
AIMS Mathematics, 9(6): 16468−16485. 

DOI: 10.3934/math.2024798 

Received: 26 December 2023 

Revised: 07 April 2024 

Accepted: 11 April 2024 

Published: 10 May 2024 

http://www.aimspress.com/journal/Math 

 

Research article 

A new approach to detect long memory by fractional integration or short 

memory by structural break 

Yirong Huang1, Liang Ding2, Yan Lin3 and Yi Luo3,* 

1 School of Business, Sun Yat-sen University, Guangzhou 510275, China 
2 School of English for International Business, Guangdong University of Foreign Studies, Guangzhou 

510420, China 
3 Management College, Guangdong Polytechnic Normal University, Guangzhou 510665, China 

* Correspondence: Email: hyrhjlly@126.com. 

Abstract: Long memory in test statistics can either originate from fractional integration or be 

spuriously induced by a short memory process with a structural break. This research estimated and 

detected long memory from the two causes by simulations and empirical analysis. The simulation 

results showed that fractional integration and structural break processes could demonstrate long 

memory properties. The 2ELW estimator was stable for fractional integration but not stable for time 

series with structural breaks. The modified W statistic based on 2ELW was efficient in discriminating 

fractional integration and structural breaks. Moreover, we found that six volatility time series of stock 

indexes and individual stocks in the Chinese market experience significant long memory and structural 

breaks, and the fractional differencing parameter is overestimated without controlling structural breaks. 
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1. Introduction  

The long memory of financial markets is still a controversial topic. If a time series has the property 

of long memory, its autocorrelation function (ACF) slowly decreases as the lag order increases, and its 

spectrum density function (SDF) is infinite at zero frequency. The Hurst index (H) is one of the most 

important parameters for measuring the degree of long memory, being crucial to the research and 
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application of long memory. Many empirical results have shown that time series in some fields 

demonstrate the property of long memory, such as in macroeconomics [1,2], exchange markets [3,4], 

and equity markets [5,6]. In the weak form of capital efficiency, market prices should reflect historical 

information. The appearance of long memory would violate the efficient market hypothesis (EMH) 

that past returns cannot predict future returns. Previous studies have tested the hypothesis of long 

memory for mature and emerging markets with mixed results. Floros et al. [7] tested the long memory 

of the Portuguese equity market, using ARFIMA and GARCH models, showing an evident long 

memory of stock returns. Duppati et al. [8] analyzed five Asian equity indices to test long memory by 

using the GARCH framework. Luo and Huang [9] used the proposed combined estimator of Hurst 

exponent based on the conventional R/S-type method and showed that three Chinese stock volatility 

series experience significant long memory. Luo and Huang [10] employed the AFIGARCH model to 

demonstrate that the Chinese and American stock volatility series are simultaneously characterized by 

structural break and long memory. These contradictory results indicate that the model used in the 

studies can impact the efficacy of long memory tests. 

The observed long memory in real data can either be induced by fractional processes [11] or 

spuriously caused by a structural break (hereafter named as structural break process) [12], which is 

simply a short memory process. For example, standard estimators such as local Whittle (LW) [13] and 

Geweke, Porter-Hudak (GPH) [14] always overestimate long memory parameters when there are 

structural breaks in the time series. Although some scholars [4,15] have tried to modify the standard 

estimator using a tapered technique, it is still challenging to apply a standard estimator to efficiently 

detect long memory properties caused either by fractional integration or a structural break process. 

Therefore, some empirical results that conclude that the data generating process is a fractional process 

according to long memory parameters may be spuriously caused by a short memory process with a 

structural break. Although fractional integration and structural break process may both show long 

memory parameters, their generating regimes and models are different. Therefore, the selection of a 

model is important to detect the generating process of the long memory process. 

Some scholars proposed and developed formal testing procedures to detect fractional integration 

and short memory processes contaminated by structural breaks. Two groups can be distinguished for 

the testing procedures. The null hypothesis of the first group is that the time series used to test is a 

fractional integration process with constant long memory parameters (e.g., [16,17] among others). The 

other group presents the null hypothesis of a short memory process with a structural break (e.g., [18,19]). 

According to [20], the simulating results indicate that the W statistics proposed by [17] are more efficient 

compared with other statistics, which use LW as the estimator of the long memory parameter. Shimotsu 

and Phillips [21] developed exact local Whittle (ELW) estimation, which does not depend on data 

differencing and tapering based on LW. Therefore, it is necessary to introduce an ELW estimator to 

modify the W test statistic and verify its efficiency. 

To improve the discriminating performance between real and spurious long memory, this research 

introduces the 2ELW estimator to modify the W test statistic and evaluate its efficiency by simulation. 

We further investigate the applications of the modified test statistic and appropriate estimator for the 

daily volatility series of the stock market in China to indicate whether the long memory observed in 

the volatility series is genuine or spurious. 

This paper is arranged in five sections. In the second section, we investigate the theoretical and 

empirical long memory behavior of fractional integration or structural break process. Section 3 

introduces the 2ELW method used to estimate the long memory parameter and assesses its efficiency 

by simulation. Section 4 proposes the method to detect fractional integration and structural break and 

assesses its efficiency by simulation. Section 5 provides the empirical results of the daily realized 
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volatility of China’s equity market. The final section gives conclusions. 

2. Long memory property in fractional integration and structural break process 

The property of long memory is always characterized by autocorrelation and spectral functions. 

The two methods are equivalent. The process shows the property of long memory if the k-th order 

autocorrelation function satisfies the relationship as k→∞: 

𝜌𝑦(𝑘)~𝐶 ∙ 𝑘2𝑑−1,          (1) 

where C>0 is the constant, ~denotes the same convergence speed, and d denotes the parameter of long 
memory with the value between 0 and 0.5. 

Equation (1) shows that the ACF slowly decays at a rate of hyperbolicity, which decreases as the 

lag order k increases. Therefore, the observed time series with long distances show a strong correlation. 

