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Abstract: Frames with special structures play a crucial role in various industrial applications, such
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this paper, we will discuss a more general setting, i.e., a g-frame induced by the projective unitary
representation. We show some new results on the dilation property for g-frame generator sets for
unitary groups and projective unitary representations. In particular, by using complete wandering
operators, several properties of g-frame generators for projective unitary representations have been
obtained. Moreover, we explore some characterizations of the g-frame generator dual pairs.
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1. Introduction

Frames have appeared implicitly in the mathematical literature before they were introduced
officially by Duffin and Schaeffer in the context of the non-harmonic Fourier series [1]. Since the
celebrated work by Daubechies et al. [2], frame theory has recently become an important tool in many
fields such as sampling theory, signal processing and data compression. In recent years, various
generalizations of frames have been proposed for different purposes such as frames of subspaces
(fusion frames), oblique frames, pseudo-frames, outer frames and g-frames [3–7]. Indeed, all of
these generalizations can be regarded as special cases of g-frames [7]. Today, g-frames, with their
applications, have been investigated by many researchers [8–12]. As is well known, frames with
a special structure, such as Gabor frames and wavelet frames, not only have great variety for use
in applications, but also they have undergone extensive theoretical analysis [13–15]. Moreover, the
dilation property is very important in frame theory and has attracted much attention from scholars
from different related fields. The classical dilation theorem for frames shows that every frame for a
Hilbert space can be dilated to be a Riesz basis for a larger space [15]. Motivated by these aspects of
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frames, in this work, we are interested in the dilations of the more general g-frames that are generated
by a unitary group, or by a projective unitary representation. In addition, we would like to work more
with dual g-frame generators for projective unitary representations.

Throughout this paper, H and K are two Hilbert spaces over the field of complex numbers and I is
the identity operator on H. The notation B(H,K) refers to the space of all bounded linear operators
from H into K, and we write B(H) = B(H,H) as the shorthand. Denote by {Hi : i ∈ J} a sequence of
subspaces of K and by B(H,Hi) the collection of all bounded linear operators from H into Hi for every
i ∈ J, where J is a countable index set. Let {Λi ∈ B(H,Hi)}i∈J be a family of operators. If there exist
two constants A and B with 0 < A ≤ B < ∞ such that

A|| f ||2 ≤
∑
i∈J

||Λi f ||2 ≤ B|| f ||2, ∀ f ∈ H,

we call {Λi ∈ B(H,Hi)}i∈J a g-frame for H with respect to {Hi}i∈J, where A and B are called the lower
and upper frame bounds, respectively. For simplification, if the spaces are clear, we will just say that
{Λi}i∈J is a g-frame for H in the sequel. If we only have the upper bound, then {Λi}i∈J is said to be a
g-Bessel sequence for H. {Λi}i∈J is called a tight g-frame for H if A = B, and a Parseval g-frame for H
provided that A = B = 1 [7].

If {Λi}i∈J is a g-frame for H, then we can define the operator S : H → H by

S f =
∑
i∈J

Λ∗iΛi f , ∀ f ∈ H,

where Λ∗i is the adjoint operator of Λi. Obviously, S is a well-defined, bounded, positive, invertible
operator on H. Noted that S is a g-frame operator that is associated with {Λi}i∈J. Another fact is that
{ΛiS −1}i∈J is also a g-frame for H and {ΛiS −

1
2 }i∈J is a Parseval g-frame for H (see [7]).

{Λi ∈ B(H,Hi)}i∈J is called a g-orthonormal basis for H if it satisfies the following:

⟨Λ∗i1 fi1 ,Λ
∗
i2 fi2⟩ = δi1,i2⟨ fi1 , fi2⟩, ∀i1, i2 ∈ J, fi1 ∈ Hi1 , fi2 ∈ Hi2 ,∑

i∈J

||Λi f ||2 = || f ||2, ∀ f ∈ H,

where δi1,i2 is the Kronecker delta. Actually, by [16, Corollary 2.13], {Λi}i∈J is a g-orthonormal basis if
and only if {Λi}i∈J is a g-frame and the first equation holds.

The organization of this article is as follows. In Section 2, the dilation results for g-frame
generator sets for unitary group will be given. In Section 3, we focus on the g-frame generator
sets for projective unitary representation of countable groups and consider the corresponding dilation
property. In Section 4, we give some characterizations of g-frame generators for projective unitary
representation in terms of complete wandering operators. Moreover, we study some properties of g-
frame generators. In Section 5, we introduce the notion of dual g-frame generators and explore some
equivalent characterizations of g-frame generator dual pairs.

2. g-frame generator sets for unitary groups

In this section, we mainly focus on the dilation problem for g-frame generator sets for a countable
unitary group, as well as present some existing dilation results.
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Recall that a unitary system is a subset of unitary operators acting on H which contains the identity
operator I in B(H) [17]. Evidently, a unitary group is a special case of unitary system. Two unitary
systemsU1 andU2 acting on Hilbert spaces H1 and H2, respectively, are said to be unitarily equivalent
if there is a unitary operator T : H1 → H2 such that TU1T ∗ = U2.

According to [18], if H1,H2 are Hilbert spaces, let H1 ⊙ H2 be the algebraic tensor product over C.
Denote an inner product on H1 ⊙ H2 by

⟨ξ1 ⊗ ξ2, η1 ⊗ η2⟩ = ⟨ξ1, η1⟩1⟨ξ2, η2⟩2, ∀ξ1, η1 ∈ H1, ξ2, η2 ∈ H2

extended by linearity, where ⟨·, ·⟩i is the inner product of Hi. Then the Hilbert space tensor product
H1 ⊗ H2 is the completion of H1 ⊙ H2. Generally, if S 1,T1 ∈ B(H1) and S 2,T2 ∈ B(H2), we can define
S 1 ⊗ S 2 ∈ B(H1 ⊗ H2) by

(S 1 ⊗ S 2)(ξ ⊗ η) = S 1ξ ⊗ S 2η, ∀ξ ∈ H1, η ∈ H2.

Then (S 1 ⊗ S 2)(T1 ⊗T2) = S 1T1 ⊗ S 2T2, S 1 ⊗ (S 2 +T2) = (S 1 ⊗ S 2 + S 1 ⊗T2) and (S 1 ⊗ S 2)∗ = S ∗1 ⊗ S ∗2.
In what follows, we use J to denote a countable index set and I ⊆ J to denote a finite set.

Definition 2.1. ( [19, Definition 2.1]) LetU be a countable unitary system on H and {Λi ∈ B(H,K)}i∈J.
We say that {Λi}i∈J is a g-Bessel sequence (g-frame, Parseval g-frame, or tight g-frame) generator set
forU if {ΛiU∗}i∈J,U∈U is a g-Bessel sequence (g-frame, Parseval g-frame, or tight g-frame) for H.

