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Abstract: The cactus graph has many practical applications, particularly in radio communication
systems. Let G = (V, E) be a finite, undirected, and simple connected graph, then the edge metric
dimension of G is the minimum cardinality of the edge metric generator for G (an ordered set of
vertices that uniquely determines each pair of distinct edges in terms of distance vectors). Given an
ordered set of vertices Ge = {g1, g2, ..., gk} of a connected graph G, for any edge e ∈ E, we referred to
the k-vector (ordered k-tuple), r(e|Ge) = (d(e, g1), d(e, g2), ..., d(e, gk)) as the edge metric representation
of e with respect to Ge. In this regard, Ge is an edge metric generator for G if, and only if, for every pair
of distinct edges e1, e2 ∈ E implies r(e1|Ge) , r(e2|Ge). In this paper, we investigated another class of
cacti different from the cacti studied in previous literature. We determined the edge metric dimension
of the following cacti: C(n, c, r) and C(n,m, c, r) in terms of the number of cycles (c) and the number
of paths (r).
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1. Introduction

In graph theory, the metric dimension has become very popular nowadays and has sparked
the interest of distinguished researchers to make more studies on it. This may be because of
its applicability in real-life situations to diverse practical applications such as robot navigation,
combinatorial optimization, processing of images, networks, tasks on coin-weighing and tricky
games [1], pharmaceutical chemistry, pattern recognition [2], a tool for detecting network motifs [3],

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024795


16423

observers in detecting the source of a spread over a network [4], the basis of a method for embedding
DNA sequences in real space [5], Sonar and coast guard Loran [6], etc. The idea of metric dimension
was first introduced by Slater [6] who referred to it as a location number. He called the metric
generator the locating set and the minimum metric generator the reference set. These ideas were
also independently discovered by Harary and Melter [7], who used the term “metric dimension” for
“location number”. Nadeem et al. [38] worked on the locating number of biswapped interconnection
networks. In this paper, we use the terms used by Harary and Melter. After discovering the metric
dimension based on uniquely pinpointing distinct nodes, [8] went further on this idea, trying to think
on the other side: What if the intruder is accessing the network through their connections (edges)
between the nodes? Then, that intruder could not be pinpointed and, hence, the surveillance fails; this
is where the idea of the edge metric dimension arises.

Since then, a significant number of results from different families of graphs have been published,
such as [9–33] to mention a few. In particular, the edge metric dimension of several graphs has been
studied by different researchers. Iqbal et al. worked on the graphs Pm�Pn, Pm�Cn, and the generalized
Petersen graph [9]; Filipović et al. [10] and Raza and Ji [11] studied the generalized Petersen graph;
Iqbal et al. worked on double generalized Petersen graphs [12]; Geneson obtained a number of
results about pattern avoidance in graphs with bounded edge metric dimension [13]; Goshi et al. [14]
computed the fractional local edge dimension of a graph (FLED) of the Coxeter graph, Petersen
graph, the families of cycle, complete, wheel, complete bipartite graphs, and grid; Geneson et al. [15]
answered several open extremal problems on metric dimension and pattern avoidance in graphs posed
by Geneson [13] and made the progress on a problem posed by Zubrilina [16]; Peterin and Yero
studied the join, lexicographic, and corona product of graphs [17]; Zhang and Gao investigated some
classes of plane graphs such as the web graph, convex polytope, and convex polytope antiprism and
prism [18]; Siddiqui et al. determined the bounds of edge metric dimension of zero-divisor graphs [19];
Wei et al. [20] characterized all connected bipartite graphs with edge metric dimension n − 2 and
partially settled a problem from Zubrilina [16]; Zhu et al. [21] characterized the structure of topful
graphs, and necessary and sufficient conditions for topful graphs were obtained; Zubrilina [16] settled
two open problems posed by Kelenc et al. [8]; Adawiyah et al. studied some families of tree graph such
as broom graph, star graph, banana tree graph, and double broom graph [22]; Deng et al. [23] worked on
square, triangular and hexagonal Möbius ladder networks; Knor et al. [24] settled three open problems
posed by Kelenc et al. [8]; Sedlar and Škrekovski worked on cacti where some results on edge metric
dimension are obtained [25]; Ikhlaq et al. [26] studied dragon graph, paraline graph of dragon graph,
line graph of dragon graph and line graph of dragon graph; Zhu et al. [27,28] studied unicyclic graphs;
Knor et al. determined bounds on edge metric dimension of some simple 2-connected graphs [29];
Sedlar and Škrekovski showed the upper bound on leafless cacti and their characterization [30]; Sedlar
and R. Škrekovski explored bounds on metric dimensions of graphs with edge disjoint cycles (cactus
graphs) [31]; Rafiullah et al. studied some wheel related convex polytopes [32]; and Ahsan et al.
worked on some classes of circulant graphs [33].

Graphs considered in this paper are undirected, finite, simple, and connected. Let G = (V, E) be a
connected graph such that vertex x ∈ V and edge e = uv ∈ E, then the distance between x and e is
given by d(x, e) = min{d(x, u), d(x, v)}. Two edges e1, e2 ∈ E and e1 , e2 are said to be distinguished
by a vertex x ∈ V if d (x, e1) , d (x, e2). A set Ge of vertices of a connected graph G is an edge
metric generator of G if every two distinct edges of G are distinguished by some vertex in Ge. An edge
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metric generator with the smallest cardinality is called an edge metric basis of G, and the cardinality
of the edge metric basis is called the edge metric dimension, which we denote by edim(G). The
following approach might also be helpful for edge metric generators. Given an ordered set of vertices
Ge = {g1, g2, . . . , gk} of a connected graph G, for any edge e ∈ E, we refer to the k - vector (ordered k-
tuple), r (e | Ge) = ( d (e, g1) , d (e, g2) , . . . , d (e, gk)) as the edge metric representation of e with respect
to Ge. In this regard, Ge is an edge metric generator for G if, and only if, for every pair of distinct edges
e1, e2 ∈ E implies r (e1 | Gε) , r (e2 | Ge) or if r (e1 | Gε) = r (e2 | Gε) implies e1 = e2.

