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Abstract: This paper introduces the geometric distribution in the context of neutrosophic statistics. 

The research outlines the essential properties of this new distribution and introduces novel algorithms 

for generating imprecise geometric data. The study explores the practical applications of this 

distribution in the industry, highlighting differences in data generated under deterministic and 

indeterminate conditions using detailed tables, simulation studies, and real-world applications. The 

results indicate that the level of uncertainty has a substantial impact on data generation from the 

geometric distribution. These findings suggest updating classical statistical algorithms to better 

handle the generation of imprecise data. Therefore, decision-makers should exercise caution when 

using data from the geometric distribution in uncertain environments. 
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1. Introduction 

The geometric distribution is a discrete probability distribution employed to model the 

occurrence of the first success in a series of Bernoulli trials. Widely recognized in statistics, this 

distribution finds applications across various industries and fields. Control chart design involves 

assessing the distribution of the average run length, a task often accomplished using the geometric 

distribution. This distribution and its extended variants have found utility in diverse areas. For 
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instance, Beria [1] delved into the confidence interval of the geometric distribution, while Chen [2] 

investigated goodness-of-fit tests for the geometric distribution. Bertoli-Barsotti and Lando [3] 

applied the geometric distribution to citation analysis, while Slim et al. [4] utilized it for graduation 

rate analysis. Gao [5] proposed an extension of the geometric distribution for a replacement policy, 

and Altun [6] presented a generalization with discussions on its applications. Additionally, Almazah 

et al. [7] introduced an extended geometric distribution, applying it to various real datasets. Zhang et 

al. [8] explored the application of geometric distribution in magnetic fields. Ghosh et al. [9] 

introduced the bivariate geometric distribution, discussing its potential applications. Abbas [10] 

proposed a Bayesian approach to the bivariate geometric distribution, applied in reliability analysis. 

Further instances of the geometric distribution and its extended forms can be found in the works of 

Akdoğan et al. [11], Nadarajah and Bakar [12], Hassan and Abdelghafar [13], and Ramadan et al. [14]. 

The broad range of applications underscores the versatility and significance of the geometric 

distribution in statistical analyses and modeling. 

The credit for introducing neutrosophic statistics goes to Smarandache [15], who developed 

neutrosophic descriptive statistics. Neutrosophic statistics, applicable under uncertainty and 

characterized by the degree of indeterminacy, provide additional information. This approach is 

flexible and well-suited for analyzing imprecise data. It is important to note that neutrosophic 

statistical results revert to classical statistics when the data contains no uncertainty. Classical 

statistics is traditionally used to analyze crisp data, where values are precise and unambiguous. In 

contrast, neutrosophic statistics is designed to handle incomplete, ambiguous, and indeterminate data. 

Neutrosophic statistics offers a more robust approach to analyzing uncertain data compared with 

classical statistics. Neutrosophic statistics finds applications across a wide range of fields, including 

social sciences, political science, machine learning, artificial intelligence, medical science, and 

environmental studies. For instance, in environmental studies, climate pattern data often contains 

gaps and uncertainties. Neutrosophic statistics can be employed to analyze such data, including 

climate patterns and pollution levels, effectively capturing its inherent uncertainties and complexities. 

In a significant contribution, Florentin Smarandache [16] demonstrated the efficiency of neutrosophic 

statistical analysis for neutrosophic data compared to interval statistics. Chen et al. [17] as well as Chen 

et al. [18] explored neutrosophic statistical methods for analyzing neutrosophic data. Duan et al. [19]. 

Granados [20] introduced the neutrosophic geometric distribution using the neutrosophic random 

variable, and Granados et al. [21] presented various neutrosophic statistical distributions. Aslam [22] 

introduced sine-cosine and convolution methods for generating neutrosophic data. Aslam [23] 

introduced a neutrosophic simulation procedure for the DUS-Weibull distribution. Aslam [24] 

presented an algorithm for generating data from the Weibull distribution. Aslam and Alamri [25] 

proposed an algorithm for generating neutrosophic data using the accept-reject method. Jdid et al. [26] 

conducted a study on the neutrosophic simulation process for the exponential distribution. These 

contributions collectively highlight the growing importance and diverse applications of neutrosophic 

statistics in handling uncertain and imprecise data. 

