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1. Introduction

Consider the following sum of linear ratios optimization problem defined by

(FP) :


min G(x) =

p∑
i=1

n∑
j=1

ci j x j+ fi

n∑
j=1

di j x j+gi

s. t. x ∈ D = {x ∈ Rn|Ax ≤ b, x ≥ 0},

where p ≥ 2, A is a m×n order real matrix, b is a m dimension column vector, D is a nonempty bounded

polyhedron set, ci j, fi, di j, and gi ∈ R, i = 1, 2, . . . , p, j = 1, 2, . . . , n, and for any x ∈ D,
n∑

j=1
di jx j +gi , 0.
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The problem (FP) has attracted the attention of many researchers and practitioners for decades.
One reason is that the problem (FP) and its special form have a wide range of applications in computer
vision, portfolio optimization, information theory, and so on [1–3]. Another reason is that the problem
(FP) is a global optimization problem, which generally has multiple locally optimal solutions that are
not globally optimal. In the past several decades, many algorithms have been proposed for globally
solving the problem (FP) and its special form. According to the characteristics of these algorithms,
they can be classified into the following categories: Parametric simplex algorithm [4], image space
analysis method [5], monotonic optimization algorithm [6], branch-and-bound algorithms [7–11],
polynomial-time approximation algorithm [12], etc. Jiao et al. [13, 14] presented several branch-and-
bound algorithms for solving the sum of linear or nonlinear ratios problems; Huang, Shen et al. [15,16]
proposed two spatial branch and bound algorithms for solving the sum of linear ratios problems;
Jiao et al. [17] designed an outer space methods for globally solving the min-max linear fractional
programming problem; Jiao et al. [18–21] proposed several outer space methods for globally solving
the generalized linear fractional programming problem and its special forms. In addition, several novel
optimization algorithms [22–24] are also proposed for the fractional optimization problems. However,
the above-reviewed methods are difficult to solve the problem (FP) with large-size variables. So it is
still necessary to put forward a new algorithm for the problem (FP).

In this paper, based on the branch-and-bound framework, the new linearizing technique, and the
image space region reduction technique, an image space branch-and-bound algorithm is proposed for
globally solving the problem (FP). Compared with some methods, the algorithm has the following
advantages. First, the branching search takes place in the image space Rp of ratios, than in space Rn of
variable x, and n usually far exceeds p, this will economize the required computations. Second, based
on the characteristics of the problem (EP1) and the structure of the algorithm, an image space region
reduction technique is proposed for improving the convergence speed of the algorithm. Third, the
computational complexity of the algorithm is analyzed and the maximum iterations of the algorithm
are estimated for the first time, which are not available in other articles. In addition, numerical results
indicate the computational superiority of the algorithm. Finally, a practical application problem in
education investment is solved to verify the usefulness of the proposed algorithm.

The structure of this paper is as follows. In Section 2, we give the equivalent problem (EP1) of
problem (FP) and its linear relaxation problem (LRP). In Section 3, an image space branch-and-bound
algorithm is presented, the convergence of the algorithm is proved, and its computational complexity
is analysed. Numerical results are reported in Section 4. A practical application from education
investment problem is solved to verify the usefulness of the algorithm in Section 5. Finally, some
conclusions are given in Section 6.

2. Equivalent problem and its linear relaxation

To find a global optimal solution of the problem (FP), we need to transform the problem (FP)
into the equivalent problems (EP) and (EP1). Next, the fundamental assignment is to globally solve
the problem (EP1). To this end, for each i = 1, 2, . . . , p, we need to compute the minimum value
α0

i = min
x∈D

∑n
j=1 ci j x j+ fi∑n
j=1 di j x j+gi

and the maximum value β0
i = max

x∈D

∑n
j=1 ci j x j+ fi∑n
j=1 di j x j+gi

of each linear ratio
∑n

j=1 ci j x j+ fi∑n
j=1 di j x j+gi

. Next,
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we first consider the following linear fractional programs:

α0
i = minx∈D

n∑
j=1

ci j x j+ fi

n∑
j=1

di j x j+gi

, i = 1, 2, . . . , p. (1)

Since any linear ratio is quasi-convex, the problem (1) can attain the minimum value at some vertex of

D. Since
n∑

j=1
di jx j + gi , 0, without losing generality, we can suppose that

n∑
j=1

di jx j + gi > 0. Thus, for

solving the problem (1), for any i ∈ {1, 2, . . . , p}, let ti = 1
n∑

j=1
di j x j+gi

and z j = tix j, then the problem (1)

can be converted into the following linear programming problems:
min

n∑
j=1

ci jz j + fiti

s.t.
n∑

j=1
di jz j + giti = 1

Az ≤ bti.