Cactus graphs or cacti are connected graphs in which any two simple cycles have at most one vertex
in common, or simply graphs with edge disjoint cycles. Some renowned researchers worked on these
graphs. In [30], researchers studied leafless cacti, and the upper bound of edge metric dimension in
terms of cyclomatic number is obtained; [25] worked on cacti using the configuration approach and
obtained some significant results, including a simple upper bound on the edge metric dimension of
cacti; [31] showed that metric dimension and edge metric dimension of cacti can differ by at most c,
i.e., | edim(G) − dim(G)| ≤ c, where c is the number of cycles. In this paper, we investigate another
class of cacti different from the cacti studied in [25,30,31]. The edge metric dimension of the following
cacti: C(n, c, r) and C(n,m, c, r) will be explored in terms of the number of cycles (c) and the number
of paths (r).

2. Preliminaries

Cactus graphs or cacti are connected graphs in which any two simple cycles have at most one
vertex in common. Let E(n, c, r) be a cactus graph of order n constructed by attaching r-paths in one
common vertex of c-cycles of Cm (see Figure 1); the respective lengths of each path and cycle are t
and m. For the sake of our proof, we will employ the following notations: µb

a as a vertex at ath path and
distance b from the common vertex v0, Pa

b as a path of length b at ath position, 0 ≤ a ≤ r − 1, 1 ≤ b ≤ t.
Again, let E(n,m, c, r) be a cactus graph of order n constructed by attaching c-cycles of C3 and r -
paths in one common vertex of Cm (see Figure 2). Graphs explored in this study are expanded from the
cactus graphs investigated in [34–37] on parameters different from edge metric dimension and worked
on fixed cycles and pendant edges. In our study, we considered the graph with cycles of length m and
paths of length t, and the graph of any cycle of length m with fixed cycles (C3) and paths of length t.
We define: V(E(n, c, r)) =

(
∪c

i=1V (Ci)
)
∪

(
∪r

j=1V
(
P j

))
and E(E(n, c, r)) =

(
∪c

i=1E (Ci)
)
∪

(
∪r

j=1E
(
P j

))
,

where V (Ci) = ({v0})∪
(⋃c

i=1
({

v(i−1)m−i+2, v(i−1)m−i+3, . . . , vi(m−1)
}))
,V

(
P j

)
=

⋃r
j=1

({
µ1

j−1, µ
2
j−1, . . . , µ

t
j−1

})
and E (Ci) = ∪c

i=1
({

v0v(i−1)m−i+2, v(i−1)m−i+2v(i−1)m−i+3, . . . , vi(m−1)v0
})
, E

(
P j

)
=

Ur
j=1

({
v0µ

1
j−1, µ

1
j−1µ

2
j−1, . . . , µ

t−1
j−1µ

t
j−1

})
, respectively. Again, V(E(n,m, c, r)) = (V (Cm))∪(

∪c
i=1V (Ci)

)
∪

(
∪r

j=1V
(
P j

))
and E(E(n,m, c, r)) = (E (Cm)) ∪

(
∪c

i=1E (Ci)
)
∪

(
∪r

j=1E
(
P j

))
, where

V (Cm) = ({v0}) ∪
⋃m−1

i=1 ({vi}) , V (Ci) =
⋃c

i=1 ({v0, ω2i−1, ω2i}) ,V
(
P j

)
= ∪r

j=1

({
µ1

j−1, µ
2
j−1, . . . , µ

t
j−1

})
,

and E (Cm) = {v0v1, v1v2, . . . , vm−1v0} , E (Ci) = Uc
i=1 ({v0ω2i−1, ω2i−1ω2i, ω2iv0}) , E

(
P j

)
=⋃r

j=1

({
v0µ

1
j−1, µ

1
j−1µ

2
j−1, . . . , µ

t−1
j−1µ

t
j−1

})
, respectively.

Remark 2.1. [8] For any integer n ≥ 2, edim (Cn) = dim (Cn) = 2.
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Figure 1. A cactus graph C(n, c, r)).

Figure 2. A cactus graph C(n,m, c, r)).

3. Results

Theorem 3.1. For any cactus graph G = C(n, c, r) with c number of Cm-cycles, such that every Cm and
r paths have exactly one vertex in common, then edim(G) = 3c−1; moreover, if r , c, then edim(G) =

2c + r − 1.

Proof. Let Ge =
{
µ1

1, µ
1
2, . . . , µ

1
r−1, ν1, νm−1, νm, ν2m−2, . . . , ν(c−1)m−c+2, νc(m−1)

}
be an edge metric

generator (see Figure 1). We shall prove that Ge is an edge metric generator for any cactus graph
C(n, c, r), where n is a total number of vertices of a cactus graph; to this end, we will employ the method
of double inequality. For edim (C(n, c, r)) ≤ 3c − 1, the following are the edge metric representations
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of all edges with respect to the edge metric generator Ge.

r
(
v0µ

1
ω | Ge

)
=



(1, . . . , 1)︸     ︷︷     ︸
3c−1

ω = 0,

(0, 1, . . . , 1)(3c−1 tuple ), ω = 1,
(1, 0, 1, . . . , 1)(3c−1 tuple ), ω = 2,

...