While there is a considerable amount of literature on geometric distribution, the traditional 

geometric distribution in classical statistics is not suitable for handling imprecise data. A review of 

existing literature did not yield any studies on the geometric distribution using neutrosophic 

statistics. In this paper, we introduce the geometric distribution using the innovative concept of the 

neutrosophic random variable. Our investigation highlights a research gap in the development of 

algorithms for generating imprecise geometric data. To fill this gap, we introduce the neutrosophic 
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random variable and propose the neutrosophic geometric distribution. We characterize this new 

geometric distribution by discussing its fundamental properties. Additionally, we present algorithms 

tailored for this distribution to generate imprecise data. We demonstrate the efficiency of the 

proposed algorithms through simulation studies and showcase the application of this new distribution 

in the industry. We expect that uncertainty will play a significant role in the generation of geometric 

data within this novel framework. 

2. Neutrosophic random variable 

Suppose that 𝑋𝐿be a random variable having mean 𝜇 and variance 𝜎2 based on this, we define a 

neutrosophic random variable 𝑋𝑁 = 𝑋𝐿 + 𝑋𝐿𝐼𝑁; 𝐼𝑁𝜖[𝐼𝐿 , 𝐼𝑈] the neutrosophic random variable, where 

𝑋𝐿𝐼𝑁  be the indeterminate part and 𝐼𝑁𝜖[𝐼𝐿 , 𝐼𝑈]  be the indeterminacy. It is worth noting that the 

introduced neutrosophic random variable is an extension of the classical random variable. When 𝐼𝐿 =
0, the proposed neutrosophic random variable reverts to the classical random variable. As mentioned 

in Granados [20], neutrosophic logic is the generalization of fuzzy logic where an indeterminacy 

component is added additionally. Note that  𝐼𝑁
2 = 𝐼𝑁, … , 𝐼𝑁

𝑛 = 𝐼𝑁 , 0. 𝐼𝑁 = 0 ;  𝑛𝜖Ν . Based on this 

information, the expected properties of the neutrosophic random variable 𝑋𝑁 = 𝑋𝐿 + 𝑋𝐿𝐼𝑁 are given 

as 

1) 𝐸(𝑋𝑁) = 𝐸(𝑋𝐿 + 𝑋𝐿𝐼𝑁) = (1 + 𝐼𝑁)𝜇. 

2) 𝐸(𝑋𝑁 + 𝑐) = (𝑋𝐿 + 𝑋𝐿𝐼𝑁) + 𝑐 = (1 + 𝐼𝑁)𝜇 + 𝑐, where 𝑐 is a constant. 

3) 𝐸(𝑎𝑋𝑁 + 𝑐) = 𝑎(𝑋𝐿 + 𝑋𝐿𝐼𝑁) + 𝑐 = 𝑎(1 + 𝐼𝑁)𝜇 + 𝑐, where 𝑎 and 𝑐 is are constant. 

4) For two random variables 𝑋𝑁 and 𝑌𝑁; 𝐸(𝑋𝑁 + 𝑌𝑁) = (1 + 𝐼𝑁)𝜇𝑦 + (1 + 𝐼𝑁)𝜇𝑥. 

Based on this information, the variance properties of the neutrosophic random variable 𝑋𝑁 =
𝑋𝐿 + 𝑋𝐿𝐼𝑁 are given as 

1) 𝑉𝑎𝑟(𝑋𝑁) = 𝑉𝑎𝑟(𝑋𝐿 + 𝑋𝐿𝐼𝑁) = (1 + 𝐼𝑁)2𝜎2. 

2) 𝑉𝑎𝑟(𝑎𝑋𝑁) = 𝑎2𝑉𝑎𝑟(𝑋𝐿 + 𝑋𝐿𝐼𝑁) = 𝑎2(1 + 𝐼𝑁)2𝜎2. 

3) 𝑉𝑎𝑟(𝑎𝑋𝑁 + 𝑏𝑌𝑁) = 𝑎2(1 + 𝐼𝑁)2𝜎𝑥
2 + 𝑏2(1 + 𝐼𝑁)2𝜎𝑦

2 + 2𝑎𝑏𝐼𝑁𝐶𝑜𝑣(𝑋𝑁, 𝑌𝑁). 

4) For two random variables 𝑋𝑁  and 𝑌𝑁 ; 𝑉𝑎𝑟(𝑋𝑁 + 𝑌𝑁) = (1 + 𝐼𝑁)2𝜎𝑥
2 + (1 + 𝐼𝑁)2𝜎𝑦

2 +

2𝐼𝑁𝐶𝑜𝑣(𝑋𝑁, 𝑌𝑁). 

5) For two independent random variables 𝑋𝑁  and 𝑌𝑁 ; 𝑉𝑎𝑟(𝑋𝑁 + 𝑌𝑁) = (1 + 𝐼𝑁)2𝜎𝑥
2 +

(1 + 𝐼𝑁)2𝜎𝑦
2. 