In particular, for Λ ∈ B(H,K), we say that Λ is a g-Bessel sequence (g-frame, Parseval g-frame, or
tight g-frame) generator forU if {ΛU∗}U∈U is a g-Bessel sequence (g-frame, Parseval g-frame, or tight
g-frame) for H.

Inspired by the above definition, we introduce the following notion.

Definition 2.2. Let U be a countable unitary system on H and {ΛiV ∈ B(H,K)}i∈J,V∈U. {ΛiV}i∈J,V∈U is
called a diagonal (Parseval or tight) g-frame generator set for U if {δVUΛiVU∗}i∈J,V,U∈U is a (Parseval
or tight) g-frame for H, where δVU is the Kronecker delta.

Remark 2.3. Let I ⊆ J be a finite set and U be a countable unitary system. For a Hilbert space K,
define an operator

LiU : K → ℓ2(I ×U) ⊗ K,

LiUk = eiU ⊗ k, ∀ k ∈ K,

where {eiU : i ∈ I,U ∈ U} is the standard basis of ℓ2(I×U) and ⊗ denotes a tensor product. It is easy
to check that, for each a ∈ ℓ2(I ×U) and k ∈ K,

L∗iU : ℓ2(I ×U) ⊗ K → K,

L∗iU(a ⊗ k) = ⟨a, eiU⟩k.

We see from Lemma 2.9 in [19] that, for a g-frame generator set {Λi ∈ B(H,K)}i∈I for U, the
analysis operator of {ΛiU∗}i∈I,U∈U is defined by

θ : H → ℓ2(I ×U) ⊗ K,
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θ f =
∑

i∈I,U∈U

LiUΛiU∗ f , ∀ f ∈ H.

The operator S : H → H given by

S f = θ∗θ f =
∑

i∈I,U∈U

UΛ∗iΛiU∗ f , ∀ f ∈ H,

is called the g-frame operator of {ΛiU∗}i∈I,U∈U. Particularly, if Λ is a g-frame generator for U, the
analysis operator of {ΛU∗}U∈U can be defined by

θ′ : H → ℓ2(U) ⊗ K,

θ′ f =
∑
U∈U

eU ⊗ ΛU∗ f , ∀ f ∈ H,

where {eU}U∈U is the standard basis for ℓ2(U).

Let U be a unitary group and {eiU : i ∈ I,U ∈ U} be the standard basis of ℓ2(I × U). For each
U ∈ U, we define the unitary operator on ℓ2(I ×U) by λUeiV = ei(UV), where i ∈ I,V ∈ U.

The following result shows that a g-frame generator set for a unitary group is an image of an
orthonormal basis under a positive operator with a suitable spectrum.

Theorem 2.4. LetU be a unitary group on H and {Λi ∈ B(H,K)}i∈I be a g-frame generator set forU
with the frame bounds A and B. Then,

(1) there exists an isometry Φ : H → ℓ2(I×U)⊗K such that Φ∗(λU ⊗ IK)Φ = U for all U ∈ U, where
IK is the identity operator on K;

(2) there exists a positive operator Ξ : ℓ2(I × U) ⊗ K → Φ(H) such that {A
1
2 , B

1
2 } ⊆ σ(Ξ|Φ(H)) ⊆

[A
1
2 , B

1
2 ] and, for any U ∈ U and g ∈ K,

Ξ(eiU ⊗ g) = ΦUΛ∗i g,

where σ(Ξ|Φ(H)) denotes the spectrum of the operator Ξ|Φ(H);

(3) Ξ2 is unitarily equivalent to S ⊕ 000, where S is the g-frame operator of {ΛiU∗}i∈I,U∈U and 000 is the
zero operator on Φ(H)⊥.

Proof. Assume that S is the g-frame operator for {ΛiU∗}i∈I,U∈U; then,

S f =
∑

i∈I,U∈U

UΛ∗iΛiU∗ f , ∀ f ∈ H.

First, we want to prove that S U = US for each U ∈ U. In fact, for f ∈ H,

US f = U
∑

i∈I,V∈U

VΛ∗iΛiV∗ f

=
∑

i∈I,V∈U

UVΛ∗iΛiV∗ f
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=
∑

i∈I,V∈U

(UV)Λ∗iΛi(UV)∗U f

= S U f .

Since S is an invertible positive operator, we have that S −
1
2 U = US −

1
2 for each U ∈ U. Note that

{Λi ∈ B(H,K)}i∈I is a g-frame generator set for U; we know that {ΛiU∗S −
1
2 }i∈I,U∈U is a Parseval

g-frame (see [7], Remark1). Then, {ΛiS −
1
2 U∗}i∈I,U∈U is also a Parseval g-frame, that is, {ΛiS −

1
2 }i∈I

is a Parseval g-frame generator set for U. Let Φ be the analysis operator of the Parseval g-frame
{ΛiS −

1
2 U∗}i∈I,U∈U. Then,

Φ : H → ℓ2(I ×U) ⊗ K,

Φ f =
∑

i∈I,U∈U

LiUΛiS −
1
2 U∗ f , ∀ f ∈ H.

Thus, for each f ∈ H and U ∈ U, we have

(λU ⊗ IK)Φ f = (λU ⊗ IK)
∑

i∈I,V∈U

LiVΛiS −
1
2 V∗ f

=
∑

i∈I,V∈U

(λU ⊗ IK)(eiV ⊗ ΛiS −
1
2 V∗ f )

=
∑

i∈I,V∈U

(ei(UV) ⊗ ΛiS −
1
2 V∗ f )

=
∑

i∈I,V∈U

Li(UV)ΛiS −
1
2 V∗ f

=
∑

i∈I,V∈U

Li(UV)ΛiS −
1
2 (UV)∗U f

= ΦU f .

Since {ΛiS −
1
2 U∗}i∈I,U∈U is a Parseval g-frame, it implies that Φ∗Φ is the identity on H. This leads to

Φ∗(λU ⊗ IK)Φ = U,

that is, (1) holds.
Let Φ∗ be the synthesis operator of {ΛiS −

1
2 U∗}i∈I,U∈U defined by

Φ∗ : ℓ2(I ×U) ⊗ K → H,

Φ∗ =
∑

i∈I,U∈U

U(ΛiS −
1
2 )∗L∗iU .