(1, . . . , 1, 0ωth position, 1, . . . , 1)(3c−1 tuple) ω = r − 1.

r(µϕωµ
ϕ+1
ω | Ge)

=



(ϕ − 1, ϕ + 1, . . . , ϕ + 1)(3c−1 tuple ), ω = 1, 1 ≤ ϕ ≤ t − 1,
(ϕ + 1, ϕ − 1, ϕ + 1, . . . , ϕ + 1)(3c−1 tuple ), ω = 2, 1 ≤ ϕ ≤ t − 1,

(ϕ + 1, ϕ + 1, ϕ − 1, ϕ + 1, . . . , ϕ + 1)(3c−1 tuple ), ω = 3, 1 ≤ ϕ ≤ t − 1,
...

(ϕ + 1, . . . , ϕ + 1, (ϕ − 1)ωth position, ϕ + 1, . . . , ϕ + 1)(3c−1 tuple), ω = r, 1 ≤ ϕ ≤ t − 1.

r
(
ν0ν1+(m−1)ϕ

∣∣∣Ge

)
=



(
1, . . . , 1, 0(c+2ϕ)th position, 1, . . . , 1

)
(3c−1 tuple)

, ϕ = 0,(
1, . . . , 1, 0(c+2ϕ)th position, 1, . . . , 1

)
(3c−1 tuple)

, ϕ = 1,(
1, . . . , 1, 0(c+2ϕ)th position, 1, . . . , 1

)
(3c−1 tuple)

, ϕ = 2,
...(

1, . . . , 1, 0(c+2ϕ)th position, 1
)

(3c−1 tuple)
, ϕ = c − 1.

r
(
ν(m−1)ϕν0

∣∣∣Ge

)
=



(
1, . . . , 1, 0(c+2ϕ−1)th position, 1, . . . , 1

)
(3c−1 tuple)

, ϕ = 1,(
1, . . . , 1, 0(c+2ϕ−1)th position, 1, . . . , 1

)
(3c−1 tuple)

, ϕ = 2,(
1, . . . , 1, 0(c+2ϕ−1)th position, 1, . . . , 1

)
(3c−1 tuple)

, ϕ = 3,
...(

1, . . . , 1, 0(c+2ϕ−1)th position

)
(3c−1 tuple)

, ϕ = c.

r
(
νωνϕ

∣∣∣Ge

)

=



(
ϕ, . . . , ϕ, (ω − 1)cth position, ϕ, . . . , ϕ

)
(3c−1 tuple)

, ω = 1, ϕ = 2,(
ϕ, . . . , ϕ, (ω − 1)cth position, ϕ, . . . , ϕ

)
(3c−1 tuple)

, ω = 2, ϕ = 3,(
ϕ, . . . , ϕ, (ω − 1)cth position, ϕ, . . . , ϕ

)
(3c−1 tuple)

, ω = 3, ϕ = 4,
...(

ϕ, . . . , ϕ, λcth position, βc+1th position, ϕ, . . . , ϕ
)

(3c−1 tuple)
, ω = m

2 − 1, ϕ = m
2 ,

β = ω, λ = β − 1, m is even,
ω =

⌈
m
2

⌉
− 1, ϕ =

⌈
m
2

⌉
, λ = β = ω − 1, m is odd.
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r
(
νϕ+(m−1)ωνϕ+(m−1)ω+1

∣∣∣Ge

)

=



(
(
ϕ, . . . , ϕ, λ(c+2ω)th position, β(c+2ω+1)th position, ϕ, . . . , ϕ

)
(3c−1 tuple)

, ω = 0, ϕ = m
2 ,

λ = ϕ − 1, β = λ − 1, m is even,(
ϕ, . . . , ϕ, λ(c+2ω)th position, β(c+2ω+1)th position, ϕ, . . . , ϕ

)
(3c−1 tuple)

, ω = 1, ϕ = m
2 ,

λ = ϕ − 1, β = λ − 1, m is even,(
ϕ, . . . , ϕ, λ(c+2ω)th position, β(c+2ω+1)th position, ϕ, . . . , ϕ

)
(3c−1 tuple)

, ω = 2, ϕ = m
2 ,

λ = ϕ − 1, β = λ − 1, m is even,
...(

ϕ, . . . , ϕ, λ(c+2ω)th position, β(c+2ω+1)th position

)
(3c−1 tuple)

, ω = c − 1, ϕ = m
2 ,

λ = ϕ − 1, β = λ − 1, m is even.

r
(
νϕ+(m−1)ωνϕ+(m−1)ω+1

∣∣∣Ge

)

=



(
ϕ + 1, . . . , ϕ + 1, β(c+2ω)th position, β(c+2ω+1)th position, ϕ + 1, . . . , ϕ + 1

)
(3c−1 tuple)

, ω = 0, ϕ =
⌊

m
2

⌋
,

β = ϕ − 1, m is odd,(
ϕ + 1, . . . , ϕ + 1, β(c+2ω)th position, β(c+2ω+1)th position, ϕ + 1, . . . , ϕ + 1

)
(3c−1 tuple)