(2)

Obviously, if x∗ is a global optimal solution of the problem (1), then if and only if (z∗, t∗i ) is a global
optimal solution of the problem (2) with z∗ = t∗i x∗, and the problems (1) and (2) have the same optimal
value. Therefore, α0

i can be obtained by solving a linear programming problem (2). Similarly, we can
compute the maximum value β0

i of each linear ratio over D.
Let Ω0 = {ω ∈ Rp | α0

i ≤ ωi ≤ β
0
i , i = 1, 2, . . . , p} be the initial image space rectangle, so we can get

the equivalent problem (EP) of the problem (FP) as follows:

(EP) :



min Ψ(x, ω) =

p∑
i=1

ωi,

s.t. ωi =

n∑
j=1

ci j x j+ fi

n∑
j=1

di j x j+gi

, i = 1, 2, . . . , p,

x ∈ D, ω ∈ Ω0.

Obviously, let ω∗i =

n∑
j=1

ci j x∗j+ fi

n∑
j=1

di j x∗j+gi

, i = 1, 2, . . . , p, if x∗ is a global optimal solution to the problem (FP),

then (x∗, ω∗) is a global optimal solution to the problem (EP); conversely, if (x∗, ω∗) is a global optimal
solution to the problem (EP), then x∗ is a global optimal solution to the problem (FP). Furthermore,

from
n∑

j=1
di jx j+gi , 0, the problem (EP) can be reformulated as the following equivalent problem (EP1).

(EP1) :


min Ψ(x, ω) =

p∑
i=1

ωi

s.t. ωi(
n∑

j=1
di jx j + gi) =

n∑
j=1

ci jx j + fi, i = 1, 2, . . . , p,

x ∈ D, ω ∈ Ω0.
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In the following, for globally solving the problem (EP1), we need to construct its linear relaxation
problem, which can offer a reliable lower bound in the branch-and-bound searching process. The
detailed deriving process of the linear relaxation problem is given as follows.

For any x ∈ D and ω ∈ Ω = {ω ∈ Rp | αi ≤ ωi ≤ βi, i = 1, 2, . . . , p} ⊆ Ω0, we have

ωi(
n∑

j=1

di jx j + gi) ≥
n∑

j=1,di j>0

di jαix j +

n∑
j=1,di j<0

di jβix j + giωi

and

ωi(
n∑

j=1

di jx j + gi) ≤
n∑

j=1,di j>0

di jβix j +

n∑
j=1,di j<0

di jαix j + giωi.

Consequently, we can construct the linear relaxation problem (LPΩ) of the problem (EP1) over Ω

as follows, which is a linear programming problem.

(LPΩ) :



min Ψ(x, ω) =

p∑
i=1

ωi,

s.t.
n∑

j=1,di j>0
di jαix j +

n∑
j=1,di j<0

di jβix j + giωi ≤
n∑

j=1
ci jx j + fi, i = 1, 2, . . . , p,

n∑
j=1,di j>0

di jβix j +
n∑

j=1,di j<0
di jαix j + giωi ≥

n∑
j=1

ci jx j + fi, i = 1, 2, . . . , p,

x ∈ D, ω ∈ Ω.

For any Ω = {ω ∈ Rp | αi ≤ ωi ≤ βi, i = 1, 2, . . . , p} ⊆ Ω0, by the constructing method of the
problem (LPΩ), all feasible points of the problem (EP1) over Ω are always feasible to the problem
(LPΩ), and the optimal value of the problem (LPΩ) is less than or equal to that of the problem (EP1)
over Ω. Thus, the optimal value of the problem (LPΩ) can provide a valid lower bound for that of the
problem (EP1) over Ω.