Set Ξ = ΦS
1
2Φ∗. Then for all U ∈ U and g ∈ K, one has

Ξ(ei′U ⊗ g) = ΦS
1
2Φ∗(ei′U ⊗ g)

= ΦS
1
2

∑
i∈I,V∈U

V(ΛiS −
1
2 )∗L∗iV(ei′U ⊗ g)

= ΦS
1
2

∑
i∈I,V∈U

V(ΛiS −
1
2 )∗⟨ei′U , eiV⟩g
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= ΦS
1
2 US −

1
2Λ∗i′g = ΦUΛ∗i′g.

Since any element in Φ(H) can be expressed as
∑

i∈I,U∈U
(eiU ⊗ ΛiS −

1
2 U∗ f ) for f ∈ H, we have

∥Ξ
∑

i∈I,U∈U

(eiU ⊗ ΛiS −
1
2 U∗ f )∥2

= ∥
∑

i∈I,U∈U

Ξ(eiU ⊗ ΛiS −
1
2 U∗ f )∥2

= ∥
∑

i∈I,U∈U

ΦUΛ∗iΛiS −
1
2 U∗ f ∥2

= ∥
∑

i∈I,U∈U

UΛ∗iΛiS −
1
2 U∗ f ∥2

= ∥
∑

i∈I,U∈U

UΛ∗iΛiU∗S −
1
2 f ∥2

= ∥S
1
2 f ∥2 = ⟨S f , f ⟩.

This implies that
A∥ f ∥2 ≤ ∥Ξ

∑
i∈I,U∈U

(eiU ⊗ ΛiS −
1
2 U∗ f )∥2 ≤ B∥ f ∥2.

Since, for any f ∈ H, Φ f =
∑

i∈I,U∈U
(eiU ⊗ ΛiS −

1
2 U∗ f ) and Φ is an isometric operator, it follows that

∥ f ∥2 = ∥
∑

i∈I,U∈U

(eiU ⊗ ΛiS −
1
2 U∗ f )∥2.

Let g′ =
∑

i∈I,U∈U
(eiU ⊗ ΛiS −

1
2 U∗ f ). It turns out that

A∥g′∥2 ≤ ∥Ξg′∥2 ≤ B∥g′∥2 ∀g′ ∈ Φ(H),

which proves (2).
Finally, to verify (3), we define U0 : H ⊕ Φ(H)⊥ → ℓ2(I ×U) ⊗ K by

U0h =

Φh, h ∈ H,

h, h ∈ Φ(H)⊥.

Obviously, U0 is unitary because Φ is an isometric operator. Since Φ∗Φ is the identity on H and
Ξ = ΦS

1
2Φ∗, we get that

Ξ2 = ΦS
1
2Φ∗ΦS

1
2Φ∗ = ΦSΦ∗.

Then,

Ξ2U0h =

Ξ2Φh = ΦS h = U0S h, h ∈ H,

Ξ2h = ΦSΦ∗h = 0 = U0000h, h ∈ Φ(H)⊥,

Thus, Ξ2 = U0(S ⊕ 000)U∗0. The proof is complete. □
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Corollary 2.5. Suppose that U is a unitary group on Hilbert space H and {Λi ∈ B(H,K)}i∈I is a
g-frame generator set forU with the frame bounds A and B. Then,

(1) there exists a Hilbert space N ⊇ H and a unitary group V on N such that the restriction map
V ∋ V → V |H is a group isomorphism ofV ontoU;

(2) there exists a positive operator Ξ : N → H such that

{A
1
2 , B

1
2 } ⊂ σ(Ξ|H) ⊂ [A

1
2 , B

1
2 ].

Proof. Let N = ℓ2(I × U) ⊗ K. By Theorem 2.4(1), we know that Φ(H) is an invariant subspace of
λU ⊗ IK and Φ is an isometric operator, where Φ is defined as in Theorem 2.4. So, we can embed H into
N by identifying H with Φ(H). Denote V = {λU ⊗ IK}U∈U. Then, clearly, V is a unitary group on N.
Hence, the restriction mapV ∋ V → V |H is a group isomorphism ofV ontoU. By Theorem 2.4(2), it
is easily seen that (2) holds. □

3. g-frame generator sets for projective unitary representations

In this section, we survey the dilation property of g-frames in the context of projective unitary
representations. For this purpose, we need to recall a few concepts and notations, which can be found
in [20].

A projective unitary representation π for a countable group G is a mapping g → π(g) from G into
the groupU(H) of all unitary operators on a separable Hilbert space H such that

π(g)π(h) = µ(g, h)π(gh) for all g, h ∈ G,

where µ(g, h) is a scalar-valued function on G × G taking values in the circle group T. The function
µ(g, h) is then called a multiplier of π. We also say that π is a µ-projective unitary representation. It is
clear from the definition that

µ(g1, g2g3)µ(g2, g3) = µ(g1g2, g3)µ(g1, g2), g1, g2, g3 ∈ G, (3.1)

µ(g, e) = µ(e, g) = 1, g ∈ G, e is the group unit of G. (3.2)

Any function µ : G ×G → (T ) satisfying (3.1) and (3.2) above will be called a multiplier for G.
Similar to the group unitary representation case, the left regular projective representation with a

multiplier µ for G plays a crucial role here. Let µ be a multiplier for G. For each g ∈ G, we define
λg : ℓ2(I ×G)→ ℓ2(I ×G) by

λgeih = µ(g, h)ei(gh), h ∈ G, (3.3)

where I is a finite set and {eih}i∈I,h∈G is the standard orthonormal basis for ℓ2(I × G). Clearly, λg is a
unitary operator on ℓ2(I ×G).

Theorem 3.1. Let G be a countable group and π be a projective unitary representation of G on H with
a multiplier µ. Assume that {Λi ∈ B(H,K)}i∈I is a g-frame generator set for {π(g)}g∈G. Then,

AIMS Mathematics Volume 9, Issue 6, 16506–16525.
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(1) there exists a family of operators {Ci ∈ B(H,K)}i∈I such that {Ci}i∈I is a Parseval g-frame generator
set for {π(g)}g∈G;

(2) there exists an isometry Φ : H → ℓ2(I ×G) ⊗ K such that Φ∗(λg ⊗ IK)Φ = π(g) for all g ∈ G;

(3) there exists a projective unitary representation ∆(g) of G on ℓ2(I×G)⊗K and a family of operators
{Λ′i}i∈I such that {Λ′i∆(g)∗}i∈I,g∈G is a g-orthonormal basis for ℓ2(I ×G) ⊗ K;

(4) there exist µ-projective unitary representations π1 and π2 of G on a Hilbert space Φ(H)⊥ and
Φ(H), respectively, and diagonal Parseval g-frame generator sets {Mih}i∈I,h∈G and {Nih}i∈I,h∈G for
π1(g) and π2(g), respectively, such that {δgh[Mihπ1(g)∗⊕Nihπ2(g)∗]}i∈I,g,h∈G is a g-orthonormal basis
for Φ(H)⊥ ⊕ Φ(H).