, ω = 1, ϕ =
⌊

m
2

⌋
,

β = ϕ − 1, m is odd,(
ϕ + 1, . . . , ϕ + 1, β(c+2ω)th position, β(c+2ω+1)th position, ϕ + 1, . . . , ϕ + 1

)
(3c−1 tuple)

, ω = 2, ϕ =
⌊

m
2

⌋
,

β = ϕ − 1, m is odd,
...(

ϕ + 1, . . . , ϕ + 1, β(c+2ω)th position, β(c+2ω+1)th position

)
(3c−1 tuple)

, ω = c − 1, ϕ =
⌊

m
2

⌋
,

β = ϕ − 1, m is odd.

r
(
ν(ϕ−1)+(m−1)ωνϕ+(m−1)ω

∣∣∣Ge

)

=



(
ϕ, . . . , ϕ, β(c+2ω)th position, λ(c+2ω+1)th position, ϕ, . . . , ϕ

)
(3c−1 tuple)

, ω = 0, ϕ = m
2 ,

λ = ϕ − 1, β = λ − 1, m is even,(
ϕ, . . . , ϕ, β(c+2ω)th position, λ(c+2ω+1)th position, ϕ, . . . , ϕ

)
(3c−1 tuple)

, ω = 1, ϕ = m
2 ,

λ = ϕ − 1, β = λ − 1, m is even,(
ϕ, . . . , ϕ, β(c+2ω)th position, λ(c+2ω+1)th position, ϕ, . . . , ϕ

)
(3c−1 tuple)

, ω = 2, ϕ = m
2 ,

λ = ϕ − 1, β = λ − 1, m is even,
...(

ϕ, . . . , ϕ, β(c+2ω)th position, λ(c+2ω+1)th position

)
(3c−1 tuple)

, ω = c − 1, ϕ = m
2 ,

λ = ϕ − 1, β = λ − 1, m is even.
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r
(
ν(ϕ−1)+(m−1)ωνϕ+(m−1)ω

∣∣∣Ge

)

=



(
ϕ, . . . , ϕ, β(c+2ω)th position, ϕ, . . . , ϕ

)
(3c−1 tuple)

, ω = 0, ϕ =
⌊

m
2

⌋
, β = ϕ − 2, m is odd,(

ϕ, . . . , ϕ, β(c+2ω)th position, ϕ, . . . , ϕ
)

(3c−1 tuple)
, ω = 1, ϕ =

⌊
m
2

⌋
, β = ϕ − 2, m is odd,(

ϕ, . . . , ϕ, β(c+2ω)th position, ϕ, . . . , ϕ
)

(3c−1 tuple)
, ω = 2, ϕ =

⌊
m
2

⌋
, β = ϕ − 2, m is odd,

...(
ϕ, . . . , ϕ, β(c+2ω)th position, ϕ

)
(3c−1 tuple)

, ω = c − 1, ϕ =
⌊

m
2

⌋
, β = ϕ − 2, m is odd.

r
(
ν(α−1)(m−1)+ϕν(α−1)(m−1)+ϕ+1

∣∣∣Ge

)

=



(
ϕ + 1, . . . , ϕ + 1, ω(c+2(α−1))th position, ϕ + 1, . . . , ϕ + 1

)
(3c−1 tuple)

, ω = 0, ϕ = 1,

α = 2, 3, . . . , c,(
ϕ + 1, . . . , ϕ + 1, ω(c+2(α−1))th position, ϕ + 1, . . . , ϕ + 1

)
(3c−1 tuple)

, ω = 1, ϕ = 2,

α = 2, 3, . . . , c,(
ϕ + 1, . . . , ϕ + 1, ω(c+2(α−1))th position, ϕ + 1, . . . , ϕ + 1

)
(3c−1 tuple)

, ω = 2, ϕ = 3,

α = 2, 3, . . . , c,
...(

ϕ + 1, . . . , ϕ + 1, ω(c+2(α−1))th position, ϕ + 1
)

(3c−1 tuple)
, ϕ =

⌊
m
2

⌋
− 1, ω = ϕ − 1,

α = 2, 3, . . . , c, m is odd;
ϕ = m

2 − 2, ω = ϕ − 1,
α = 2, 3, . . . , c, m is even.

r
(
να(m−1)−ϕνα(m−1)−ϕ+1

∣∣∣Ge

)

=



(
ϕ + 1, . . . , ϕ + 1, ω(c+2α−1)th position, ϕ + 1, . . . , ϕ + 1

)
(3c−1 tuple)

, ω = 0, ϕ = 1,

α = 1, 2, 3, . . . , c,(
ϕ + 1, . . . , ϕ + 1, ω(c+2α−1)th position, ϕ + 1, . . . , ϕ + 1

)
(3c−1 tuple)

, ω = 1, ϕ = 2,

α = 1, 2, 3, . . . , c,(
ϕ + 1, . . . , ϕ + 1, ω(c+2α−1)th position, ϕ + 1, . . . , ϕ + 1

)
(3c−1 tuple)

, ω = 2, ϕ = 3,

α = 1, 2, 3, . . . , c,
...(

ϕ + 1, . . . , ϕ + 1, ω(c+2α−1)th position, ϕ + 1
)

(3c−1 tuple)
, ϕ =

⌊
m
2

⌋
− 1, ω = ϕ − 1,

α = 1, 2, 3, . . . , c, m is odd;
ϕ = m

2 − 2, ω = ϕ − 1
α = 1, 2, 3, . . . , c, m is even.