The process shows the property of long memory if it has the spectral function satisfying the 

following relationship as ω → 0 +, d ≠0: 

𝑓(𝜔)~𝐺(𝜔) ∙ |𝜔|−2𝑑,         (2) 

where the spectral function of the short memory process is denoted as G(ω), which always has the 

assumption of positive function around zero frequency, and 0 < G(0) < ∞, d denotes the parameter of 
long memory property with the value between 0 and 0.5. Equation (2) shows that the spectral function 

of a long memory process would reach a peak value, which may be infinity, when G(ω) is at zero. 

As shown in [11], the fractional integration process {yt}t=1
T  is defined as: 

(1 − 𝐿)𝑑𝑦𝑡 = 𝜀𝑡,          (3) 

where d denotes real value, t = 1,2, ⋯, L denotes the lag operator, εt~I(0) or i.i.d., E(εt) = 0, 0 <
σε

2 < ∞, E(εtεs) = 0 (t ≠ s). 
The parameter d in Eq (3) plays a key role in characterizing long memory. If d is between 0 and 

0.5, the autocorrelation function of the process with the property of long memory has the forms shown 

in Eq (1) and spectral function shown in Eq (2). The fractional differencing operator could be expanded as: 

(1 − 𝐿)𝑑 = 1 − 𝑑𝐿 +
𝑑(𝑑−1)

2!
𝐿2 −

𝑑(𝑑−1)(𝑑−2)

3!
𝐿3 − ⋯

                 = ∑ (𝑑
𝑘

)(−1)𝑘∞
𝑘=0 𝐿𝑘 = ∑

𝛤(𝑘−𝑑)

𝛤(𝑘+1)𝛤(−𝑑)

∞
𝑘=0 𝐿𝑘

,    (4) 

where Γ(α) = ∫ tα−1e−tdt
∞

0
 denotes the Gamma function. 

To demonstrate the property of the fractional integration process, we simulate 100 fractional 

integration time series with a length of 10,000 for d = 0.4. The dashed lines in Figure 1 show the 

averaging autocorrelation and averaging spectral density curve of the simulated series, and the solid 

lines show the theoretical autocorrelation and the spectral density curves of the long memory process 

shown by Eq (2). The results indicate that the autocorrelation and spectral density of fractional 

integration and long memory process are very close. Therefore, the fractional integration process has 

the property of long memory. 
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Figure 1. The autocorrelation function and spectral function of the fractional integration process. 

The property of long memory may be linked with several structural break processes [22]. The 

Markov switching (MS) process is one of the most typical structural break processes with the following 

representation: 

𝑦𝑡 = 𝜇𝑠𝑡
+ 𝜀𝑡,           (5) 

where t=1, 2, ⋯, T, {st}t=1
T  is stationary Markov chain, in which st = 0 for the first state and st = 1 for 

the second state, and the transition probability pij = P{st = i|st−1 = j}, i, j=0,1, εt~i. i. d. (0, σε
2), μ0 ≠

μ1. If pjj = 1 −
cj

T
δj
, 0 < c0, c1 < 1, 0 < δ0, δ1 < 1, as T→∞, it is shown [22] that: 

𝑉𝑎𝑟(𝑆𝑇)~𝐶 ∙ 𝑇2𝑑+1,         (6) 

where ST = X1
T + ⋯ + XT

T  is the sum of series {Xt
T}t=1

T  , and d = (min{δ0, δ1} − |δ0 − δ1|)/2 ∈

(0,1/2). 
We simulate 100 Markov chain series with a length of 1000 and the parameters T=10000, μ

0
= 0, 

μ
1

= 1 , c0 = c1 = 0.9 , δ0 = δ1 = 0.8 , p00 = p11 = 0.9994 , εt~N(0, 1) . The dashed lines in 

Figure 2 describe the curves of averaging autocorrelation and averaging spectral density of the Markov 

chain series, and the solid line shows the theoretical autocorrelation and the spectral density curves 

shown by Eqs (1) and (2) for long memory process, respectively. The results show that the 

autocorrelation and spectral density of the structural break process are close to those of the long 

memory process. Therefore, the structural break process shows a long memory property. In the 

literature (e.g., [22]), the fractional integration process is considered as real long memory, while the 

structural break process is spurious long memory. 
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Figure 2. The autocorrelation and spectral density of the structural break process. 

3. Estimation of long memory parameters 

Traditional estimators such as GPH and LW are the most popular types of standard estimators for 

long memory parameters. GPH is simpler, and LW is more robust and efficient. Although they can 

provide good estimates for the long memory parameter of stationary long memory processes [13], they 

are not appropriate estimators for nonstationary long memory processes (d ≥ 0.5) [23]. To expand the 
suitable range of GPH and LW and avoid the non-consistency and non-stable bias, some scholars 

suggest to first deal with data by using differencing and tapering operators, and then use standard 

methods to estimate long memory parameters for differenced or tapered data. Although these methods 

are easily applied and current algorithms are available, they still have some limitations. 

Based on the standard LW estimator, a modified LW estimator [21], the exact local Whittle (ELW), 

avoids using differencing and tapering operators. The ELW estimator is appropriate for stationary and 

nonstationary situations. Therefore, we can use the ELW estimator to estimate long memory 

parameters for several cases. Further, it can provide a robust foundation for constructing efficient 

appropriate confident intervals for unknown long memory parameters. 

The objective function of the ELW method can be written as: 

𝑄𝑚
𝐸𝐿𝑊(𝐺, 𝑑) =

1

𝑚
∑ [𝑙𝑜𝑔(𝐺 ∙ 𝜔𝑗

−2𝑑) +
1

𝐺
𝐼∆𝑑𝑦(𝜔𝑗)]𝑚

𝑗=1 ,    (7) 

where  j = 1,2, ⋯ , m ,ωj = 2πj/T , the bandwidth m  is the parameter controlling the frequency 

number in the likelihood function, and the periodogram for ∆d(y)=(1-L)d(y)  is expressed as 

I
∆dy
(ωj)=

1

2πT
|∑ ∆d(y)exp(iωt)T

i=1 |. The ELW method minimizes the objective function to estimate d. 