3. Neutrosophic geometric distribution 

Consider the random variable 𝑋𝐿 representing a deterministic value, utilized to determine the 

number of successes with a success probability of 𝑝. Let 𝑋𝑁 = 𝑋𝐿 + 𝑋𝐿𝐼𝑁, where 𝑋𝐿𝐼𝑁 represents the 

indeterminate part and 𝐼𝑁𝜖[𝐼𝐿 , 𝐼𝑈] signifies the indeterminacy. The neutrosophic random variable is 

an extension of the classical random variable. It converges to a classical random variable when 𝐼𝐿=0. 

Theorem 3.1. The probability function of 𝑋𝑁 is expressed as follows: 

𝑓 (
𝑋𝑁

(1+𝐼𝑁)
) = 𝑝(1 − 𝑝)

𝑋𝑁−1−𝐼𝑁
(1+𝐼𝑁) ; 𝑋𝑁 = (1 + 𝐼𝑁), 2(1 + 𝐼𝑁), … ..                            (1) 

Proof: As the Bernoulli random variables exhibit independence, the probability of the 𝑘th trial being 

the initial success is expressed as 
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𝑃(𝐵(1+𝐼𝑁) = 0). , , , . 𝑃 (𝐵
(

𝑋𝑁
(1+𝐼𝑁)

)
= 0) . 𝑃 (𝐵

(
𝑋𝑁

(1+𝐼𝑁)
+1)

= 1) 

= 𝑝(1 − 𝑝)
𝑋𝑁−1−𝐼𝑁

(1+𝐼𝑁) . 

Note that 𝑝 represents the probability of success, while (1 − 𝑝 = 𝑞) denotes the probability of 

failure. 

Theorem 3.2. Show that the proposed distribution constitutes a complete probability mass function. 

Proof: We know 

∑ 𝑓(𝑋𝑁)

∞

𝑋𝑁=(1+𝐼𝑁)

= 𝑝 ∑ (𝑞)
𝑋𝑁−1−𝐼𝑁

(1+𝐼𝑁)

∞

𝑋𝑁=(1+𝐼𝑁)

 

= 𝑝 [𝑞0 + 𝑞
2+𝐼𝑁

(1+𝐼𝑁) + 𝑞
3+𝐼𝑁

(1+𝐼𝑁)
+⋯

] 

= 𝑝 [
1

1−𝑞
] = 1. 

The cumulative distribution function of 𝑋𝑁 is given by 

𝐹 (
𝑋𝑁

(1+𝐼𝑁)
) = 1 − (1 − 𝑝)

𝑋𝑁
(1+𝐼𝑁); 𝑋𝑁 = (1 + 𝐼𝑁), 2(1 + 𝐼𝑁), …                      (2) 

The expected value of 𝑋𝑁 is given by 

𝐸(𝑋𝑁) = 𝐸(𝑋𝐿 + 𝑋𝐿𝐼𝑁) = (1 + 𝐼𝑁) 𝑝⁄ .                                              (3) 

The higher order moment is expressed by 

𝐸(𝑋𝑁
𝑟 ) = (1 + 𝐼𝑁)𝑟 𝑝⁄ .                                                         (4) 

The variance of 𝑋𝑁 is given by 

𝑉𝑎𝑟(𝑋𝑁) = 𝑉𝑎𝑟(𝑋𝐿 + 𝑋𝐿𝐼𝑁) = (1 + 𝐼𝑁)2(1 − 𝑝) 𝑝2⁄ .                                  (5) 

Theorem 3.3. Show that the moment generating function (mgf) of the neutrosophic geometric 

function is given as 

𝑀(𝑡𝑁) = (1 + 𝐼𝑁)𝑝𝑒𝑡𝑁
1

1−𝑒𝑡𝑁(1−𝑝)
. 

Proof: We define 

𝑀(𝑡𝑁) = (1 + 𝐼𝑁)𝑝 ∑ 𝑒
𝑡𝑁𝑋𝑁

(1+𝐼𝑁)

∞

𝑋𝑁=(1+𝐼𝑁)

(1 − 𝑝)
𝑋𝑁−1−𝐼𝑁

(1+𝐼𝑁)  
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=(1 + 𝐼𝑁)𝑝𝑒𝑡𝑁 ∑ 𝑒
𝑡𝑁(

𝑋𝑁
(1+𝐼𝑁)

−1)∞
𝑋𝑁=(1+𝐼𝑁) (1 − 𝑝)

𝑋𝑁−1−𝐼𝑁
(1+𝐼𝑁)  

= (1 + 𝐼𝑁)𝑝𝑒𝑡𝑁 ∑ 𝑒
𝑡𝑁(

𝑋𝑁−1−𝐼𝑁
(1+𝐼𝑁)

)
∞

𝑋𝑁=(1+𝐼𝑁)

(1 − 𝑝)
𝑋𝑁−1−𝐼𝑁

(1+𝐼𝑁) . 