Now, we need to show that no edges among these representations have the same representation.
We shall show this by the contradiction approach. Suppose if possible, there are two distinct
edges having the same representation, take edges v0v1+(m−1)ϕ and v(m−1)ϕv0, then r

(
v0v1+(m−1)ϕ | Ge

)
=

r
(
v(m−1)ϕv0 | Ge

)
, and, hence, c + 2ϕ = c + 2ϕ − 1, a contradiction. Take edges v0v1+(m−1)ϕ and vωvϕ,
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then r
(
v0v1+(m−1)ϕ | Ge

)
= r

(
vωvϕ | Ge

)
implies c + 2ϕ = ω − 1, then c + 2ϕ = ϕ − 2, and, hence,

c + ϕ + 2 = 0, a contradiction, since c ≥ 1 and ϕ ≥ 1. Take edges vϕ+(m−1)ωvϕ+(m−1)ω+1 and vωvϕ
where ω = m

2 − 1 or
⌈

m
2

⌉
− 1, then r

(
vϕ+(m−1)ωvϕ+(m−1)ω+1 | Ge

)
= r

(
vωvϕ | Ge

)
; implies c = c + 2ω and

c+1 = c+2ω+1; both cases gives ω = 0, a contradiction, since ω ≥ 1. Take edges vϕ+(m−1)ωvϕ+(m−1)ω+1

and v(ϕ−1)+(m−1)ωvϕ+(m−1)ω, and let λ, β and λ′, β′ be parameters from edges vϕ+(m−1)ωvϕ+(m−1)ω+1 and
v(ϕ−1)+(m−1)ωvϕ+(m−1)ω, respectively, then r

(
vϕ+(m−1)ωvϕ+(m−1)ω+1 | Ge

)
= r

(
v(ϕ−1)+(m−1)ωvϕ+(m−1)ω | Ge

)
implies λ = β′ and λ′ = β if m is even, then m

2 − 1 = m
2 − 2, a contradiction, and if m is odd for the

same edges vϕ+(m−1)ωvϕ+(m−1)ω+1 and v(ϕ−1)+(m−1)ωvϕ+(m−1)ω, let their parameters be β and β′, respectively,
then ϕ + 1 = ϕ is a contradiction, and β = β′ implies

⌊
m
2

⌋
− 1 =

⌊
m
2

⌋
− 2, a contradiction; again,

c + 2ω = c + 2ω + 1 is a contradiction. Take edges v(ϕ−1)+(m−1)ωvϕ+(m−1)ω and vα(m−1)−ϕvα(m−1)−ϕ+1, then
r
(
v(ϕ−1)+(m−1)ωvϕ+(m−1)ω | Ge

)
= r

(
vα(m−1)−ϕvα(m−1)−ϕ+1 | Ge

)
implies c + 2ω = c + 2α − 1, and, hence,

2c − 2 = 2c − 1, a contradiction.
Take edges v(α−1)(m−1)+ϕv(α−1)(m−1)+ϕ+1 and vα(m−1)−ϕvα(m−1)−ϕ+1, then

r
(
v(α−1)(m−1)+ϕv(α−1)(m−1)+ϕ+1 | Ge

)
= r

(
vα(m−1)−ϕvα(m−1)−ϕ+1 | Ge

)
implies c + 2(α − 1) = c + 2α − 1,

and, hence, 2α − 2 = 2α − 1, a contradiction. Take edges vϕ+(m−1)ωvϕ+(m−1)ω+1 and
v(α−1)(m−1)+ϕv(α−1)(m−1)+ϕ+1, then r

(
vϕ+(m−1)ωvϕ+(m−1)ω+1 | Ge

)
= r

(
v(α−1)(m−1)+ϕv(α−1)(m−1)+ϕ+1 | Ge

)
;

implies β = ω, and, hence,
⌊

m
2

⌋
− 1 =

⌊
m
2

⌋
− 2, a contradiction. Take edges vϕ+(m−1)ωvϕ+(m−1)ω+1 and

vα(m−1)−ϕvα(m−1)−ϕ+1, then r
(
vϕ+(m−1)ωvϕ+(m−1)ω+1 | Ge

)
= r

(
vα(m−1)−ϕvα(m−1)−ϕ+1 | Ge

)
; implies β = ω, and,

hence,
⌊

m
2

⌋
− 1 =

⌊
m
2

⌋
− 2, a contradiction.

So, it clearly follows from the representations above that the edge metric representations of any
two distinct edges of C(n, c, r) are different. Thus, Ge is an edge metric generator and, therefore,
edim (C(n, c, r)) ≤ 3c − 1.

On the other hand, let us consider the converse part of double inequality. Assume that Ge is a set of
vertices with at most 3c − 2 distinct vertices, i.e., edim (C(n, c, r)) ≤ 3c − 2. According to our graph, it
suffices to show that Ge cannot be a set of vertices with 3c − 2 distinct vertices, as any set of vertices
less than 3c − 2 distinct vertices also cannot be Ge. Now, let us discuss the following cases.
Case 1: Let γ , γ

′

, and take any two edge metric representations from edges ν0µ
1
γ and

ν0µ
1
γ′ , where γ, γ

′

∈ ω. First, let
∣∣∣G′e∣∣∣ = 3c − 1 as the preceding part, before reducing at

least one vertex from the vertices set G
′

e, then r
(
ν0µ

1
γ|G

′
e

)
=

(
1, . . . , 0γth position, . . . , 1

)
(3c−1 tuple)

and

r
(
ν0µ

1
γ′ |G

′
e

)
=

(
1, . . . , 0

γ
′ th position, . . . , 1

)
(3c−1 tuple)

, since µ0 does not constitute to G′e then r
(
ν0µ

1
γ|G

′
e

)
=

(1, . . . , 1)(3c−1 tuple) for γ = 0 and r
(
ν0µ

1
γ′ |G

′
e

)
=

(
1, . . . , 0

γ
′ th position, . . . , 1

)
(3c−1 tuple)

for 2 ≤ γ
′

≤ r − 1.