Given the value of G, the ELW estimator based on the Eq (7) is equivalent to the following 

formula: 

𝑑̂𝐸𝐿𝑊 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑑∈[∆1,∆2]

[𝑙𝑜𝑔 (𝐺̂(𝑑)) − 2𝑑
1

𝑚
∑ 𝑙𝑜𝑔(𝜔𝑗)𝑚

𝑗=1 ],     (8) 

where ∆1 and ∆2 are the down limit and up limit of d, respectively, Ĝ(𝑑)=
1

m
∑ I

∆dy
(𝜔𝑗)m

j=1 . 

Shimotsu [24] considers the case with unknown mean and polynomial trend and develops the 

conventional ELW estimator into a two-steps ELW estimator (hereafter, 2ELW). First, we get the 
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estimate of d̂TLW  by the TLW estimator proposed by [15] and further estimate the differencing 

parameter by the following formula: 

𝑑̂2𝐸𝐿𝑊 = 𝑑̂𝑇𝐿𝑊 − 𝑅𝐹
′ (𝑑̂𝑇𝐿𝑊)/𝑅𝐹

′′(𝑑̂𝑇𝐿𝑊),       (9) 

where RF(d)＝log (Ĝ(d)) -2d
1

m
∑ log(ωj)
m
j=1  . We use d̂2ELW  to substitute d̂TLW  in Eq (9), and 

repeat the calculation until d̂2ELW converges to a stable value. According to [24], the 2ELW estimator 

has the asymptotic normal distribution, that is, √m(d̂2ELW − d0) →p N(0,1/4), for the process with 

-0.5 < d < 2 but no polynomial trend, and for the process with -0.5 < d < 1.75 and polynomial trend. 

The 2ELW estimator inherits the property of ELW. 

3.1. Estimating long memory parameter for the fractional integration process 

We simulate 1000 fractional integration series with the length of N=5000 and d=0.2, 0.4, 0.6, and 

0.8, and estimate d for each simulated series by the above 2ELW estimator. The Bartlett taper ht
B
=1-

|
2t-T

T
|  is used, and the bandwidth parameter is set as m=T0.6 , T0.7 , and T0.8 . The mean and 95  

confidence interval of the estimated d is presented in Table 1. The results show that the 2ELW estimator 

can provide an efficient estimate for the fractional integration process, and the results of the estimate 

keep stable with different parameters of bandwidth. 

Table 1. Estimated results of long memory parameter for the fractional integration process. 

Frequency d=0.20 d=0.40 d=0.60 d=0.80 

T0.6 
0.2004 

[0.1240, 0.2784] 

0.4004 

[0.3193, 0.4760] 

0.6121 

[0.5247, 0.6854] 

0.7982 

[0.7106, 0.8744] 

T0.7 
0.2001 

[0.1464, 0.2520] 

0.4002 

[0.3484, 0.4491] 

0.6100 

[0.5552, 0.6617] 

0.7988 

[0.7425, 0.8498] 

T0.8 
0.2110 

[0.1772, 0.2434] 

0.4106 

[0.3739, 0.4454] 

0.6152 

[0.5806, 0.6478] 

0.8082 

[0.7734, 0.8410] 

3.2. Estimating long memory parameter for structural break process 

We simulate 1000 series with a length of 5000 for the Markov process yt=μst
+εt , where 

εt~N(0, 1), t=1,2,⋯,T, {st}t=1
T  is the Markov chain, which is stationary with the values of 0 and 1, 

and the transition probability is p01 = P{st = 0|st−1 = 1} = 0.9995, μ0 = 0, μ1 = 1. We use the 
2ELW estimator with the same parameter setting as above to estimate d for each simulated series. The 

mean and 95  confidence interval of the estimated d is shown in Table 2. The results show that most 

estimates of d are between 0 and 0.5, with different results for different simulated series and with 

different bandwidth parameters. Therefore, the property of structural break can induce the spurious 

long memory. 
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Table 2. Estimated results of long memory parameter for structural break process. 

Frequency 
δ1 = δ2 = 0.2 

d=0.10 

δ1 = δ2 = 0.4 

d=0.20 

δ1 = δ2 = 0.6 

d=0.30 

δ1 = δ2 = 0.8 

d=0.40 

T0.6 
0.0160 

[-0.0738, 0.0969] 

0.2888 

[0.2048, 0.3649] 

0.4975 

[0.4311, 0.5686] 

0.4314 

[0.2726, 0.5158] 

T0.7 
0.0582 

[0.0076, 0.1123] 

0.3266 

[0.2846, 0.3728] 

0.3651 

[0.3280, 0.4022] 

0.3082 

[0.1963, 0.3573] 

T0.8 
0.1187 

[0.0850, 0.1517] 

0.2636 

[0.2382, 0.2899] 

0.2605 

[0.2369, 0.2828] 

0.2217 

[0.1261, 0.2560] 

4. Detecting fractional integration or structural break 

Qu [17] proposed a test statistic (hereafter denoted as Qu test) that is constructed based on the 

null hypothesis of a stationary long memory process with spectral density function f(λ)≃Gλ−2d, where 

1/2<d<1/2, G∈(0, ∞), and the alternative hypothesis of a short memory process with mean shift. The 

specification of Qu test is written as: 

𝑊 = 𝑠𝑢𝑝
𝑟∈[𝜀,1]

(∑ 𝑣𝑗
2𝑚

𝑗=1 )
−1/2

[∑ 𝑣𝑗 (
𝐼𝑗

𝐺(𝑑𝐿𝑊)𝜆
𝑗

−2𝑑𝐿𝑊
− 1)

[𝑚𝑟]
𝑗=1 ],    (10) 

where dLW is the estimate of fractional differencing parameter with LW estimator, ε is the truncated 

parameter, vj = logλj − (1/m) ∑ logλj
m
j=1  , G(d) = m−1 ∑ λj

2dm
j=1 Ij , Ij = Ix(λj) =

(2πn)−1|∑ xtexp(iλjt)n
t=1 |

2
 . We can use the Qu test to detect long memory and structural break 

processes. 