Without losing generality, for any Ω = {ω ∈ Rp | αi ≤ ωi ≤ βi, i = 1, 2, . . . , p} ⊆ Ω0, define

ψi(x, ωi) = ωi(
n∑

j=1
di jx j + gi) =

n∑
j=1

di jωix j + giωi,

ψ
i
(x, ωi) =

n∑
j=1,di j>0

di jαix j +
n∑

j=1,di j<0
di jβix j + giωi,

ψi(x, ωi) =
n∑

j=1,di j>0
di jβix j +

n∑
j=1,di j<0

di jαix j + giωi,

then we have the following Theorem 1.
Theorem 1. For any i ∈ {1, 2, . . . , p}, let ψi(x, ωi), ψi

(x, ωi) and ψi(x, ωi) be defined in the former, and
let ∆ωi = βi − αi. Then, we have:

ψi(x, ωi) − ψi
(x, ωi)→ 0 and ψi(x, ωi) − ψi(x, ωi)→ 0 as ∆ωi → 0.
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Proo f . By the definitions of the ψi(x, ωi), ψi
(x, ωi) and ψi(x, ωi), we can get that

ψi(x, ωi) − ψi
(x, ωi) = ωi(

n∑
j=1

di jx j + gi) − [
n∑

j=1,di j>0
di jαix j +

n∑
j=1,di j<0

di jβix j + giωi]

=
n∑

j=1,di j>0
(ωi − αi)di jx j −

n∑
j=1,di j<0

(βi − ωi)di jx j

≤ (βi − αi) ×
 n∑

j=1,di j>0
di jx j −

n∑
j=1,di j<0

di jx j

 ,
which implies that

ψi(x, ωi) − ψi
(x, ωi)→ 0 as ∆ωi → 0.

Similarly, we also have

ψi(x, ωi) − ψi(x, ωi) =
n∑

j=1,di j>0
di jβix j +

n∑
j=1,di j<0

di jαix j + giωi − ωi(
n∑

j=1
di jx j + gi)

=
n∑

j=1,di j>0
(βi − ωi)di jx j −

n∑
j=1,di j<0

(ωi − αi)di jx j

≤ (βi − αi) ×
 n∑

j=1,di j>0
di jx j −

n∑
j=1,di j<0

di jx j

 ,
which implies that

|ψi(x, ωi) − ψi(x, ωi)| → 0 as ∆ωi → 0.

The proof is completed. �

From Theorem 1, the functions ψ
i
(x, ωi) and ψi(x, ωi) will infinitely approximate the function

ψi(x, ωi) as ‖β−α‖ → 0, which ensures that the problem (LPΩ) will infinitely approximate the problem
(EP1) over Ω as ‖β − α‖ → 0.

3. Algorithm and its computational complexity

In this section, based on the branch-and-bound framework, the linear relaxation problem, and the
image space region reduction technique, we propose an image space branch-and-bound algorithm for
globally solving the problem (FP).

3.1. Image space region reduction technique

To improve the convergence speed of the algorithm, for any investigated image space rectangle Ωk,
without losing the global optimal solution of the problem (EP1), the region reduction technique aims
at replacing Ωk by a smaller rectangle Ω̄k or judging that the rectangle Ωk does not contain the global

optimal solution of problem (EP1). For this purpose, let Φ̂k =
p∑

i=1
αk

i , then the smaller rectangle Ω̄k can

be derived by the following theorem.
Theorem 2. Let UBk be the best currently known upper bound at the kth iteration, for any rectangle
Ωk = [αk, βk] ⊆ Ω0, we have the following conclusions:

(i) If Φ̂k > UBk, then there exists no global optimal solution to the problem (EP1) over Ωk.
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(ii) If Φ̂k ≤ UBk and αk
ρ ≤ τ

k
ρ ≤ β

k
ρ for any ρ ∈ {1, 2, . . . , p}, then there is no global optimal solution

to the problem (EP1) over Ω̂k where

Ω̂k = {ω ∈ Rp|τk
ρ < ωρ ≤ β

k
ρ, α

k
i ≤ ωi ≤ β

k
i , i = 1, 2, . . . , p, i , ρ},

with
τk
ρ = UBk − Φ̂k + αk

ρ, ρ ∈ {1, 2, . . . , p}.

Proo f . For any Ωk = [αk, βk] ⊆ Ω0, we consider the following two cases:
(i) If Φ̂k > UBk, then for any feasible solution (x̌, ω̌) to the problem (EP1) over Ωk, the

corresponding target function value Ψ(x̌, ω̌) to the problem (EP1) over Ωk satisfies that

Ψ(x̌, ω̌) =

p∑
i=1

ω̌i ≥

p∑
i=1

αk
i = Φ̂k > UBk.

Thus, there is no global optimal solution to the problem (EP1) over Ωk.
(ii) If Φ̂k ≤ UBk and αk

ρ ≤ τ
k
ρ ≤ β

k
ρ for any ρ ∈ {1, 2, . . . , p}, then for any feasible solution (x̌, ω̌) of

the problem (EP1) over Ω̂k, we have

Ψ(x̌, ω̌) =
p∑

i=1
ω̌i >

p∑
i=1,i,ρ

αk
i + τk

ρ = Φ̂k − αk
ρ + τk

ρ = Φ̂k − αk
ρ + UBk − Φ̂k + αk

ρ = UBk.