Proof. (1) First, we need to check that π(g)S = S π(g) holds for all g ∈ G, where S is the g-frame
operator for {Λiπ(g)∗}i∈I,g∈G. Indeed, for g ∈ G and x ∈ H, we have

π(g)S x = π(g)

 ∑
i∈I,h∈G

π(h)Λ∗iΛiπ(h)∗x


=

 ∑
i∈I,h∈G

π(g)π(h)Λ∗iΛiπ(h)∗x


=
∑

i∈I,h∈G

µ(g, h)π(gh)Λ∗iΛiπ(h)∗x

=
∑

i∈I,h∈G

µ(g, h)π(gh)Λ∗iΛiπ(h)∗π(g)∗π(g)x

=
∑

i∈I,h∈G

µ(g, h)π(gh)Λ∗iΛi(π(g)π(h))∗π(g)x

=
∑

i∈I,h∈G

µ(g, h)µ(g, h)π(gh)Λ∗iΛiπ(gh)∗π(g)x

= S π(g)x.

Thus, π(g)S = S π(g), as claimed. Since S is an invertible positive operator, we know that S −
1
2π(g) =

π(g)S −
1
2 for each g ∈ G. Since {Λi ∈ B(H,K)}i∈I is a g-frame generator set for {π(g)}g∈G, it follows

that {ΛiS −
1
2π(g)∗}i∈I,g∈G is a Parseval g-frame for H. Let Ci = ΛiS −

1
2 . Then, it can be verified that Ci

satisfies the requirements.
(2) Let Φ : H → ℓ2(I ×G) be the analysis operator of the Parseval g-frame {Ciπ(g)∗}i∈I,g∈G. Then,

for each x ∈ H,
Φx =

∑
i∈I,g∈G

(eig ⊗Ciπ(g)∗x),

where {eig}i∈I,g∈G is the standard orthogonal basis of ℓ2(I ×G). Obviously, Φ is an isometric operator.
Let λg be a unitary operator as defined in (3.3). Since π(g)∗ = µ(g, g−1)π(g−1) and

(λg ⊗ IK)(ei(g−1h) ⊗ k) = µ(g, g−1h)(eih ⊗ k), (3.4)

AIMS Mathematics Volume 9, Issue 6, 16506–16525.
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for each k ∈ K, it follows that

Φπ(g)x =
∑

i∈I,h∈G

(eih ⊗Ciπ(h)∗π(g)x)

=
∑

i∈I,h∈G

{eih ⊗Ci[π(g)∗π(h)]∗x}

=
∑

i∈I,h∈G

{eih ⊗Ci[µ(g, g−1)π(g−1)π(h)]∗x}

=
∑

i∈I,h∈G

{eih ⊗Ci[µ(g, g−1)µ(g−1, h)π(g−1h)]∗x}

=
∑

i∈I,h∈G

µ(g, g−1h)µ(g−1, h)µ(g, g−1){(λg ⊗ IK)(eg−1h ⊗Ciπ(g−1h)∗x)}

= (λg ⊗ IK)
∑

i∈I,h∈G

(eg−1h ⊗Ciπ(g−1h)∗x)

= (λg ⊗ IK)Φx,

for each x ∈ H. In the penultimate step we used (3.1) and (3.2) to eliminate three multiplier terms.
Hence,

Φ∗(λg ⊗ IK)Φ = π(g), for all g ∈ G,

Thus, (2) is proved.
(3) Define ∆(g) = λg ⊗ π(g). For all h, g ∈ G, we have

∆(g)∆(h) = [λg ⊗ π(g)][λh ⊗ π(h)]
= λgλh ⊗ π(g)π(h)
= [µ(g, h)]2∆(gh).

Denote ν(g, h) = [µ(g, h)]2. Then, for any g1, g2, g3 ∈ G,

ν(g1g2, g3)ν(g1, g2) = [µ(g1g2, g3)µ(g1, g2)]2

= [µ(g1, g2g3)µ(g2, g3)]2

= ν(g1, g2g3)ν(g2, g3),

ν(g, e) = ν(e, g) = 1, g ∈ G, e is the unit of G,

and, consequently, ∆ is a ν-projective unitary representation of G.
Let N = ℓ2(I ×G) ⊗ K and Λ′i = (λe ⊗ ΛiS −

1
2 ). Then, for all g, h ∈ G, i, j ∈ I and k, ki, k j ∈ K, we

have

⟨Λ′i∆(g)∗(eig ⊗ ki),Λ′j∆(h)∗(e jg ⊗ k j)⟩

= ⟨(λe ⊗ ΛiS −
1
2 )(λ∗g ⊗ π(g)∗)(eig ⊗ ki), (λe ⊗ Λ jS −

1
2 )(λ∗h ⊗ π(h)∗)(e jh ⊗ k j)⟩

= δi, jδg,h⟨eig ⊗ ki, e jh ⊗ k j⟩,

AIMS Mathematics Volume 9, Issue 6, 16506–16525.



16515

and ∑
i∈I,g∈G

∥Λ′i∆(g)∗(eig ⊗ k)∥2

=
∑

i∈I,g∈G

∥(λe ⊗ ΛiS −
1
2 )(λ∗g ⊗ π(g)∗)(eig ⊗ k)∥2

=
∑

i∈I,g∈G

∥λ∗geig ⊗ ΛiS −
1
2π(g)∗k∥2

=
∑

i∈I,g∈G

∥ΛiS −
1
2π(g)∗k∥2

= ∥eig ⊗ k∥2.

Therefore, {Λ′i∆(g)∗}i∈I,g∈G is a g-orthonormal basis.
(4) Let P be the orthogonal projection onto Φ(H). Then for all x ∈ H, k ∈ K, g ∈ G and j ∈ I,

⟨Φx, P(e jg ⊗ k)⟩ = ⟨PΦx, (e jg ⊗ k)⟩

= ⟨
∑

i∈I,h∈G

(eih ⊗Ciπ(h)∗x), e jg ⊗ k⟩

= ⟨C jπ(g)∗x, k⟩
= ⟨x, π(g)C∗jk⟩
= ⟨Φx,Φπ(g)C∗jk⟩.