As we know, the 2ELW estimator performs better than LW and has better properties than LW, and 

it can be used for stationary and nonstationary process. Therefore, we estimate d2ELW  of d to 

substitute dLW in Eq (10), and construct the test statistic as follows: 

𝑊̃ = 𝑠𝑢𝑝
𝑟∈[𝜀,1]

(∑ 𝑣𝑗
2𝑚

𝑗=1 )
−1/2

[∑ 𝑣𝑗 (
𝐼𝑗

𝐺(𝑑2𝐸𝐿𝑊)𝜆
𝑗

−2𝑑2𝐸𝐿𝑊
− 1)

[𝑚𝑟]
𝑗=1 ].    (11) 

The size of a statistic test is defined as the probability of incorrectly rejecting the null hypothesis. 

The power of a statistical test is defined as the probability of correctly rejecting the null hypothesis. 

For a given hypothesis and test statistic, the size should be made as small as possible, and the power 

should be made as large as possible. For the test in our paper, the null hypothesis of the test is the 

fractional integration process, and the corresponding alternative hypothesis is the short memory 

process with the structural break.  

To evaluate the empirical size of the test, we design the following simulating procedure.  

Step 1: We specify the fractional integration process with long memory parameter and ARMA 

term and generate fractional integration series with different lengths. The values of the long memory 

parameter and ARMA term are set as the ones in [17]. According to [17], the long memory parameter 

d is typically between 0.30 and 0.45, especially for financial applications; therefore, we also set d = 

0.4. In detail, the models considered in this paper include the following four specifications. 

ARFIMA(0,d,0): (1 − 𝐿)0.4𝑦𝑡 = 𝜀𝑡 , ARFIMA(1,d,0): (1 − 0.4𝐿)(1 − 𝐿)0.4𝑦𝑡 = 𝜀𝑡 , 

ARFIMA(0,d,1): (1 − 𝐿)0.4𝑦𝑡 = (1 + 0.4𝐿)𝜀𝑡 , ARFIMA(2,d,0): (1 − 0.5𝐿)(1 − 0.3𝐿)(1 −
𝐿)0.4𝑦𝑡 = 𝜀𝑡. 
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Step 2: We apply the new test and Qu test to calculate the test statistic for each generated series. 

The null hypothesis is rejected if the value of the test statistic is bigger than the critical value at a 

significant level. Repeating the data generation and the testing steps will produce several test results. 

The empirical size is calculated as the proportion of times in which the null hypothesis is rejected.  

We simulate 1000 fractional integration series with d=0.4 and the different lengths, including 500, 

1000, 2000, 3000, 5000, and 10000. The ratio of rejecting the null hypothesis at a significance level of 5  

and 1  is calculated. Table 3 provides the calculated results of empirical size. We can see that all size level 

values are less than 5  and 1 , and as the sample length becomes bigger, the test size is closer to 5  and 

1 . Therefore, the probability of incorrectly rejecting the null hypothesis based on W̃ is less than 5 . 

Moreover, the empirical size of the new test W̃ is almost lower than that of Qu test W. 

Table 3. Calculated results of detecting size for fractional integration series. 

Sample length 
 ARFIMA(0, d, 0) ARFIMA(1, d, 0) ARFIMA(0, d, 1) ARFIMA(2, d, 0) 

 ε=0.02 ε=0.05 ε=0.02 ε=0.05 ε=0.02 ε=0.05 ε=0.02 ε=0.05 

 5% nominal level 

500 W 0.0330 0.0640 0.0170 0.0330 0.0180 0.0500 0.0760 0.0690 

 W̃ 0.0160 0.0250 0.0140 0.0250 0.0220 0.0250 0.0740 0.0660 

1000 W 0.0370 0.0690 0.0240 0.0480 0.0200 0.0470 0.0240 0.0350 

 W̃ 0.0230 0.0270 0.0210 0.0300 0.0260 0.0320 0.0220 0.0360 

2000 W 0.0260 0.0630 0.0230 0.0500 0.0180 0.0530 0.0400 0.0460 

 W̃ 0.0180 0.0260 0.0290 0.0320 0.0310 0.0280 0.0440 0.0450 

3000 W 0.0380 0.0730 0.0220 0.0520 0.0260 0.0590 0.0360 0.0430 

 W̃ 0.0340 0.0430 0.0310 0.0330 0.0330 0.0330 0.0340 0.0370 

5000 W 0.0340 0.0750 0.0300 0.0700 0.0250 0.0570 0.0500 0.0570 

 W̃ 0.0410 0.0410 0.0360 0.0370 0.0340 0.0420 0.0500 0.0570 

10000 W 0.0210 0.0660 0.0310 0.0720 0.0280 0.0770 0.0760 0.0690 

 W̃ 0.0300 0.0250 0.0350 0.0430 0.0390 0.0500 0.0740 0.0660 

 1% nominal level 

500 W 0.0060 0.0160 0.0020 0.0020 0.0010 0.0100 0.0180 0.0150 

 W̃ 0.0030 0.0040 0.0040 0.0030 0.0020 0.0010 0.0170 0.0140 

1000 W 0.0040 0.0190 0.0050 0.0080 0.0010 0.0120 0.0020 0.0040 

 W̃ 0.0070 0.0070 0.0030 0.0050 0.0040 0.0050 0.0030 0.0020 

2000 W 0.0020 0.0110 0.0020 0.0050 0.0030 0.0140 0.0110 0.0060 

 W̃ 0.0030 0.0050 0.0050 0.0040 0.0050 0.0050 0.0080 0.0050 

3000 W 0.0100 0.0270 0.0010 0.0080 0.0080 0.0170 0.0050 0.0060 

 W̃ 0.0100 0.0090 0.0020 0.0040 0.0100 0.0090 0.0050 0.0060 

5000 W 0.0030 0.0210 0.0040 0.0110 0.0050 0.0150 0.0110 0.0120 

 W̃ 0.0040 0.0040 0.0050 0.0070 0.0070 0.0070 0.0110 0.0120 

10000 W 0.0040 0.0160 0.0060 0.0090 0.0040 0.0180 0.0180 0.0150 

 W̃ 0.0050 0.0020 0.0050 0.0060 0.0060 0.0050 0.0170 0.0140 

Note: ε is the truncated parameter and d is the long memory parameter with a value of 0.40. 