Now, if any other vertex µ1
γ′ will be removed from G

′

e to form Ge with |Ge| = 3c − 2, then we have;
r
(
ν0µ

1
γ|Ge

)
= (1, . . . , 1)(3c−2 tuple), γ = 0 and r

(
ν0µ

1
γ′ |Ge

)
= (1, . . . , 1)(3c−2 tuple), 2 ≤ γ

′

≤ r − 1; similarly

for γ
′

= 1, we have
(
ν0µ

1
γ′ |Ge

)
= (1, . . . , 1)(3c−2 tuple), γ

′

= 1, and, hence, Ge is not an edge metric
generator, a contradiction.
Case 2: If vertex µ1

0 and one of the vertex νi, i = 1,m, 2m − 1, . . . , (c − 1)m − c + 2 from Cms does not
constitute to Ge, then we have; r (ν0νi|Ge) = (1, . . . , 1)(3c−2 tuple), i = 1,m, 2m−1, . . . , (c−1)m−c+2, but
then r

(
ν0µ

1
0|Ge

)
= (1, . . . , 1)(3c−2 tuple), and, hence, Ge is not an edge metric generator, a contradiction.

Case 3: If vertex µ1
0 and one of the vertex ν j, j = m − 1, 2m − 2, . . . , c(m − 1) from Cms does not

constitute to Ge, then we have; r
(
ν0ν j|Ge

)
= (1, . . . , 1)(3c−2 tuple), j = m − 1, 2m − 2, . . . , c(m − 1), but
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then r
(
ν0µ

1
0|Ge

)
= (1, . . . , 1)(3c−2 tuple), and, hence, Ge is not an edge metric generator, a contradiction.

Case 4: If vertex µ1
γ′ , 1 ≤ γ

′

≤ r− 1 and one of the vertex νi i = 1,m, 2m− 1, . . . , (c− 1)m− c + 2 from
Cms does not constitute to Ge, then we have r (ν0νi|Ge) = (1, . . . , 1)(3c−2 tuple), i = 1,m, 2m− 1, . . . , (c−
1)m − c + 2, but then r

(
ν0µ

1
γ′ |Ge

)
= (1, . . . , 1)(3c−2 tuple), 1 ≤ γ

′

≤ r − 1, and, hence, Ge is not an edge
metric generator, a contradiction.
Case 5: If vertex µ1

γ′ , 1 ≤ γ
′

≤ r−1 and one of the vertex ν j, j = m−1, 2m−2, . . . , c(m−1) from Cms

does not constitute to Ge, then we have r
(
ν0ν j|Ge

)
= (1, . . . , 1)(3c−2 tuple), j = m−1, 2m−2, . . . , c(m−1),

but then r
(
ν0µ

1
γ′ |Ge

)
= (1, . . . , 1)(3c−2 tuple), 1 ≤ γ

′

≤ r − 1, and, hence, Ge is not an edge metric
generator, a contradiction.
Case 6: If one of the vertex νi, i = 1,m, 2m − 1, . . . , (c − 1)m − c + 2 from Cms and one of the vertex
ν j, j = m − 1, 2m − 2, . . . , c(m − 1) from Cms does not constitute to Ge, then we have r (ν0νi|Ge) =

r
(
ν0ν j|Ge

)
, and, hence, Ge is not an edge metric generator, a contradiction.

Now, from our discussion above it is clearly observed that Ge with 3c − 2 distinct vertices or less
than 3c − 2 distinct vertices cannot be an edge metric generator, hence edim (C(n, c, r)) ≥ 3c − 1; this
proves double inequality, that is, edim (C(n, c, r)) = 3c − 1. Now, for r , c, we have to consider the
number of paths (r) and the number of cycles (c) independently, since Ge contains at least two vertices
from each cycle and one vertex from each path except one path, then |Ge| = 2c + r − 1. The proof is
analogous to the preceding proof with slight changes. Replace 3c − 1 tuple with 2c + r − 1 tuple and
3c − 2 tuple with 2c + r − 2 tuple, hence, edim(G) = 2c + r − 1. �

Theorem 3.2. For any cactus graph G= C(n,m, c, r) with r− paths, c− number of C3 cycles, and one Cm

cycle at one common vertex of Cm , then edim(G) = 2c+r+1; moreover, if c = r, then edim(G) = 3c+1.

Proof. We shall prove our result by the double inequality approach, and now we prove that the upper
bound of edge metric dimension of G is 2c + r + 1, that is, edim(G) ≤ 2c + r + 1. Let Ge be a set of
vertices consisting of two vertices from Cm, two vertices from each C3, and one vertex from each (r−1)
paths (see Figure 2), then Ge is an edge metric generator with cardinality 2c + r + 1; if each C3 and path
has exactly one vertex in common, thus Ge has cardinality 3c + 1. So, the metric representations of all
edges of G with respect to Ge are discussed hereunder.