𝑀(𝑡𝑁) =
𝑝𝑒𝑡𝑁(1+𝐼𝑁)

1−𝑒𝑡𝑁(1−𝑝)
.                                                               (6) 

Theorem 3.4. Let 𝑋𝑁 = 𝑋𝐿 + 𝑋𝐿𝐼𝑁  and 𝑌𝑁 = 𝑌𝐿 + 𝑌𝐿𝐼𝑁  be two independent neutrosophic random 

variable. Let 𝑍𝑁 = 𝑋𝑁 + 𝑌𝑁, the mgf is given by 

𝑀𝑍𝑁
(𝑡𝑁) = 𝑀𝑋𝑁

(𝑡𝑁). 𝑀𝑌𝑁
(𝑡𝑁). 

Proof: 

𝑀𝑍𝑁
(𝑡𝑁) = 𝐸(𝑒𝑡𝑁𝑍𝑁) = 𝐸(𝑒𝑡𝑁(𝑋𝑁+𝑌𝑁)) = 𝐸(𝑒𝑡𝑁𝑋𝑁). 𝐸(𝑒𝑡𝑁𝑌𝑁). 

𝑀𝑍𝑁
(𝑡𝑁) = 𝑀𝑋𝑁

(𝑡𝑁). 𝑀𝑌𝑁
(𝑡𝑁).                                                (7) 

4. The proposed algorithm-I 

The algorithm presented in Thomopoulos [27], categorized under classical statistics, is effective 

for generating deterministic data. Nevertheless, its utility is constrained in uncertain environments. 

To evaluate the effects of uncertainty, it is crucial to augment the current algorithm by integrating 

features that account for uncertainty. To accomplish this, we will implement the following process to 

generate data utilizing the geometric distribution. 

Step-1: Specify the degree of uncertainty 𝐼𝑁. 

Step-2: Generate random samples from continuous uniform distribution 𝑢~𝑈(0,1). 

Step-3: Compute 𝑋𝑁 = 𝑖𝑛𝑒𝑡𝑔𝑒𝑟 [{([ln(1 − 𝑢) ln(1 − 𝑝)⁄ ] + 1)}(1 + 𝐼𝑁)]. 

Step-4: Return 𝑋𝑁. 

The algorithm is explained with the aid of Figure 1. 
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Figure 1. The proposed algorithm-I. 

It is worth noting that the suggested algorithm-I simplifies to the algorithm outlined in 

Thomopoulos [27] when the parameter 𝐼𝐿 is set to zero. 

5. The proposed algorithm-II 

Within this section, we introduce Algorithm-II, designed to generate data from the geometric 

distribution using 𝑢~𝑈(0,1) and the probability of the first success. This algorithm is an extension of 

the form presented in classical statistics. When 𝐼𝐿 =0, the proposed Algorithm-II simplifies the 

algorithm used for generating data from the negative binomial distribution. The subsequent routine 

will be employed for generating data from the geometric distribution. 

Step-1: Specify the degree of uncertainty 𝐼𝑁. 

Step-2: Generate random samples from continuous uniform distribution 𝑢~𝑈(0,1). 

Step-3: Compute 𝑋𝑁 = 𝑖𝑛𝑒𝑡𝑔𝑒𝑟 [{([ln(𝑢) ln(𝑞)⁄ ])}(1 + 𝐼𝑁)]. 

Step-4: Return 𝑋𝑁. 

The algorithm is elucidated with the assistance of Figure 2. 
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Figure 2. The proposed algorithm-II. 

Note that the proposed algorithm-I and algorithm-II are slightly more complex than the classical 

statistics-based algorithms. This complexity arises because our algorithm-I and algorithm-II 

incorporate the degree of uncertainty in data generation, whereas the existing algorithms do not 

account for this uncertainty. 

6. Simulation 

Within this segment, we shall showcase simulation studies employing the proposed algorithms. 

Initially, we will delve into the data generation process using algorithm-I for the geometric 

distribution, followed by the presentation of data generated using algorithm-II for the same 

distribution. 