To evaluate the power of the test, we apply a similar simulating procedure. First, we specify 

several short memory processes with structural break and generate spurious long memory series. The 

models considered include: (1) Markov switching (MS), which is defined as Eq (5); (2) White noise 
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with a monotonic deterministic trend (WNMT): 𝑦𝑡 = 3𝑡−0.1 + 𝜀𝑡, 𝜀𝑡 ∼ iid N(0,1); (3) White noise 

with a nonmonotonic deterministic trend (WNNMT): 𝑦𝑡 = sin (4𝜋𝑡/𝑛) + 𝜀𝑡, 𝜀𝑡 ∼ iid N(0,3); and (4) 

Stationary random level shift (SRLS): 𝑦𝑡 = 𝜇𝑡 + 𝜀𝑡, 𝜇𝑡 = (1 − 𝛾𝑡)𝜇𝑡−1 + 𝛾𝑡𝑧𝑡, 𝛾𝑡 ∼ iidB(1,0.003), 

𝜀𝑡 and 𝑧𝑡 ∼ iidN(0,1). Second, we apply the test statistic to each series and repeat the data generation 

and testing steps. The empirical power of the test is calculated as the proportion of times where the 

null hypothesis is rejected. 

We simulate 1000 series for a short memory process with a structural break with different lengths, 

including 500, 1000, 2000, 3000, 5000, and 10000. The ratio of rejecting the null hypothesis that the 

simulated series is a fractional integration process is calculated at a significance level of 5  and 1 . 

Table 4 provides the results of the empirical power for the new test W̃ and Qu test W. The results 
indicate that most values of test power are higher than 95 , and as the sample length becomes bigger, 

the test power is higher. Therefore, the probability of correctly rejecting the null hypothesis based on 

W̃ is higher than 95 . Moreover, the empirical powers of the new test W̃ are almost higher than that 
of Qu test W. 

Table 4. Calculated results of detecting power for short memory series with structural break. 

Sample 

length 

Test 

statistic 

MS WNMT WNNMT SRLS 

ε=0.02 ε=0.05 ε=0.02 ε=0.05 ε=0.02 ε=0.05 ε=0.02 ε=0.05 

 5% nominal level 

500 W 0.7030 0.7690 0.1820 0.2940 0.0970 0.1770 0.7350 0.8150 

 W̃ 0.9840 0.9850 0.9650 0.9740 1.0000 1.0000 0.8820 0.9300 

1000 W 0.8450 0.8990 0.3370 0.5370 0.4570 0.7160 0.8780 0.9290 

 W̃ 0.9900 0.9930 0.9860 0.9880 1.0000 1.0000 0.9260 0.9620 

2000 W 0.9080 0.9520 0.6260 0.8590 0.8210 0.9780 0.9250 0.9620 

 W̃ 0.9970 0.9980 0.9940 0.9950 1.0000 1.0000 0.9680 0.9750 

3000 W 0.9230 0.9570 0.8200 0.9500 1.0000 1.0000 0.9680 0.9750 

 W̃ 0.9990 0.9990 0.9980 1.0000 1.0000 1.0000 0.9920 0.9920 

5000 W 0.9060 0.9390 0.9550 0.9970 1.0000 1.0000 0.9920 0.9920 

 W̃ 0.9990 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

10000 W 0.8540 0.9260 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 W̃ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 1% nominal level 

  ε=0.02 ε=0.05 ε=0.02 ε=0.05 ε=0.02 ε=0.05 ε=0.02 ε=0.05 

500 W 0.5180 0.5930 0.0550 0.1020 0.0300 0.0660 0.3010 0.4220 

 W̃ 0.9760 0.9760 0.9310 0.9450 1.0000 1.0000 0.4640 0.6620 

1000 W 0.6870 0.7640 0.1420 0.2960 0.2420 0.5060 0.4600 0.6600 

 W̃ 0.9840 0.9840 0.9600 0.9720 1.0000 1.0000 0.4650 0.6590 

2000 W 0.7530 0.8290 0.3700 0.6390 0.6050 0.9150 0.4610 0.6590 

 W̃ 0.9910 0.9940 0.9830 0.9870 1.0000 1.0000 0.5900 0.7350 

3000 W 0.7750 0.8380 0.6030 0.8440 1.0000 1.0000 0.5890 0.7350 

 W̃ 0.9960 0.9990 0.9920 0.9910 1.0000 1.0000 0.8040 0.8340 

5000 W 0.7550 0.8190 0.8720 0.9830 1.0000 1.0000 0.8040 0.8330 

 W̃ 0.9980 0.9990 0.9980 0.9950 1.0000 1.0000 0.9770 0.9530 

10000 W 0.6190 0.7210 0.9980 1.0000 1.0000 1.0000 1.0000 0.9950 

 W̃ 0.9960 0.9970 1.0000 1.0000 1.0000 1.0000 1.0000 0.9980 
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In this section, we use the 2ELW estimator shown in Eq (9) to substitute the ELW estimator in Eq (10) 

to build the new test statistic called W̃. From the results of the size and power of rejecting the null 

hypothesis of the fractional integration process, which are adequately demonstrated by the simulation, 

the test statistic can discriminate between fractional integration process and structural break process. 

In detail, when the time series is derived from the fractional integration process, the test statistic does 

not reject the null hypothesis; moreover, when the time series is derived from a short memory process 

with a structural break, the null hypothesis could be rejected. Overall, the modified W̃ test has decent 

size and power and performs better than the Qu test W. In the next section, we will apply the new test 

statistic to detect fractional integration and structural break and further use the appropriate estimator 

to estimate long memory parameters for six volatility series of market indexes and individual stocks. 