Let P0
t be the path of length t from vertex ν0 to vertex µt

0 where ν0 is the common vertex for
C3, r-paths, and Cm, µi

0, 1 ≤ i ≤ t is the vertex on the path that does not constitute any vertex
to Ge, and edges on this path are e1 =

{
ν0, µ

1
0

}
, ei =

{
µi−1

0 , µi
0

}
, 2 ≤ i ≤ t. Now, if we let ei

and ei+α, 2 ≤ i ≤ t, 1 ≤ α ≤ t − 2 be any two distinct edges on this path, then r (e1|Ge) =

(1, . . . , 1) (2c+r+1 tuple), r (ei|Ge) = (i, . . . , i) (2c+r+1 tuple), r (ei+α|Ge) = (i + α, . . . , i + α) (2c+r+1 tuple).
Clearly, Ge distinguishes all edges of P0

i . Take one edge from P0
i , 1 ≤ i ≤ t and one edge from

any of the path Pk
j, 1 ≤ j ≤ t, 1 ≤ k ≤ r that constitute one vertex to Ge, edges of Pk

j are
e1 =

{
ν0, µ

1
k

}
, e j =

{
µ

j−1
k , µ

j
k

}
, 2 ≤ j ≤ t, 1 ≤ k ≤ r, then r (e1|Ge) = (0, 1, . . . , 1) (2c+r+1 tuple), for

k = 1, r (e1|Ge) = (1, . . . , 0kthPosition, . . . , 1) (2c+r+1 tuple) for k ≥ 2, r
(
e j|Ge

)
= ( j − 2, j, . . . , j) (2c+r+1 tuple)

for k = 1, r
(
e j|Ge

)
=

(
j, . . . , ( j − 2)kth position, . . . , j

)
(2c+r+1 tuple)

for k ≥ 2, i , j. If i = j, let

e j = e′i to distinguish from edges of P0
i , r

(
e′i |Ge

)
= (i − 2, i, . . . , i) (2c+r+1 tuple) for k = 1, r

(
e′i |Ge

)
=(

i, . . . , (i − 2)kth position, . . . , i
)

(2c+r+1 tuple)
for k ≥ 2, Clearly, Ge distinguishes any edge of P0

i from any

edge of Pk
j. Take two distinct edges in path Pk

j, say e j =
{
µ

j−1
k , µ

j
k

}
, 2 ≤ j ≤ t, 1 ≤ k ≤ r, and
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e j+α =
{
µ

j+α−1
k , µ

j+α
k

}
, 1 ≤ α ≤ t−2, then r

(
e j+α|Ge

)
= ( j + α − 2, j + α, . . . , j + α) (2c+r+1 tuple)for k = 1,

r
(
e j+α|Ge

)
=

(
j + α, . . . , ( j + α − 2)kth position, . . . , j + α

)
(2c+r+1 tuple)

for k ≥ 2, Ge distinguishes all edges

of Pk
j. Take one edge from P0

i and one edge incident to ν0 from C3. Let edges incident to ν0 from C3 be
ν0ωγ , 0 ≤ γ ≤ 2c−1, their representation is r(ν0ωγ |Ge) =

(
1, . . . , 0(r+γ+2)th position, . . . , 1

)
(2c+r+1 tuple)

, 0 ≤

γ < 2c − 1, r(ν0ωγ |Ge) =
(
1, . . . , 1, 0(2c−1)th position

)
(2c+r+1 tuple)

, and Ge distinguishes edges of P0
i from

edges incident to ν0 of C3. Take one edge from P0
i and one edge which is not incident to ν0 from C3,

let edges which are not incident to ν0 from C3 be ω2γω2γ+1, 0 ≤ γ ≤ c − 1, their representation is
r
(
ω2γω2γ+1

∣∣∣Ge

)
=

(
2, . . . , 0(r+2γ+2)th position, 0(r+2γ+3)th position . . . , 2

)
(2c+r+1 tuple)

, 0 ≤ γ ≤ c − 1, and Ge

distinguishes edges of P0
i from edges which are not incident to ν0 of C3. Take one edge from Pk

j and
one edge incident to ν0 from C3; and refer their representation; clearly, Ge distinguishes edges of Pk

j

from edges incident to ν0 of C3. Similarly, edges of Pk
j and edges which are not incident to ν0 of C3

are distinguished by Ge. Now, we show that Gedistinguishes all edges of Cm, and the following are
representation of all edges in Cm.

r(ν0ν1 |Ge) =
(
1, . . . , 0rth position, . . . , 1

)
(2c+r+1 tuple)

,

r(νm−1ν0 |Ge) =
(
1, . . . , 0r+1th position, . . . , 1

)
(2c+r+1 tuple)

,
If m is even then,
r(νϕωϕ+1 |Ge) =

(
ϕ + 1, . . . , (ϕ − 1)rth position, . . . , ϕ + 1

)
(2c+r+1 tuple)

, 1 ≤ ϕ ≤ m
2 − 2,

r(νm
2 −1νm

2
|Ge) =

(
m
2 , . . . ,

(
m
2 − 2

)
rth position

,
(

m
2 − 1

)
(r+1)th position

, . . . , m
2

)
(2c+r+1 tuple)

,

r(νm
2
νm

2 +1 |Ge) =

(
m
2 , . . . ,

(
m
2 − 1

)
rth position

,
(

m
2 − 2

)
(r+1)th position

, . . . , m
2

)
(2c+r+1 tuple)

,

r(νm
2 +ϕνm

2 +ϕ+1 |Ge) =

(
m
2 − ϕ, . . . ,

(
m
2 − ϕ − 2

)
(r+1)th position

, . . . , m
2 − ϕ

)
(2c+r+1 tuple)

, 1 ≤ ϕ ≤ m
2 − 2.