Thus, there exists no global optimal solution to the problem (EP1) over Ω̂k. �

From Theorem 2, the investigated image space rectangle Ωk can be replaced by a smaller rectangle
Ω̄k = Ωk \ Ω̂k or judged that the rectangle Ωk does not contain the global optimal solution of the
problem (EP1).

3.2. Image space branch-and-bound algorithm (Algorithm ISBBA)

Definition 1. Denote xk as a known feasible solution for problem (FP), and denote v∗ as the global
optimal value for problem (FP), if G(xk) − v∗ ≤ ε, then xk is called as a global ε−optimum solution
for problem (FP).

The basic steps of the proposed image space branch-and-bound algorithm are given as follows.
Step 0. Given the termination error ε > 0 and the initial rectangle Ω0. Solve the problem

(
LP

(
Ω0

))
to obtain its optimal solution (x0, ω̂0) and optimal value Ψ

(
x0, ω̂0

)
. Set LB0 = Ψ

(
x0, ω̂0

)
, let ω0

i =∑n
j=1 ci j x0

j + fi∑n
j=1 di j x0

j +gi
, i = 1, 2, . . . , p,UB0 = Ψ

(
x0, ω0

)
. If UB0 − LB0 ≤ ε, then stops, and x0 is a global ε -

optimal solution to the problem (FP). Otherwise, let F =
{(

x0, ω0
)}

be the set of feasible points, and let

k = 0, T0 =
{
Ω0

}
is the set of all active nodes.

Step 1. Using the maximum edge binding method of rectangles to subdivide Ωk into two new sub-
rectangles Ωk1 and Ωk2, and let H =

{
Ωk1,Ωk2

}
.

Step 2. For each rectangle Ωkσ(σ = 1, 2), use the image space region reduction technique proposed
in Section 3.1 to compress its range, and still denote the remaining region of Ωkσ as Ωkσ, if
Ωkσ , ∅, then solve the problem

(
LP

(
Ωkσ

))
to obtain its optimal solution (xΩkσ

, ω̂Ωkσ
) and optimal

value Ψ
(
xΩkσ

, ω̂Ωkσ
)
. Let LB

(
Ωkσ

)
= Ψ

(
xΩkσ

, ω̂Ωkσ
)
, ωΩkσ

i =

∑n
j=1 ci j xΩkσ

j + fi∑n
j=1 di j xΩkσ

j +gi
, i = 1, 2, . . . , p, and F =
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F
⋃{(

xΩkσ
, ωΩkσ

)}
. If UBk < LB

(
Ωkσ

)
, then let H = H\Ωkσ, F = F\{(xΩkσ

, ωΩkσ
)} and Tk = Tk\

{
Ωkσ

}
.

Update the upper bound by UBk = min(x,ω)∈F Ψ(x, ω) and denote by
(
xk, ωk

)
= arg min(x,ω)∈F Ψ(x, ω).

Let Tk =
(
Tk\Ω

k
)
∪ H and LBk = min {LB(Ω) | Ω ∈ Tk}.

Step 3. Set Tk+1 = {Ω | UBk − LB(Ω) > ε,Ω ∈ Tk} . If Tk+1 = ∅, then the algorithm stops with that xk

is a global ε -optimal solution to the problem (FP). Otherwise, select the rectangle Ωk+1 satisfying that
Ωk+1 = arg minΩ∈Tk+1 LB(Ω), set k = k + 1, and return to Step 1.

3.3. Global convergence analysis

In the following, we will discuss the global convergence of the algorithm.
Theorem 3. Let v∗ be the global optimal value of the problem (FP), Algorithm ISBBA either ends at
the global optimal solution of the problem (FP) or generates an infinite sequence of feasible solutions
so that its any accumulation point is the global optimal solution of the problem (FP).
Proo f . If Algorithm ISBBA is terminated finitely after k iterations, then when Algorithm ISBBA is
terminated, we obtain a better feasible solution xk of the problem (FP) and a better feasible solution

(xk, ωk) of the problem (EP) with ωk
i =

∑n
j=1 ci j xk

j+ fi∑n
j=1 di j xk

j+gi
, i = 1, 2, . . . , p, respectively. By the termination

conditions, the updating method of the upper bound, and the steps of Algorithm ISBBA, we can get
the following inequalities:

LBk ≤ v∗, v∗ ≤ Ψ(xk, ωk), G(xk) = Ψ(xk, ωk) = vk, vk − ε ≤ LBk.