5. Empirical results in Chinese stock index volatility series 

5.1. Realized volatility and statistical analysis 

The data sample includes the 5-min close price of four Chinese stock indexes—the Shanghai 

stock exchange composite index (hereafter, SZZS), the Shenzhen stock exchange component index 

(hereafter, SZCZ), the Shanghai-Shenzhen 300 index (hereafter, HS300), and the CSI Smallcap 500 

index (hereafter, ZZ500)—and two individual stocks: Ping An Bank Co., Ltd. (PAYH) and Kweichow 

Moutai Co., Ltd. (GZMT). In detail, SZZS and SZCZ reflect the A-share stocks traded on the Shanghai 

and Shenzhen stock exchanges, respectively. HS300 index includes the 300 A-share stocks traded on 

the Shanghai and Shenzhen stock exchanges and is seen as indicative of trends in both markets. ZZ500 

index includes the top 500 stocks in total market value after excluding the constituent stocks of the 

HS300 index. PAYH and GZMT are individual A-stocks traded in Shenzhen and Shanghai stock 

exchanges. All sample periods range from January 1, 2005, to December 31, 2023.  

The 5-min log return series is calculated as follows: 

𝑟𝑡 = 100 × [𝑙𝑜𝑔(𝑃𝑡) − 𝑙𝑜𝑔(𝑃𝑡−1)],       (12) 

where Pt represents closing price of 5 min at time t. 

The daily realized volatility (RV) [25] as a proxy of daily volatility is measured by the following 

formula: 

𝑅𝑉𝑡
(𝑚)

= ∑ [𝑟𝑖
(𝑚)

]
2

𝑚
𝑖=1 ,         (13) 

where ri
(m)
 denotes the i-th 5-min logarithmic close return at day t, and m denotes the number of 5-

min returns at day t. 

Figure 3 presents the daily volatility series for SZZS, SZCZ, HS300, ZZ500, PAYH, and GZMT. 

Table 5 presents the results of statistical analysis. The results indicate that there are some common 

features among the three volatility series, for example, short dependence, volatility clustering, and 

heavy tail. Moreover, they all are not unit root processes and show distinct stationary long memory. 
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Figure 3. Daily volatility series and structural break for four indexes and two stocks. 

Table 5. Results of statistical analysis for daily volatility series. 

 SZZS SZCZ HS300 ZZ500 PAYH GZMT 

Number 4615 4615 4554 4125 4615 4615 

Minimum 7.4977×10-6 1.2063×10-5 6.6163×10-6 1.1616×10-5 0.0000 0.0000 

Maximum 0.0072 0.0084 0.0075 0.0084 0.0347 0.0148 

Mean 2.0127×10-4 2.6410×10-4 2.2985×10-4 2.6998×10-4 6.7144×10-4 5.0438×10-4 

Standard 

Deviation 
3.9586×10-4 4.3842×10-4 4.2136×10-4 5.0142×10-4 0.0011 8.0451×10-4 

Skewness 7.8574 6.8873 7.5240 6.1557 10.2729 6.6943 

Kurtosis 95.9140 77.5222 88.2748 59.0801 227.68 71.3534 

JB 1.7075×107*** 1.1044×107*** 1.4228×107*** 5.6660×106*** 9.7883×107*** 9.3289×106*** 

KS 0.5000*** 0.5000*** 0.5000*** 0.5000*** 0.5000*** 0.5000*** 

Q(5) 5.3073×104*** 4.8928×104*** 5.2906×104*** 5.0545×104*** 2.7802×104*** 2.9610×104*** 

Q(10) 7.8717×104*** 7.3454×104*** 7.6993×104*** 7.8002×104*** 3.9683×104*** 3.9131×104*** 

ADF -29.8203*** -29.2595*** -29.4255*** -26.8728*** -35.0303*** -33.7009*** 

d 0.3864 0.3866 0.3842 0.3967 0.3160 0.3133 

Number of 

structural 

break 

3 3 3 3 4 4 



16479 

AIMS Mathematics  Volume 9, Issue 6, 16468–16485. 

Notes: SD, JB, ADF, and Q denote standard deviation, Jarque Bera, Augmented Dickey-Fuller, and Ljung Box 

statistics, respectively. d denotes the estimate of differencing parameters based on 2ELW method at bandwidth m = 

T0.7. *, **, *** indicate significance at significance nominal level of 10 , 5 , and 1 , respectively. The sequential 

procedure [26] based on supFT(k+1|k) statistics is used to detect the number of structural breaks. 

5.2. Detecting fractional integration and structural break in Chinese markets 

As shown in Section 5.1, six volatility series experience the property of long memory. It is 

necessary to further apply the test statistic shown in Eq (11) to detect whether this long memory is 

originated from a fractional integration process or induced by structural break in the series. Almost all 

test statistics of the new test W̃ are significant at level 5  but not significant for the Qu test W. The 

detecting results by the new test W̃ shown in Table 6 for six volatility series indicate that all daily 

volatility of stock indexes and individual stocks experience spurious long memory, which is consistent 

with the results of estimating structural breaks in the next section. The detecting results of the Qu test 

W show the spurious long memory of individual stocks but barely for stock indexes. From the results 

of Table 6, it is shown that the proposed new statistic has a higher ability to detect long memory and 

structural breaks in volatility series than the original Qu test. 

Table 6. Detecting results of spurious long memory. 