6.1. Simulation using algorithm-I 

Utilizing algorithm-I, the simulation procedure is executed, and data derived from the geometric 

distribution for different combinations of 𝑝 and 𝐼𝑁 are outlined in Tables 1–4. Specifically, Table 1 

corresponds to 𝑝=0.10, Table 2 to p=0.20, Table 3 to 𝑝 =0.30, and Table 4 to 𝑝 =0.40. A discernible 

ascending pattern is evident in the geometric distribution data across Tables 1–4 as 𝐼𝑁 values escalate 

from 0.1 to 0.9. For instance, with 𝐼𝑁=0.1 and 𝑝=0.10, 𝑋𝑁 yields a value of 4, whereas with 𝐼𝑁=0.9 

and p=0.10, 𝑋𝑁 attains a value of 7. This progression is visually depicted in Figure 3, where it is 

observable that the data curve for 𝐼𝑁=0.1 is positioned below that of 𝐼𝑁=0.5 and 𝐼𝑁=0.9. Presently, 

we illustrate the data trend of 𝑋𝑁 while holding 𝐼𝑁 constant at 0.50, with varying values of 𝑝 set at 

0.10, 0.20, 0.30, and 0.40 in Figure 4. Upon examination of Figure 4, it is evident that 𝑋𝑁 values 

exhibit a decline as the parameter p increases from 0.10 to 0.40. To illustrate, when p=0.10 and 
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𝐼𝑁=0.50, 𝑋𝑁 attains a value of 5, whereas with p=0.40 and 𝐼𝑁=0.50, 𝑋𝑁 diminishes to a value of 2. 

Table 1. Random variates using algorithm-I when 𝑝 = 0.10. 

𝐼𝑁 = 0 𝐼𝑁 = 0.1 𝐼𝑁 = 0.2 𝐼𝑁 = 0.3 𝐼𝑁 = 0.4 𝐼𝑁 = 0.5 𝐼𝑁 = 0.6 𝐼𝑁 = 0.7 𝐼𝑁 = 0.8 𝐼𝑁 = 0.9 

3 4 4 5 5 5 6 6 7 7 

6 7 7 8 9 9 10 11 11 12 

2 3 3 3 3 4 4 4 5 5 

32 35 39 42 45 49 52 55 58 62 

18 20 21 23 25 27 29 30 32 34 

14 15 17 18 20 21 22 24 25 27 

15 17 18 20 22 23 25 26 28 30 

8 9 9 10 11 12 13 13 14 15 

2 2 2 3 3 3 3 4 4 4 

8 8 9 10 11 12 12 13 14 15 

1 1 1 1 1 1 1 1 2 2 

17 18 20 22 24 25 27 29 31 32 

20 22 24 26 28 30 32 34 36 38 

31 34 37 40 43 46 49 52 56 59 

16 18 19 21 23 24 26 28 29 31 

Table 2. Random variates using algorithm-I when 𝑝 = 0.20. 

𝐼𝑁 = 0 𝐼𝑁 = 0.1 𝐼𝑁 = 0.2 𝐼𝑁 = 0.3 𝐼𝑁 = 0.4 𝐼𝑁 = 0.5 𝐼𝑁 = 0.6 𝐼𝑁 = 0.7 𝐼𝑁 = 0.8 𝐼𝑁 = 0.9 

2 2 2 3 3 3 3 4 4 4 

3 3 4 4 5 5 5 6 6 6 

1 2 2 2 2 2 2 3 3 3 

15 17 19 20 22 23 25 27 28 30 

9 10 10 11 12 13 14 15 16 17 

7 8 8 9 10 10 11 12 13 13 

7 8 9 10 11 11 12 13 14 15 

4 4 5 5 6 6 7 7 7 8 

1 1 1 2 2 2 2 2 2 3 

4 4 5 5 6 6 6 7 7 8 

1 1 1 1 1 1 1 1 1 2 

8 9 10 11 12 12 13 14 15 16 

10 11 12 13 14 15 16 17 18 19 

15 16 18 19 21 22 24 25 27 28 

8 9 10 10 11 12 13 14 15 15 

Table 3. Random variates using algorithm-I when 𝑝 = 0.30. 