Hence, {P(e jg ⊗ k) − Φπ(g)C∗jk} ⊥ Φ(H). Since {P(e jg ⊗ k) − Φπ(g)C∗jk} ∈ Φ(H), it implies that

P(e jg ⊗ k) = Φπ(g)C∗jk. (3.5)

Using (3.4) and (3.5), for j ∈ I, h ∈ G and k ∈ K, we deduce that

(λg ⊗ IK)P(e jh ⊗ k)
= (λg ⊗ IK)Φπ(h)C∗jk

= (λg ⊗ IK)
∑

i∈I,v∈G

(eiv ⊗Ciπ(v)∗π(h)C∗jk)

=
∑

i∈I,v∈G

µ(g, v)(ei(gv) ⊗Ciπ(v)∗π(h)C∗jk))

=
∑

i∈I,v∈G

µ(g, v)(ei(gv) ⊗Ci(π(g)π(v))∗π(g)π(h)C∗jk))

=
∑

i∈I,v∈G

(ei(gv) ⊗Ciπ(gv)∗π(g)π(h)C∗jk))

= µ(g, h)Φπ(gh)C∗jk
= µ(g, h)P(e j(gh) ⊗ k)
= P(λg ⊗ IK)(e jh ⊗ k).

Thus, we get the commutation relation

(λg ⊗ IK)P = P(λg ⊗ IK), for all g ∈ G.
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Let Mig = λe ⊗ ΛiS −
1
2π(g)∗(I − P) and π1(h) = (I − P)(λh ⊗ IK), where e is the unit of G, i ∈ I and

g, h ∈ G. Then,

δghMigπ1(h)∗ = δgh(λe ⊗ ΛiS −
1
2π(g)∗)(I − P)(λ∗h ⊗ IK)(I − P)

= δgh(λ∗h ⊗ ΛiS −
1
2π(g)∗)(I − P)

= {(I − P)(λg ⊗ π(g)S −
1
2Λ∗i )}∗.

Since (I − P) is an orthogonal projection, we know that {δghMigπ1(h)∗}i∈I,g,h∈G is a Parseval g-frame for
Φ(H)⊥. For g, h ∈ G, we have

π1(g)π1(h) = (I − P)(λg ⊗ IK)(λh ⊗ IK) = (λgh ⊗ IK)(I − P)
= µ(g, h)(λgh ⊗ IK) = µ(g, h)π1(gh).

By restricting the domain of π1(g) to Φ(H)⊥, we can get that π1 is a µ-projective unitary representation
of G on Φ(H)⊥. For each i′ ∈ I and g′, h′ ∈ G, let Ni′g′ = λe ⊗ ΛiS −

1
2π(g′)∗ and π2(h′) = Φπ(h′)Φ∗.

Obviously, π2 is a µ-projective unitary representation of G on Φ(H). Moreover, we have

δg′h′Ni′g′π2(h′)∗ = δg′h′[λe ⊗ Λi′S −
1
2π(g′)∗]Φπ(h′)Φ∗

= δg′h′[λe ⊗ Λi′S −
1
2π(g′)∗]ΦΦ∗(λh′ ⊗ IK)ΦΦ∗

= δg′h′[λh′ ⊗ Λi′S −
1
2π(g′)∗]P

= [P(λ∗g′ ⊗ π(g
′)S −

1
2Λ∗i′)]

∗.

Hence, {δg′h′Ni′g′π2(h′)∗}i∈I,g,h∈G is a Parseval g-frame for Φ(H). Thus,

λe ⊗ ΛiS −
1
2π(h)∗

= δgh[(λe ⊗ ΛiS −
1
2π(h)∗)P + (λe ⊗ ΛiS −

1
2π(h)∗)(I − P)]

= δgh[Nihπ2(g)∗ ⊕ Mihπ1(g)∗].

By (3), it is easy to see that {δgh[Mihπ1(g)∗⊕Nihπ2(g)∗]}i∈I,g,h∈G is a g-orthonormal basis. This completes
the proof. □

4. g-frame generators for projective unitary representations

This section is devoted to investigating the g-frame with the structure of projective unitary
representations. We will see that the g-frame generators for a projective unitary representation can be
characterized from the perspective of complete wandering operators and operators in the commutant
of {π(g)}g∈G.

Definition 4.1. ( [21]) Let U be a unitary system. A complete wandering operator for U is a co-
isometry A ∈ B(H,K) such that AU∗ = {AU∗ : U ∈ U} is a g-orthonormal basis for H.

Let Q ⊆ B(H) be a set. The notation Q′ will denote the usual commutant of Q, that is,

Q′ = {T ∈ B(H) : T Q = QT for Q ∈ Q}.
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It is well known that, if T ∈ B(H) has closed range, then there exists an operator T † ∈ B(H) such
that

N(T †) = R(T )⊥, R(T †) = N(T )⊥ and TT †y = y, y ∈ R(T ),

where R(T ) and N(T ) denote the range and null space, respectively. This operator is uniquely
determined by these properties, and we call it the pseudo-inverse of T . Clearly, if T is invertible,
then T−1 = T †.

Theorem 4.2. Suppose that G is a countable group, π is a projective unitary representation of G on H
with a multiplier µ, and T ∈ B(H,K) is a complete wandering operator for {π(g)}g∈G. Then,

(1) an operator A ∈ B(H,K) is a g-frame generator for {π(g)}g∈G if and only if there exist an isometric
operator Θ ∈ {π(g)}′g∈G and an invertible positive operator E ∈ {π(g)}′g∈G such that A = TΘE. In
particular, an operator A is a Parseval g-frame generator for {π(g)}g∈G if and only if there exists an
isometric operator Θ ∈ {π(g)}′g∈G such that A = TΘ;

(2) if A is a g-frame generator for {π(g)}g∈G, then there exists a Hilbert space M and an invertible
positive operator E ∈ {π(g)}′g∈G such that {AE−1π(g)∗}g∈G is a g-orthonormal basis for M;

(3) an operator A is a complete wandering operator for {π(g)}g∈G if and only if there exists a unitary
operator U such that U ∈ {π(g)}′g∈G and A = TU.

Proof. (1) Assume that A is a g-frame generator for {π(g)}g∈G; then, there exist two constants C,D with
0 < C ≤ D < ∞ such that

C∥ f ∥2 ≤
∑
g∈G

∥Aπ(g)∗ f ∥2 ≤ D∥ f ∥2, ∀ f ∈ H.

Let S be the g-frame operator of {Aπ(g)∗}g∈G. Then {Aπ(g)∗S −
1
2 }g∈G is a Parseval g-frame. Similar to

the proof of Theorem 3.1(1), we can get that S π(g) = π(g)S for all g ∈ G. Hence, S −
1
2 ∈ {π(g)}′g∈G. It

shows that AS −
1
2 is also a Parseval g-frame generator for {π(g)}g∈G. Since T is a complete wandering

operator for {π(g)}g∈G, it follows that∑
g∈G

∥π(g)T ∗(AS −
1
2π(g)∗ f )∥2 =

∑
g∈G

∥AS −
1
2π(g)∗ f ∥2 = ∥ f ∥2, ∀ f ∈ H.