Volatility series 
W W̃ 

ε=0.02 ε=0.05 ε=0.02 ε=0.05 

  m = T0.60   

SZZS 0.9986 0.9986 1.2002* 1.2002** 

SZCZ 0.9674 0.9674 1.1180* 1.1180* 

HS300 1.0138 1.0138 1.1853* 1.1853** 

ZZ500 0.8654 0.8654 1.4260** 1.4260** 

PAYH 1.1739* 1.1050* 2.0732*** 2.0732*** 

GZMT 1.2910** 1.2234** 1.9436*** 1.9436*** 

  m = T0.70   

SZZS 1.0552 1.0552* 1.0849 1.0426* 

SZCZ 1.0631 0.9826 1.1092 1.0122 

HS300 1.0734 1.0734* 0.9440 0.9440 

ZZ500 1.0417 1.0417* 1.4607** 1.4607*** 

PAYH 1.1098 0.6656 1.7682*** 1.4232** 

GZMT 1.0826 1.0826* 1.0361 0.6801 

  m = T0.80   

SZZS 0.6679 0.6679 1.1206* 1.1206* 

SZCZ 0.6834 0.6834 1.1995* 1.1995** 

HS300 1.1420* 1.1420* 1.5649*** 1.5649*** 

ZZ500 0.9489 0.9348 0.8272 0.7989 

PAYH 1.3974** 1.3974** 1.5155** 1.5155*** 

GZMT 1.3050** 1.3050** 1.5261*** 1.5261*** 

Notes: At ε=0.02, test statistic W̃ has the critical values of 1.118, 1.252, and 1.517 at significance level of 10 , 

5 , and 1 , respectively. At ε=0.05, test statistic W̃ has the critical values of 1.022, 1.155, and 1.426 at significance 

level of 10 , 5 , and 1 , respectively. *, **, and *** show significance at 10 , 5 , and 1 , respectively. 
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5.3. Estimation of structural break 

We apply the test statistic proposed by [27] to detect the number of structural breaks in three daily 

volatility series, which include supFT(k)
1, DmaxFT

2, and supFT(k+1|k)
3. The forms of these statistics 

are introduced in detail in [27]. The steps for estimating structural breaks are as follows. The first step 

is to test whether there exists a structural break, and the second one is to estimate the number of 

structural breaks. Although the methods based on LWZ [28] and BIC [29] perform well, they may 

underestimate the number of structural breaks when there is heteroscedasticity in the volatility series. 

Therefore, the sequential procedure proposed by [26] is selected to identify the number of structural 

breaks. The third step is to further identify the location date and estimate the mean of each period 

divided according to the detected points of structural breaks. The model considered in this research is 

the mean shift model, that is, yt = δi + ut, where yt is time series at time t, δi is the mean of the i-

th period, ut  is the random term at time t, t = 1,2, ⋯ , T , i= 1,2, ⋯ , m , and m is the number of 
structural breaks. We use OLS to estimate the parameters of the model. 

Table 7 provides the results of testing and estimating structural breaks. For daily volatility of 

SZZS, the supFT(k) (k=1,2,3,4,5), UDmax, WDmax, SupF(2|1), and SupF(3|2) are significant at 1 , 

but SupF(4|3) and SupF(5|4) are not significant at 10 . Therefore, there may be at least one structural 

break for the daily volatility series of SZZS index. Moreover, the sequential procedure gives three 

structural breaks. The corresponding location date is given in the fourth column of Table 7. Three break 

dates are October 9, 2009, June 20, 2013, and April 21, 2016, and the means of the four periods are 

3.7182 × 10-4, 1.2774 × 10-4, 3.1906 × 10-4, and 0.8776 × 10-4. The results for the other five volatility 

series are also shown in Table 7. The detecting results show that all the volatility series, especially the 

four stock indexes, have almost the same number of breaks and break dates. Moreover, their volatility 

level in the first period is the highest. 

Table 7. Estimated results of structural break. 

Volatility series Test statistics Number of breaks Date of break  
Volatility mean 

(× 10−4) 

SZZS 

SupF(1|0)= 62.6673*** 

SupF(2|1)=30.8391*** 

SupF(3|2)=17.6714*** 

SupF(4|3)=5.3531 

SupF(5|4)=5.0070 

Seq.：3 

BIC：3 

LWZ：3 

T1 ='2009-10-09' 

T2 ='2013-06-20' 

T3 ='2016-04-21' 

σF =2.0127 

σ1 =3.7182 

σ2 =1.2774 

σ3 =3.1906 

σ4 =0.8776 

SZCZ 

SupF(1|0)=108.8058*** 

SupF(2|1)=17.7389*** 

SupF(3|2)=15.4759*** 

SupF(4|3)=10.4038* 

SupF(5|4)=4.3863 

Seq.：3 

BIC：3 

LWZ：4 

T1 ='2009-10-09' 

T2 ='2013-05-28' 

T3 ='2016-03-30' 

σF =2.6410 

σ1 =4.3962 

σ2 =2.0142 

σ3 =3.8999 

σ4 =1.3998 

Continued on next page 

 

 
1This test statistic is used for the case in which the number of structural breaks is known, for which the null and alternative 

hypothesis are set as no structural break and k structural breaks, respectively. 
2This test statistic is used for the case in which the number of structural breaks is unknown, for which the null and alternative 

hypothesis are set as no structural break and unknown k structural breaks, respectively. This test statistic includes two types according 

to its weight: UDmaxFT and WDmaxFT. 
3This test statistic is used for the case in which the number of structural breaks is known, for which the null and alternative 

hypothesis are set as no structural break and k structural breaks, respectively. 
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Volatility series Test statistics Number of breaks Date of break  
Volatility mean 

(× 10−4) 

HS300 

SupF(1|0)=59.9358*** 

SupF(2|1)=30.5248*** 

SupF(3|2)=13.4609** 

SupF(4|3)=11.2809* 

SupF(5|4)=0.0000 

Seq.：3 

BIC：2 

LWZ：3 

T1 ='2009-10-09' 

T2 ='2013-05-23' 

T3 ='2016-03-14' 

σF =2.2985 

σ1 =4.1579 

σ2 =1.6544 

σ3 =3.4221 

σ4 =1.1228 

ZZ500 

SupF(1|0)=81.6174*** 

SupF(2|1)=37.9784*** 

SupF(3|2)=12.2999** 

SupF(4|3)=8.1152 

SupF(5|4)=0.0000 

Seq.：3 

BIC：2 

LWZ：3 

T1 ='2009-09-01' 

T2 ='2013-12-11' 

T3 ='2016-06-24' 

σF =2.6998 

σ1 =6.7159 

σ2 =1.9922 

σ3 =4.1633 

σ4 =1.1999 

PAYH 

SupF(1|0)=163.5319*** 

SupF(2|1)=24.4941*** 

SupF(3|2)=23.9975*** 

SupF(4|3)=26.6674*** 

SupF(5|4)=0.0000 

Seq.：4 

BIC：4 

LWZ：3 

T1 ='2009-09-03' 