𝐼𝑁 = 0 𝐼𝑁 = 0.1 𝐼𝑁 = 0.2 𝐼𝑁 = 0.3 𝐼𝑁 = 0.4 𝐼𝑁 = 0.5 𝐼𝑁 = 0.6 𝐼𝑁 = 0.7 𝐼𝑁 = 0.8 𝐼𝑁 = 0.9 

1 2 2 2 2 2 3 3 3 3 

2 2 3 3 3 3 4 4 4 5 

1 1 1 1 2 2 2 2 2 2 

10 11 12 13 14 15 16 17 18 19 

6 6 7 7 8 9 9 10 10 11 

4 5 5 6 6 7 7 8 8 9 

5 5 6 6 7 8 8 9 9 10 

3 3 3 4 4 4 5 5 5 5 

1 1 1 1 1 2 2 2 2 2 

3 3 3 4 4 4 4 5 5 5 

1 1 1 1 1 1 1 1 1 1 

5 6 6 7 8 8 9 9 10 11 

6 7 8 8 9 10 10 11 12 12 

9 10 11 12 13 14 15 16 17 18 

5 6 6 7 7 8 8 9 10 10 
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Table 4. Random variates using algorithm-I when 𝑝 = 0.40. 

𝐼𝑁 = 0 𝐼𝑁 = 0.1 𝐼𝑁 = 0.2 𝐼𝑁 = 0.3 𝐼𝑁 = 0.4 𝐼𝑁 = 0.5 𝐼𝑁 = 0.6 𝐼𝑁 = 0.7 𝐼𝑁 = 0.8 𝐼𝑁 = 0.9 

1 1 1 2 2 2 2 2 2 3 

2 2 2 2 3 3 3 3 3 4 

1 1 1 1 1 2 2 2 2 2 

7 8 9 9 10 11 12 12 13 14 

4 5 5 5 6 6 7 7 8 8 

3 4 4 4 5 5 5 6 6 7 

4 4 4 5 5 6 6 6 7 7 

2 2 2 3 3 3 3 4 4 4 

1 1 1 1 1 1 2 2 2 2 

2 2 2 3 3 3 3 4 4 4 

1 1 1 1 1 1 1 1 1 1 

4 4 5 5 6 6 6 7 7 8 

4 5 5 6 6 7 7 8 8 9 

7 7 8 9 10 10 11 12 12 13 

4 4 5 5 5 6 6 7 7 8 

 

Figure 3. Data curves for various 𝐼𝑁 and 𝑝=0.10. 
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6.2. Simulation using algorithm-II 

Applying algorithm-II, the simulation process is conducted, and data originating from the 

geometric distribution for various combinations of p and 𝐼𝑁  are delineated in Tables 5–8. 

Specifically, Table 5 corresponds to p=0.10, Table 6 to 𝑝=0.20, Table 7 to p=0.30, and Table 8 to 

p=0.40. An observable ascending pattern is discernible in the geometric distribution data across 

Tables 5–8 as 𝐼𝑁 values escalate from 0.1 to 0.9. For instance, with 𝐼𝑁=0.1 and 𝑝=0.10, 𝑋𝑁 yields a 

value of 13, while with 𝐼𝑁=0.9 and 𝑝=0.10, 𝑋𝑁 attains a value of 23. This progression is visually 

represented in Figure 5, where the data curve for 𝐼𝑁=0.1 is positioned below that of 𝐼𝑁=0.5 and 

𝐼𝑁=0.9. Now, we depict the trend in 𝑋𝑁 data, maintaining 𝐼𝑁 at 0.50, and varying p values at 0.10, 

0.20, 0.30, and 0.40 in Figure 6. Upon scrutiny of Figure 6, it is apparent that 𝑋𝑁 values experience a 

decline as the parameter p increases from 0.10 to 0.40. To exemplify, when 𝑝=0.10 and 𝐼𝑁=0.50, 𝑋𝑁 

reaches a value of 18, while with 𝑝=0.40 and 𝐼𝑁=0.50, 𝑋𝑁 diminishes to a value of 3. We used Excel 

for data simulation, which is available from the authors upon reasonable request 

Table 5. Random variates using algorithm-II when 𝑝 = 0.10. 

𝐼𝑁 = 0 𝐼𝑁 = 0.1 𝐼𝑁 = 0.2 𝐼𝑁 = 0.3 𝐼𝑁 = 0.4 𝐼𝑁 = 0.5 𝐼𝑁 = 0.6 𝐼𝑁 = 0.7 𝐼𝑁 = 0.8 𝐼𝑁 = 0.9 

12 13 14 16 17 18 19 21 22 23 

7 8 9 10 10 11 12 13 13 14 

16 18 20 21 23 25 26 28 30 31 

0 0 0 0 0 0 0 0 0 0 

1 1 2 2 2 2 2 2 3 3 

2 2 3 3 3 4 4 4 4 5 

2 2 2 2 3 3 3 3 4 4 

5 6 7 7 8 8 9 10 10 11 

18 20 22 24 26 28 30 32 34 35 

6 6 7 7 8 9 9 10 10 11 

41 45 49 53 57 62 66 70 74 78 

1 2 2 2 2 2 3 3 3 3 

1 1 1 1 1 1 2 2 2 2 

0 0 0 0 0 0 0 0 0 0 

2 2 2 2 2 3 3 3 3 3 

Table 6. Random variates using algorithm-II when 𝑝 = 0.20. 