If m is odd then,
r(νϕωϕ+1 |Ge) =

(
ϕ + 1, . . . , (ϕ − 1)rth position, . . . , ϕ + 1

)
(2c+r+1 tuple)

, 1 ≤ ϕ ≤
⌊

m
2

⌋
− 1,

r(νbm
2 c
νbm

2 c+1 |Ge) =

(⌊
m
2

⌋
+ 1, . . . ,

(⌊
m
2

⌋
− 1

)
rth position

,
(⌊

m
2

⌋
− 1

)
(r+1)th position

, . . . ,
⌊

m
2

⌋
+ 1

)
(2c+r+1 tuple)

,

r(νbm
2 c+ϕ

νbm
2 c+ϕ+1 |Ge) =

(⌊
m
2

⌋
− ϕ + 1, . . . ,

(⌊
m
2

⌋
− ϕ − 1

)
rth position

, . . . ,
⌊

m
2

⌋
− ϕ + 1

)
(2c+r+1 tuple)

,

1 ≤ ϕ ≤
⌊

m
2

⌋
− 1.

Clearly, Ge distinguishes all edges of Cm. Furthermore, by referring their representation of edges of
P0

i , Pk
j, C3, and Cm, one can easily see that Ge distinguishes all their edges. This shows that Ge is an

edge metric generator for the graph G, which implies that edim(G) ≤ 2c + r + 1.
On the other hand, we have to prove that the lower bound of edge metric dimension of G is 2c+r+1,

that is, edim(G) ≥ 2c + r + 1. To this end, we have to show that there is no edge metric generator with
cardinality 2c + r. Contrary, we suppose that there is G′e with cardinality 2c + r such that G′e ⊂ Ge =

{g1, . . . , gl} , 1 ≤ l ≤ 2c + r + 1. Let µ1
0 be a vertex of P0

i that does not constitute to Ge. Now, let us
consider the following cases.
Case 1: Let G

′

e ⊂ Ge be an edge metric generator obtained by removing one gl vertex of the path Pk
j

from Ge, say x ∈ {g1, . . . , gl}, then r
(
ν0x|G′e

)
= r

(
ν0µ

1
0|G
′
e

)
, a contradiction.

Case 2: Let G
′

e ⊂ Ge be an edge metric generator obtained by removing one gl vertex of the C3 from
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Ge, say y ∈ {g1, . . . , gl} then r
(
ν0y|G′e

)
= r

(
ν0µ

1
0|G
′
e

)
, a contradiction.

Case 3: Let G
′

e ⊂ Ge be an edge metric generator obtained by removing one gl vertex of the Cm from
Ge, either ν1 or νm−1, since ν1, νm−1 ∈ {g1, . . . , gl}; are the only vertices that constitute to Ge from Cm.
Now say ν1 is removed from Ge, then r

(
ν0ν1|G

′
e
)

= r
(
ν0µ

1
0|G
′
e

)
, a contradiction; if νm−1 is removed

instead of ν1, then r
(
ν0νm−1|G

′
e
)

= r
(
ν0µ

1
0|G
′
e

)
, a contradiction.

So, in either case, if we reduce the number of vertices from Ge by at least one, we arrive to
contradiction. This shows that G′e with cardinality 2c + r cannot be an edge metric generator, which
implies that edim(G) ≥ 2c + r + 1. �

4. Conclusions

The exploration of the edge metric dimension across various classes of cacti has revealed an
interesting feature of graph theory. In this paper, we investigated the edge metric dimension of cactus
graphs, namely, C(n, c, r) and C(n,m, c, r). The investigation has demonstrated that the number of
cycles and paths determines the edge metric dimension of this class of cacti rather than their respective
lengths, emphasizing the importance of structural features in understanding graph metric properties.
This observation not only broadens our understanding of the relationship between graph topology and
metric dimension in these classes of cacti, but also extends to the wide range of graph families that
have been studied in this area, from [9] through [33] where edge metric dimension was determined in
different ways. For instance, just to mention a few, in [25] edge metric dimension was determined in
terms of the number of leaves and number of cycles, constant edge metric dimension was determined
in [12, 23], etc. Moreover, in C(n, c, r), if one Cm cycle is fixed and the rest are replaced by C3,
then the resulting graph is C(n,m, c, r), however, the proof for each graph is given independently and
purposefully. Their edge metric dimensions differ by 2, and this difference is due to the fixed Cm cycle;
by Remark 2.1.
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25. J. Sedlar, R. Škrekovski, Vertex and edge metric dimensions of cacti, Discret. Appl. Math., 320
(2022), 126–139. http://dx.doi.org/10.1016/j.dam.2022.05.008

26. H. M. Ikhlaq, H. M. A. Siddiqui, M. Imran, A comparative study of three resolving parameters of
graphs, Complexity, 2021 (2021). http://dx.doi.org/10.1155/2021/1927181

27. E. Zhu, S. Peng, C. Liu, Identifying the exact value of the metric dimension and edge dimension
of unicyclic graphs, Mathematics, 10 (2022), 1–14. http://dx.doi.org/10.3390/math10193539

28. E. Zhu, S. Peng, C. Liu, Metric dimension and edge metric dimension of unicyclic graphs, arXiv
Preprint, 2021.
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30. J. Sedlar, R. Škrekovski, Metric dimensions vs. cyclomatic number of graphs with minimum degree
at least two, Appl. Math. Comput., 427 (2022), 1–19. http://dx.doi.org/10.1016/j.amc.2022.127147
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