapunov exponent (LLE), approximate entropy (ApEn), and fuzzy entropy (FuzzyEn), typically
demands extensive computational resources. For a detailed comparison of classification times across
various nonlinear features, we refer the reader to the comprehensive summary presented in Table 4,
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which refers to the article [58].

Table 4. Compare the classification time with other methods.

Features Classifier Time (s)
ApEn SVM 741.540

PuzzyEn KNN 21.390
LLE RFC 534.360
AC SVM 0.007

AC-MC SVM 0.735

6. Conclusions

In our research, we introduced AC-SVM, an innovative method that significantly improves the
feature extraction process for medical signal analysis, thereby enhancing the efficiency of classification
tasks. By integrating the AC energy function with a sophisticated approach for eigenvalue computation,
this method achieves multi-scale feature extraction. The AC energy function is capable of addressing
the non-linear characteristics of medical signals, achieving a certain level of accuracy while reducing
computational costs. It has been proven that, especially in diagnosing epilepsy, this method, when
combined with other linear features, surpasses traditional classification techniques in terms of accuracy,
sensitivity, and specificity. This holds the potential to provide a promising new tool for medical
diagnostics, offering broad prospects for future application.

Our approach has demonstrably optimized computational efficiency, substantially curtailing both
computational expenses and duration. In terms of accuracy, it surpasses the majority of traditional
machine learning methodologies, though it necessitates further refinement to align with the forefront of
contemporary deep learning paradigms. In our further investigation into the automatic classification of
epilepsy syndromes, we will integrate other neurologically relevant features to optimize classification
performance. In addition, we will apply the method proposed in this paper to the classification of
other medical signals, such as electrocardiograms. Moreover, we can further improve the accuracy of
feature extraction in our method by leveraging additional phase field equations, aiming to furnish the
biomedical sector with classifiers of enhanced caliber.
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Appendix

Below is the associated code for extracting energy features from normal EEG signal.

c l e a r ; c l c ; c l o s e a l l ; c l f ;
t i c
n =200; %E x t r a c t 200 normal EEG s i g n a l
m=6; q= l i n s p a c e ( 1 , 1 0 ,m) ; %Development o f s i x f e a t u r e s c a l e s
% I n i t i a l EEG s i g n a l
f o r i i =1: n

temp= t e x t r e a d ( [ num2s t r ( i i ) ’ . t x t ’ ] ) ;
temp=temp ’ ;
s i g =temp ;
s i g =( s i g −min ( s i g ) ) / ( max ( s i g )−min ( s i g ) ) ;

% Step1
f o r l =1:m

hh=q ( l ) ; E=0; h =1; ep=h ; ep2=ep ^ 2 ;
f o r i =2: l e n g t h ( s i g )−1

E=E+0 .25*( s i g ( i )^2 −1)^ hh ;
end
E=E / ep2 ;

% Step2
f o r i =2: l e n g t h ( s i g )−1

E=E + 0 . 5 * ( ( s i g ( i +1)− s i g ( i − 1 ) ) / ( 2 * h ) ) ^ 2 ;
end
E=E*h ^ 2 ; E=E / l e n g t h ( s i g ) ;
Ene ( i i , l )=E ;

end
end
Ene= r e a l ( Ene ) ;
t o c
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