𝐼𝑁 = 0 𝐼𝑁 = 0.1 𝐼𝑁 = 0.2 𝐼𝑁 = 0.3 𝐼𝑁 = 0.4 𝐼𝑁 = 0.5 𝐼𝑁 = 0.6 𝐼𝑁 = 0.7 𝐼𝑁 = 0.8 𝐼𝑁 = 0.9 

5 6 7 7 8 8 9 9 10 11 

3 4 4 4 5 5 5 6 6 6 

7 8 9 10 11 11 12 13 14 15 

0 0 0 0 0 0 0 0 0 0 

0 0 0 1 1 1 1 1 1 1 

1 1 1 1 1 1 2 2 2 2 

1 1 1 1 1 1 1 1 1 2 

2 3 3 3 3 4 4 4 5 5 

8 9 10 11 12 13 14 15 16 16 

2 3 3 3 4 4 4 4 5 5 

19 21 23 25 27 29 31 33 35 37 

0 0 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 1 1 1 

0 0 0 0 0 0 0 0 0 0 

0 1 1 1 1 1 1 1 1 1 
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Table 7. Random variates using algorithm-II when 𝑝 = 0.30. 

𝐼𝑁 = 0 𝐼𝑁 = 0.1 𝐼𝑁 = 0.2 𝐼𝑁 = 0.3 𝐼𝑁 = 0.4 𝐼𝑁 = 0.5 𝐼𝑁 = 0.6 𝐼𝑁 = 0.7 𝐼𝑁 = 0.8 𝐼𝑁 = 0.9 

3 4 4 4 5 5 5 6 6 6 

2 2 2 2 3 3 3 3 4 4 

4 5 5 6 6 7 7 8 8 9 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 1 1 1 1 1 1 1 

0 0 0 0 0 0 1 1 1 1 

1 1 2 2 2 2 2 3 3 3 

5 6 6 7 7 8 8 9 10 10 

1 1 2 2 2 2 2 3 3 3 

12 13 14 15 17 18 19 20 21 23 

0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 1 1 

Table 8. Random variates using algorithm-II when 𝑝 = 0.40. 

𝐼𝑁 = 0 𝐼𝑁 = 0.1 𝐼𝑁 = 0.2 𝐼𝑁 = 0.3 𝐼𝑁 = 0.4 𝐼𝑁 = 0.5 𝐼𝑁 = 0.6 𝐼𝑁 = 0.7 𝐼𝑁 = 0.8 𝐼𝑁 = 0.9 

2 2 3 3 3 3 4 4 4 4 

1 1 1 2 2 2 2 2 2 3 

3 3 4 4 4 5 5 5 6 6 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 2 2 2 

3 4 4 5 5 5 6 6 7 7 

1 1 1 1 1 1 2 2 2 2 

8 9 10 11 11 12 13 14 15 16 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

 

Figure 5. Data curves for various 𝐼𝑁 and 𝑝=0.10. 

0

10

20

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15

Data

Sample number

IN=0.10

IN=0.50

IN=0.90



16447 

AIMS Mathematics  Volume 9, Issue 6, 16436–16452. 

 

Figure 6. Data curves for 𝐼𝑁 = 0.50 and various 𝑝. 

7.  Comparative studies 

In this section, we delve into a comparative analysis of the data generated by the two proposed 

algorithms. It is worth noting that these algorithms extend from pre-existing ones in classical 

statistics, as outlined in Thomopoulos [27]. Notably, the proposed algorithms revert to the existing 

ones under classical statistics when 𝐼𝐿  is set to 0. Our initial focus will be on contrasting the 

performance of the proposed algorithm-I with the existing algorithm in classical statistics. 

Subsequently, we will proceed to compare the performance of the proposed algorithm-II with the 

existing algorithm under classical statistics. 