T2 ='2012-11-12' 

T3 ='2015-09-17' 

T4 ='2018-08-23' 

σF =6.7144 

σ1 =13.1276 

σ2 =3.7233 

σ3 =8.5094 

σ4 =2.6979 

σ5 =4.1498 

GZMT 

SupF(1|0)=98.7432*** 

SupF(2|1)=10.8309** 

SupF(3|2)=15.8123*** 

SupF(4|3)=14.3869** 

SupF(5|4)=0.0000 

Seq.：4 

BIC：1 

LWZ：3 

T1 ='2009-03-06' 

T2 ='2012-11-20' 

T3 ='2015-10-08' 

T4 ='2018-08-03' 

σF =5.0438 

σ1 =9.6366 

σ2 =3.3326 

σ3 =5.6520 

σ4 =2.6985 

σ5 =3.6271 

Notes: The parameter setting, test statistic, number of structural breaks, and the estimate of location and mean 

for each period are shown in Column 1, 2, 3, and 4, respectively. *, **, and *** show significance at 10 , 5 , and 

1 , respectively. 

5.4. Estimating long memory parameter 

To reflect the impact of structural breaks on the estimating results of long memory, the full sample 

is divided into several subsamples based on the estimate of structural breaks, and the 2ELW method is 

used to estimate d for each subsample. From the estimating results given in Table 8, there is a big 

difference between the estimating results of d in the subsample and full sample. Some estimates of 

subsamples are smaller than one in the full sample, but others are not. Therefore, the volatility series 

in different samples experience different long memory. 

The estimated results of d for the daily volatility series of SZZS index in the full sample for m =
T0.6, T0.7and T0.8 are 0.3975, 0.3864, and 0.4144, respectively. The estimation in four subsamples 

is between 0.3 and 0.4 and between 0.1 and 0.2. Moreover, the estimates of some subsamples for 

different bandwidth parameters are close. Therefore, there is a distinct impact of a structural break on 

the estimate of long memory. The estimation becomes more robust when the structural break is 

eliminated from the volatility series. Moreover, all the subsamples significantly experience the 

property of long memory, even though there is nonstationary long memory for some subsamples. The 

estimate of the long memory parameter in the third subsample for all the indexes and stocks is the 

biggest among all the subsamples. 
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Table 8. Estimated results of long memory parameter for subsamples according to 

structural breaks for volatility series. 

Volatility 

series 
Tm Subsample 1 Subsample 2 Subsample 3 Subsample 4 Subsample 5 

Full 

sample 

 T0.6 0.3030 0.3016 0.3878 0.1999  0.3975 

SZZS T0.7 0.3122 0.2866 0.6688 0.2065 － 0.3864 

 T0.8 0.3661 0.3950 0.5012 0.1898 － 0.4144 

 T0.6 0.3041 0.3147 0.3823 0.2831 － 0.4061 

SZCZ T0.7 0.3304 0.3011 0.4671 0.2599 － 0.3866 

 T0.8 0.3710 0.3701 0.4527 0.2560 － 0.4071 

 T0.6 0.3252 0.3178 0.3936 0.2339 － 0.3768 

HS300 T0.7 0.3359 0.3024 0.6616 0.2396 － 0.3842 

 T0.8 0.3835 0.3783 0.5240 0.2140 － 0.4350 

 T0.6 0.3190 0.2672 0.4713 0.2729 － 0.4132 

ZZ500 T0.7 0.3185 0.2904 0.4916 0.2404 － 0.3967 

 T0.8 0.3888 0.4049 0.4553 0.2350 － 0.4083 

 T0.6 0.2289 0.3806 0.2808 0.3748 0.3463 0.3138 

PAYH T0.7 0.3053 0.3502 0.4393 0.3932 0.2852 0.3160 

 T0.8 0.2302 0.2995 0.4453 0.4991 0.2760 0.3181 

 T0.6 0.0823 0.5318 0.3038 0.2064 0.2172 0.2845 

GZMT T0.7 0.2461 0.4197 0.3872 0.2434 0.2977 0.3133 

 T0.8 0.3587 0.3767 0.4558 0.2856 0.2890 0.3547 

Note: d is estimated by the 2ELW method. *, **, and *** show significance at 10 , 5 , and 1 , respectively. 

6. Conclusions 

The property of long memory observed in empirical research may either originate from the 

fractional integration process or be spuriously induced by the structural break process. Our research 

modifies the detecting statistic proposed by [17], evaluates its performance based on simulation, and 

empirically estimates the long memory parameter of the daily volatility series for the stock market in 

China. The conclusions are as follows. First, the fractional integration process and the short memory 

process contaminated by structural breaks both show the characteristics of long memory, while the 

structural break process generates spurious long memory. Second, the 2ELW method could give robust 

estimating results for the long memory parameter but is significantly impacted by the bandwidth 

parameter of the 2ELW estimator for the structural break process. Third, the W̃ test statistic based on 

the 2ELW estimator can efficiently discriminate between the fractional integration process and the 

structural break process. Fourth, there exists the property of real long memory and structural break for 

the daily volatility in China’s stock market, and the long memory parameter estimate is affected by the 

property of structural break. 

The simulation and empirical tests of this research demonstrate a new approach with the modified 

W̃  test statistic based on the introduction of the 2ELW estimator to the current W test statistic to 

distinguish between real long memory process (i.e., fractional integration) and spurious long memory 

(i.e., a short memory process contaminated by a structural break). This approach may provide a 

potential answer for previous research showing market long memory that may be overestimated under 

the structural break process. A true long memory in the market could be used by portfolio managers 
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when building investment strategies and forecasting financial risk. 

We believe that future research should focus on further differentiation between fractional 

integration and structural break; the differentiation between fractional integration and other important 

properties such as trend, nonlinearity, fat-tail, heteroscedasticity, etc.; the data generating process for 

temporal aggregation or cross-sectional aggregation, and efficient estimation of the models for the long 

memory parameter with other properties at the same time. 
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