By combining the above equalities and inequalities, we can get

G(xk) − ε = Ψ(xk, ωk) − ε ≤ LBk ≤ v∗ ≤ Ψ(xk, ωk) = G(xk).

Therefore, we can get that xk is an ε−global optimal solution of the problem (FP).
If Algorithm ISBBA produces an infinite sequence of feasible solutions {xk} for the problem (FP)

and an infinite sequence of feasible solutions {(xk, ωk)} for the problem (EP) with ωk
i =

∑n
j=1 ci j xk

j+ fi∑n
j=1 di j xk

j+gi
, i =

1, 2, . . . , p, respectively. Without losing generality, let x∗ be an accumulation point of {xk}, we can get
that lim

k→∞
xk = x∗.

By the continuity of the
∑n

j=1 ci j x j+ fi∑n
j=1 di j x j+gi

,
∑n

j=1 ci j xk
j+ fi∑n

j=1 di j xk
j+gi

= ωk
i ∈ [αk

i , β
k
i ], i = 1, 2, . . . , p, and the exhaustiveness

of the partitioning method, we can get that∑n
j=1 ci j x∗j+ fi∑n
j=1 di j x∗j+gi

= lim
k→∞

∑n
j=1 ci j xk

j+ fi∑n
j=1 di j xk

j+gi
= lim

k→∞
ωk

i = lim
k→∞

[αk
i , β

k
i ] = lim

k→∞

⋂
k

[αk
i , β

k
i ] = ω∗i .

Thus, (x∗, ω∗) is a feasible solution for the problem (EP). Also since {LBk} is an increasing lower bound
sequence satisfying that LBk ≤ v∗, we can follow that

Ψ(x∗, ω∗) ≥ v∗ ≥ lim
k→∞

LBk = lim
k→∞

Ψ(xk, ω̂k) = Ψ(x∗, ω∗). (3)

Hence, by the method of updating upper bound and the continuity of G(x), we can get that

lim
k→∞

vk = lim
k→∞

p∑
i=1

ωk
i = lim

k→∞
Ψ(xk, ωk) = Ψ(x∗, ω∗) = G(x∗) = lim

k→∞
G(xk). (4)
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From (3) and (4), we can get that

lim
k→∞

vk = v∗ = G(x∗) = lim
k→∞

G(xk) = Ψ(x∗, ω∗) = lim
k→∞

LBk.

Therefore, any accumulation point x∗ of the infinite sequence {xk} of feasible solutions is a global
optimal solution for the problem (FP), and the proof of the theorem is completed. �

3.4. Computational complexity of the algorithm

In this subsection, by analysing the computational complexity of Algorithm ISBBA, we estimate the
maximum iteration times of Algorithm ISBBA. For convenience, we first define the size of a rectangle

Ω = {ω ∈ Rp|αi ≤ ωi ≤ βi, i = 1, 2, . . . , p} ⊆ Ω0

as
δ(Ω) := max{βi − αi, i = 1, 2, . . . , p}.

Theorem 4. For any given termination error ε > 0, if there exists a rectangle Ωk, which is formed by
Algorithm ISBBA at the kth iteration, and which is satisfied with δ(Ωk) ≤ ε

p , then we have that

UBk − LB(Ωk) ≤ ε,

where LB(Ωk) represents the optimal value for the problem (LP(Ωk)), and UBk represents the currently
known best upper bound of the global optimal value of the problem (EP).
Proo f . Without loss of generality, assume that (xk, ω̂k) is the optimal solution of the linear relaxation

programming (LP(Ωk)), and let ωk
i =

n∑
j=1

ci j xk
j+ fi

n∑
j=1

di j xk
j+gi

, i = 1, 2, . . . , p, then (xk, ωk) must be a feasible solution

to the problem (EP(Ωk)).
By utilizing the definitions of UBk and LB(Ωk), we have that

Ψ(xk, ωk) ≥ UBk ≥ LB(Ωk) = Ψ(xk, ω̂k).

Thus, by steps of Algorithm ISBBA, we can follow that

UBk − LB(Ωk) ≤ Ψ(xk, ωk) − Ψ(xk, ω̂k) =
p∑

i=1
ωk

i −
p∑

i=1
ω̂k

i ≤
p∑

i=1
(βk

i − α
k
i ) ≤

p∑
i=1
δ(Ωk) = pδ(Ωk).