7.1.  Comparison using algorithm-I 

The 𝑋𝑁 values in Tables 1–4, corresponding to 𝐼𝐿=0, represent the geometric distribution values 

generated by the existing algorithm in classical statistics. The data for the classical geometric 

distribution is detailed in Tables 1–4. Observing these tables reveals that the 𝑋𝑁 values when 𝐼𝐿=0 are 

smaller compared to the values for other 𝐼𝐿. For instance, in Table 1, when 𝐼𝐿=0, the 𝑋𝑁 value is 3, 

whereas it is 5 when 𝐼𝑁 =0.30. The behavioral patterns in the geometric data generated by the 

proposed algorithm-I and the existing algorithm under classical statistics are illustrated in Figure 7. 

Analysis of Figure 7 indicates an increasing trend in the data as 𝐼𝑁 rises from 0 to 0.3. 
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Figure 7. Data curves for 𝑝=0.10. 

7.2.  Comparison using algorithm-II 

The 𝑋𝑁 values in Tables 5–8, corresponding to 𝐼𝐿=0, represent the geometric distribution values 

generated by the existing algorithm in classical statistics. The data for the classical geometric 

distribution is presented in Tables 5–8. Examining these tables reveals that the 𝑋𝑁 values when 𝐼𝐿=0 

are smaller compared to the values for other 𝐼𝑁. For instance, in Table 5, when 𝐼𝐿=0, the 𝑋𝑁 value is 

12, whereas it is 16 when 𝐼𝑁 =0.30. The behavioral patterns in the geometric data generated by 

proposed algorithm-II and the existing algorithm under classical statistics are depicted in Figure 8. 

Analysis of Figure 8 indicates an increasing trend in the data as 𝐼𝑁 rises from 0 to 0.3. Additionally, 

the curve using the data generated from the existing algorithm is positioned below the curve of data 

when 𝐼𝑁=0.30. 

 

Figure 8. Data curves for 𝑝=0.10. 
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8. Application 

Consider a scenario where a quality engineer aims to inspect products until encountering the 

first defective one. The probability of encountering the first defective item is 0.10. Throughout the 

inspection process, there exists a degree of indeterminacy set at 0.1. The inquiry revolves around 

determining the average number of products the engineer needs to inspect before identifying the first 

defective item. This average number of products required for the initial detection is calculated as 

follows: 

𝐸(𝑋𝑁) = (1 + 𝐼𝑁) 𝑝⁄ = 1 + 0.10 0.1⁄ = 11. 

The industrial engineer, on average, must examine 11 items to identify the first defective 

product. The average number of products inspected to detect the initial defective item, employing 

classical statistics, is expressed as follows: 

𝐸(𝑋𝑁) = 1 𝑝⁄ = 1 0.1⁄ = 10. 

The industrial engineer, on average, has to examine 10 items before finding the first defective 

product. 

9. Utilization, updating software, and limitations 

The simulation study and application section highlights a notable distinction in outputs when 

applying statistical distribution in both determinate and indeterminate environments. It is crucial to 

recognize that the level of uncertainty significantly influences the generation of geometric data. 

Currently, there is a lack of computer software dedicated to producing imprecise geometric data. 

Consequently, existing algorithms are ineffective in generating imprecise data under uncertain 

conditions. Given these findings, it is recommended to enhance current algorithms for generating 

geometric data in uncertain environments. The proposed algorithms offer a viable solution for 

generating imprecise data applicable in various fields such as industry, artificial intelligence, data 

analytics, and machine learning. However, it is important to acknowledge certain limitations of the 

proposed algorithms—they are specifically designed for generating imprecise geometric data. 

Furthermore, these algorithms are most effective in scenarios where data uncertainty or complexity 

in data recording is prevalent. Their application is optimized when quantifying the degree of 

uncertainty in intricate processes. 

10. Concluding remarks 

The primary contribution of this paper is the introduction of the geometric distribution within 

the framework of neutrosophic statistics, along with a detailed exploration of its key properties. We 

also present new algorithms designed for generating imprecise geometric data. The paper discusses 

the practical applications of this distribution in industry, highlighting differences in data generated 

under deterministic and indeterminate conditions through tables, simulation studies, and application 

analyses. Our study indicates the need to update existing algorithms based on classical statistics to 

accommodate the generation of imprecise data. We conclude that the degree of uncertainty 

significantly impacts data generation, and using traditional algorithms in uncertain environments can 
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misguide decision-makers. We provide an overview of the fundamental properties of the proposed 

geometric distribution and suggest that future research should further investigate its statistical 

characteristics. We also propose the accept-reject method as an extension for future studies. Lastly, 

we suggest that other statistical distributions could be explored to expand upon the findings of this 

study in future research. 
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