Define a bounded linear operator ϕ : H → H by

ϕ f =
∑
g∈G

π(g)T ∗AS −
1
2π(g)∗ f , ∀ f ∈ H. (4.1)

It is easy to see that ϕ is isometric on H. Next we show that ϕ ∈ {π(g)}′g∈G. For all h ∈ G and f ∈ H,
we have

π(h)ϕ f = π(h)
∑
g∈G

π(g)T ∗AS −
1
2π(g)∗ f

=
∑
g∈G

µ(h, g)π(hg)T ∗AS −
1
2π(g)∗π(h)∗π(h) f
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=
∑
g∈G

µ(h, g)π(hg)T ∗AS −
1
2 [π(h)π(g)]∗π(h) f

=
∑
g∈G

π(hg)T ∗AS −
1
2π(hg)∗π(h) f

= ϕπ(h) f .

Similarly, we can obtain that ϕ∗ ∈ {π(g)}′g∈G. Let P be the orthogonal projection onto ϕ(H). Then, for
each f1, f2 ∈ H,

⟨ϕ f1, P f2⟩ = ⟨ϕ f1, f2⟩ = ⟨ f1, ϕ
∗ f2⟩ = ⟨ϕ f1, ϕϕ

∗ f2⟩.

Hence, ϕϕ∗ f2 = P f2. Note that ϕ ∈ {π(g)}′g∈G and ϕ∗ ∈ {π(g)}′g∈G. Thus,

Pπ(g) = π(g)P, ∀g ∈ G.

For each f ∈ H, k ∈ K and g ∈ G, we have

⟨ϕ f , Pπ(g)T ∗k⟩ = ⟨ϕ f , π(g)T ∗k⟩
= ⟨
∑
h∈G

π(h)T ∗AS −
1
2π(h)∗ f , π(g)T ∗k⟩

= ⟨AS −
1
2π(g)∗ f , k⟩ = ⟨ f , π(g)S −

1
2 A∗k⟩

= ⟨ϕ f , ϕπ(g)S −
1
2 A∗k⟩.

Therefore, ϕπ(g)S −
1
2 A∗k = Pπ(g)T ∗k. Since ϕ ∈ {π(g)}′g∈G, P ∈ {π(g)}′g∈G and P = ϕϕ∗, it implies that

AS −
1
2 = Tϕ. That is,

A = TϕS
1
2 .

Just let Θ = ϕ and E = S
1
2 . Then, the conclusion holds.

Conversely, we first prove that π(g)∗Θ = Θπ(g)∗, ∀g ∈ G. Since π is a projective unitary
representation of G on H with a multiplier µ, we have

π(g)π(g−1) = µ(g, g−1)π(e)⇐⇒ π(g)∗ = µ(g, g−1)π(g−1), ∀g ∈ G.

Observing that Θ ∈ {π(g)}′g∈G and π(g−1) ∈ {π(h)}h∈G, we obtain

π(g)∗Θ = Θπ(g)∗ and π(g)∗E = Eπ(g)∗.

Thus, for all f ∈ H and g ∈ G,∑
g∈G

∥Aπ(g)∗ f ∥2 =
∑
g∈G

∥TΘEπ(g)∗ f ∥2

=
∑
g∈G

∥Tπ(g)∗ΘE f ∥2

= ∥ΘE f ∥2 = ∥E f ∥2

≥
1

∥E−1∥2
∥E−1E f ∥2 =

1
∥E−1∥2

∥ f ∥2.
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Combining this with the fact that∑
g∈G

∥Aπ(g)∗ f ∥2 =
∑
g∈G

∥TΘEπ(g)∗ f ∥2 =
∑
g∈G

∥Tπ(g)∗ΘE f ∥2

= ∥ΘE f ∥2 = ∥E f ∥2

≤ ∥E∥2∥ f ∥2,

for each f ∈ H and g ∈ G, we have

1
∥E−1∥2

∥ f ∥2 ≤
∑
g∈G

∥Aπ(g)∗ f ∥2 ≤ ∥E∥2∥ f ∥2, ∀ f ∈ H,

that is A is a g-frame generator for {π(g)}g∈G.
Specially, if A is a Parseval g-frame generator for {π(g)}g∈G, then its g-frame operator S is an identity

operator on H. Analogous to the above proof, it is easy to see that the result is verified.
(2) Since T is a complete wandering operator for {π(g)}g∈G, it follows T ∗ is an isometry; thus, there

exists a bounded operator T † such that TT † = I. By (1), we know that {AS −
1
2π(g)∗} is a Parseval

g-frame, AS −
1
2 = Tϕ, and P = ϕϕ∗. Hence, for all g, h ∈ G and f , g ∈ K,

⟨π(g)(AS −
1
2 )∗ f , π(h)(AS −

1
2 )∗g⟩

= ⟨π(g)ϕ∗T ∗ f , π(h)ϕ∗T ∗g⟩
= ⟨π(g)PT ∗ f , π(h)PT ∗g⟩.

Let M = {T †x : x ∈ K,T ∗x ∈ P(H)}. Obviously, M is a Hilbert space and M ⊆ H. Then, for
f1, f2 ∈ T (M),

⟨π(g)PT ∗ f1, π(h)PT ∗ f2⟩ = ⟨π(g)T ∗ f1, π(h)T ∗ f2⟩ = δgh⟨ f1, f2⟩.

Taking E = S
1
2 , we have that ⟨π(g)(AE−1)∗ f1, π(h)(AE−1)∗ f2⟩ = δgh⟨ f1, f2⟩ and {AE−1π(g)∗}g∈G is a

Parseval g-frame on M. This shows that {AE−1π(g)∗} is a g-orthonormal basis for M.
(3) Let ϕ be the operator defined in (4.1). If A is a complete wandering operator for {π(g)}g∈G, we

know that the g-frame operator S is an identity operator on H. Then,

ϕ f =
∑
g∈G

π(g)T ∗Aπ(g)∗ f , ∀ f ∈ H.

Write U = ϕ. By the proof of (1), we have that U∗U = I, U ∈ {π(g)}′g∈G, and A = TU. Hence, U is a
unitary operator for H since A is a complete wandering operator. The other direction is trivial. □

From the above theorem, we immediately have the following consequence.

Corollary 4.3. Let U be a unitary group on the finite dimensional Hilbert spaces denote by H and
T ∈ B(H,K) be a complete wandering operator for U. If A ∈ B(H,K) is a g-frame generator for U,
then there exists an invertible operator E such that E ∈ U′ and AE−1 is a complete wandering operator
forU.

In what follows, we will construct complete wandering operators through the use of g-frame
generators.
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Theorem 4.4. Let G be a countable group, π be a projective unitary representation of G on H with a
multiplier µ, and T ∈ B(H,K) be the complete wandering operator for {π(g)}g∈G. If A ∈ B(H,K) is a
g-frame generator for {π(g)}g∈G, then B ∈ B(H,K) exists as a g-Bessel sequence generator for {π(g)}g∈G
and a Hilbert space N such that AS −

1
2 ⊕ B is a complete wandering operator for {π(g)⊕ π(g)}g∈G on N,

where S is the g-frame operator of {Aπ(g)∗}g∈G.

Proof. Assume that T is a complete wandering operator for {π(g)}g∈G and A is a g-frame generator for
{π(g)}g∈G. Define θ : H → H by

θ f =
∑
g∈G

π(g)T ∗AS −
1
2π(g)∗ f , ∀ f ∈ H.

Then, θ is an isometry. Similar to the proof of Theorem 4.2(1), we obtain that for each h ∈ G, π(h)θ =
θπ(h). Let P be the orthogonal projection from H onto θ(H). For all f1, f2 ∈ H we have

⟨θ f1, P f2⟩ = ⟨θ f1, f2⟩ = ⟨
∑
g∈G

π(g)T ∗AS −
1
2π(g)∗ f1, f2⟩

= ⟨ f1,
∑
g∈G

π(g)(AS −
1
2 )∗Tπ(g)∗ f2⟩

= ⟨θ f1, θ[
∑
g∈G

π(g)(AS −
1
2 )∗Tπ(g)∗ f2]⟩.

Hence, P f2 = θ[
∑

g∈G
π(g)(AS −

1
2 )∗Tπ(g)∗ f2]. Therefore, for each f ∈ H and h ∈ G,

π(h)P f = π(h)θ
∑
g∈G

π(g)(AS −
1
2 )∗Tπ(g)∗ f

= θ
∑
g∈G

π(h)π(g)(AS −
1
2 )∗Tπ(g)∗ f

= θ
∑
g∈G

π(hg)(AS −
1
2 )∗Tπ(hg)∗π(h) f

= Pπ(h) f .

Also, we have that (I − P)π(h) = π(h)(I − P), h ∈ G. Set B = T (I − P) ∈ B(H,K). Then,∑
g∈G

∥Bπ(g)∗ f ∥2 =
∑
g∈G

∥T (I − P)π(g)∗ f ∥2

=
∑
g∈G

∥Tπ(g)∗(I − P) f ∥2

= ∥(I − P) f ∥2 ≤ ∥ f ∥2, f ∈ H.

It implies that B is a g-Bessel sequence generator for {π(g)}g∈G .
Denote N = H ⊕ (θ(H))⊥. Next, we show that AS −

1
2 ⊕ B is a Parseval g-frame generator for

{π(g) ⊕ π(g)}g∈G. For any g ∈ G, f1 ∈ H and f2 ∈ (θ(H))⊥, we can get
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∑
g∈G

∥(AS −
1
2 ⊕ B)(π(g) ⊕ π(g))∗( f1 ⊕ f2)∥2

=
∑
g∈G

∥AS −
1
2π(g)∗ f1 + Bπ(g)∗ f2∥

2

=
∑
g∈G

∥AS −
1
2π(g)∗ f1∥

2 +
∑
g∈G

∥Bπ(g)∗ f2∥
2 + 2Re

∑
g∈G

⟨AS −
1
2π(g)∗ f1, Bπ(g)∗ f2⟩.

Applying Theorem 4.2, we have that AS −
1
2 = Tθ and P = θθ∗. So,∑

g∈G

⟨AS −
1
2π(g)∗ f1, Bπ(g)∗ f2⟩

=
∑
g∈G

⟨Tθπ(g)∗ f1, Bπ(g)∗ f2⟩

=
∑
g∈G

⟨Tπ(g)∗θ f1,Tπ(g)∗(I − P) f2⟩

=
∑
g∈G

(⟨Tπ(g)∗θ f1,Tπ(g)∗ f2⟩ − ⟨Tπ(g)∗θ f1,Tπ(g)∗P f2⟩)

= ⟨θ f1, f2⟩ − ⟨θ f1, θθ
∗ f2⟩

= 0.

Then, ∑
g∈G

∥(AS −
1
2 ⊕ B)(π(g) ⊕ π(g))∗( f1 ⊕ f2)∥2

=
∑
g∈G

∥AS −
1
2π(g)∗ f1∥

2 +
∑
g∈G

∥Bπ(g)∗ f2∥
2

= ∥ f1∥
2 + ∥ f2∥

2 = ∥ f1 ⊕ f2∥
2.

This proves that {AS −
1
2π(g)∗ ⊕ Bπ(g)∗}g∈G is a Parseval g-frame.

On the other hand, for all g ∈ G, we have

π(g)(AS −
1
2 )∗ ⊕ π(g)B∗

= θ∗π(g)T ∗ ⊕ π(g)(I − P)T ∗

= θ∗Pπ(g)T ∗ ⊕ π(g)(I − P)T ∗

= [θ∗ ⊕ (I − P)][Pπ(g)T ∗ ⊕ (I − P)π(g)T ∗].

Moreover, for any g, h ∈ G and k1, k2 ∈ K, we obtain

⟨[π(g)(AS −
1
2 )∗ ⊕ π(g)B∗]k1, [π(h)(AS −

1
2 )∗ ⊕ π(h)B∗]k2⟩

= ⟨[θ∗ ⊕ (I − P)][Pπ(g)T ∗ ⊕ (I − P)π(g)T ∗]k1,

[θ∗ ⊕ (I − P)][Pπ(h)T ∗ ⊕ (I − P)π(h)T ∗]k2⟩

= ⟨[Pπ(g)T ∗ ⊕ (I − P)π(g)T ∗]k1, [Pπ(h)T ∗ ⊕ (I − P)π(h)T ∗]k2⟩
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= ⟨π(g)T ∗k1, π(h)T ∗k2⟩

= δg,h⟨k1, k2⟩.

In the last step, we applied T as a complete wandering operator for {π(g)}g∈G. Hence, AS −
1
2 ⊕ B is a

complete wandering operator for {π(g) ⊕ π(g)}g∈G on N. □

Remark 4.5. If H is a finite dimensional Hilbert space, by the proof of Theorem 4.4, we see that θ is
a unitary operator. Then, θ∗θ = θθ∗ = I and P = I. Hence, B = T (P − I) = 000, which is a trivial result.

For example, let g1 =

[
1 0
0 1

]
, g2 =

[
−1 0
0 −1

]
, and G = {g1, g2} ⊆ B(C2). Let H = C2,K =

span{eg1}, and the projective unitary representation π(gi)eg j = egig j , where i, j = 1, 2 and egi takes the
value of 1 at i and zero elsewhere. Clearly, for any f ∈ H, T f = ⟨ f , eg1⟩eg1 is a complete wandering
operator for π(G), A f = ⟨ f , eg2⟩eg1 is a Parseval g-frame generator of π(G), and S = I. Then, for any
f ∈ H, we have that θ f = ⟨ f , eg1⟩eg2 + ⟨ f , eg2⟩eg1 . It follows that P = θθ∗ = I and B = T (I − P) = 000.
Hence, A ⊕ 000 is a complete wandering operator for {π(g) ⊕ π(g)}g∈G.

5. Dual g-frame generators for projective unitary representations

As we know, one of the essential applications of frames is that they lead to expansions of vectors
in the underlying Hilbert space in terms of the frame elements. Dual frames play a key role in this
decomposition. So, in this section, we mainly consider the dual g-frame generators for projective
unitary representations and give some of their characterizations. We first review the definition of dual
g-frames.

From [9, Definition 3.1], a g-Bessel sequence {Γ j ∈ B(H,K)} j∈J is called a dual g-frame for a g-
Bessel sequence {Λ j ∈ B(H,K)} j∈J if

f =
∑
j∈J

Λ∗jΓ j f , ∀ f ∈ H.

If S is the g-frame operator for {Λ j ∈ B(H,K)} j∈J, then {Λ jS −1} j∈J is a dual for {Λ j} j∈J and is called the
canonical dual g-frame of {Λ j} j∈J.

For our purpose, and motivated by the above definition, we introduce the following concept.

Definition 5.1. Let G be a countable group and π be a projective unitary representation of G on H with
a multiplier µ. Two g-Bessel sequence generators A, B ∈ B(H,K) for {π(g)}g∈G are called dual g-frame
generators if

f =
∑
g∈G

π(g)A∗Bπ(g)∗ f , ∀ f ∈ H.

Let θ1 and θ2 be the analysis operators for the g-Bessel sequences {Aπ(g)∗}g∈G and {Bπ(g)∗}g∈G,
respectively. Then, for all f ∈ H, we have

∥ f ∥4 = |⟨ f , f ⟩|2 = |⟨
∑
g∈G

π(g)A∗Bπ(g)∗ f , f ⟩|2

= |⟨θ1 f , θ2 f ⟩|2 ≤ ∥θ1 f ∥2∥θ2 f ∥2 ≤ ∥θ2∥2∥ f ∥2∥θ1 f ∥2

= ∥θ2∥
2∥ f ∥2

∑
g∈G

∥Aπ(g)∗ f ∥2,
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that is
∑
∥Aπ(g)∗∥2 ≥ 1

∥θ2∥2
∥ f ∥2. This shows that A is a g-frame generator for {π(g)}g∈G. Similarly, B is

a g-frame generator for {π(g)}g∈G. Hence, we also say that A and B form a g-frame generator dual pair
for {π(g)}g∈G. Moreover, if S is the g-frame operator for the g-frame {Aπ(g)∗}g∈G, then {AS −1π(g)∗}g∈G
is a dual g-frame for {Aπ(g)∗}g∈G. We call AS −1 the canonical dual g-frame generator of {Aπ(g)∗}g∈G.

Analogous to [9, Lemma 3.2], we give some elementary characterizations of duals in terms of the
analysis operators.

Proposition 5.2. Let A and B be two g-frame generators for {π(g)}g∈G with analysis operators θ1 and
θ2, respectively. Then, the following statements are equivalent:

(1) A and B are g-frame generator dual pairs.

(2) θ∗2θ1 = I.

(3) θ∗1θ2 = I.

Proof. (1)⇒ (2) Since, for any f ∈ H,

θ1 f =
∑
g∈G

eg ⊗ Aπ(g)∗ f and θ2 f =
∑
h∈G

eh ⊗ Bπ(h)∗ f ,

where {eg}g∈G is the orthonormal basis for ℓ2(G), it follows that

θ∗2θ1 f =
∑
g∈G

π(g)B∗Aπ(g)∗ f = f .

Hence, θ∗2θ1 = I.
(2)⇒(3) and (3)⇒(1) are obvious. □

Theorem 5.3. Let G be a countable group, π be a projective unitary representation of G on H with a
multiplier µ and T ∈ B(H,K) be a complete wandering operator for {π(g)}g∈G. Then, A, B ∈ B(H,K)
are g-frame generator dual pairs for {π(g)}g∈G if and only if there exist isometric operators Θ1, Θ2 ∈

{π(g)}′g∈G and invertible positive operators E1, E2 ∈ {π(g)}′g∈G such that A = TΘ1E1, B = TΘ2E2, and
(Θ1E1)∗(Θ2E2) = I.

Proof. Suppose that A and B are g-frame generator dual pairs for {π(g)}g∈G. By Theorem 4.2, we
know that there exist isometric operators Θ1, Θ2 ∈ {π(g)}′g∈G and invertible positive operators E1, E2 ∈

{π(g)}′g∈G such that A = TΘ1E1 and B = TΘ2E2. The hypothesis that A and B are g-frame generator
dual pairs implies that∑

g∈G

π(g)A∗Bπ(g)∗ f =
∑
g∈G

π(g)(TΘ1E1)∗TΘ2E2π(g)∗ f = f , ∀ f ∈ H. (5.1)

Since Θ1,Θ2 ∈ {π(g)}′g∈G, E1, E2 ∈ {π(g)}′g∈G, it follows that Θiπ(g)∗π(g) = π(g)∗Θiπ(g), i = 1, 2. So,

Θiπ(g)∗ = π(g)∗Θi and Θ∗i π(g) = π(g)Θ∗i , i = 1, 2.

Also, we have
Eiπ(g)∗ = π(g)∗Ei and E∗i π(g) = π(g)E∗i , i = 1, 2.

AIMS Mathematics Volume 9, Issue 6, 16506–16525.
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Therefore, (5.1) becomes∑
g∈G

π(g)A∗Bπ(g)∗ f = (Θ1E1)∗
∑
g∈G

π(g)T ∗Tπ(g)∗(Θ2E2) f

= (Θ1E1)∗(Θ2E2) f = f ,

which means that (Θ1E1)∗(Θ2E2) = I.
The other direction is clear. □

6. Conclusions

In this paper, we extend the dilation theorem to g-frames with some additional structure and give
some characterizations of g-frame generators for projective unitary representation in terms of complete
wandering operators. Moreover, we introduce the notion of dual g-frame generators and obtain some
characterizations of the g-frame generator dual pairs.
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