Furthermore, from the above formula and δ(Ωk) ≤ ε
p , we can get that

UBk − LB(Ωk) ≤
p∑

i=1

(δ(Ωk)) = pδ(Ωk) ≤ ε,

and the proof of the theorem is completed. �

According to Step 3 of Algorithm ISBBA, from Theorem 4, if δ(Ωk) ≤ ε
p , then it can be seen easily

that the rectangle Ωk will be deleted. Thus, if the sizes of all sub-rectangles Ω generated by Algorithm
ISBBA meet δ(Ω) ≤ ε

p , then Algorithm ISBBA will stop. The maximum iteration times of Algorithm
ISBBA can be estimated by using Theorem 4, see Theorem 5 for details.

AIMS Mathematics Volume 9, Issue 6, 16376–16391.



16384

Theorem 5. Given the termination error ε > 0, Algorithm ISBBA can find an ε-global optimal solution
to the problem (FP) after at most

Λ = 2
p∑

i=1
dlog2

p(β0
i −α

0
i )

ε e

− 1

iterations, where Ω0 = {ω ∈ Rp|α0
i ≤ ωi ≤ β

0
i , i = 1, 2, . . . , p}.

Proo f . Without losing generality, we assume that the i−th edge of the rectangle Ω0 is continuously
selected for dividing γi times, and suppose that after γi iterations, there exists a sub-interval Ω

γi
i =

[αγi
i , β

γi
i ] of the interval Ω0

i = [α0
i , β

0
i ] such that

β
γi
i − α

γi
i ≤

ε

p
, for every i = 1, 2, . . . , p. (5)

From the partitioning process of Algorithm ISBBA, we have that

β
γi
i − α

γi
i =

1
2γi

(β0
i − α

0
i ), for every i = 1, 2, . . . , p. (6)

From (5) and (6), we can get that

1
2γi

(β0
i − α

0
i ) ≤

ε

p
, for every i = 1, 2, . . . , p,

i.e.,

γi ≥ log2

p(β0
i − α

0
i )

ε
, for every i = 1, 2, . . . , p.

Next, we let

γ̄i = dlog2

p(β0
i − α

0
i )

ε
e, i = 1, 2, . . . , p.

Let Λ1 =
p∑

i=1
γ̄i, then after Λ1 iterations, Algorithm ISBBA will generate at most Λ1 + 1 sub-rectangles,

denoting these sub-rectangles as Ω1,Ω2, . . . ,ΩΛ1+1, which must meet

δ(Ωt) = 2Λ1−tδ(ΩΛ1) = 2Λ1−tδ(ΩΛ1+1), t = Λ1,Λ1 − 1, . . . , 2, 1,

where δ(ΩΛ1) = δ(ΩΛ1+1) = max{βγ̄i
i − α

γ̄i
i , i = 1, 2, . . . , p} and

Ω0 =

Λ1+1⋃
t

Ωt. (7)

Furthermore, put these Λ1 + 1 sub-rectangles into the set TΛ1+1, i.e.,

TΛ1+1 = {Ωt, t = 1, 2, . . . ,Λ1 + 1}.

By (5), we have that
δ(ΩΛ1) = δ(ΩΛ1+1) ≤

ε

p
. (8)
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Thus, by (8), Theorem 4, and Step 3 of Algorithm ISBBA, the sub-rectangles ΩΛ1 and ΩΛ1+1 have
been examined clearly, which should be discarded from the partitioning set TΛ1+1. Next, the remaining
sub-rectangles are placed in the set TΛ1 , where

TΛ1 = TΛ1+1 \ {Ω
Λ1 ,ΩΛ1+1} = {Ωt, t = 1, . . . ,Λ1 − 1},

and the remaining sub-rectangles Ωt (t = 1, . . . ,Λ1 − 1) will be examined further.
Next, consider the sub-rectangle ΩΛ1−1, by using the branching rule, we can subdivide the sub-

rectangle ΩΛ1−1 into two sub-rectangles ΩΛ1−1,1 and ΩΛ1−1,2, which satisfies that

ΩΛ1−1 = ΩΛ1−1,1
⋃

ΩΛ1−1,2

and
δ(ΩΛ1−1) = 2δ(ΩΛ1−1,1) = 2δ(ΩΛ1−1,2) = 2δ(ΩΛ1) = 2δ(ΩΛ1+1) ≤

ε

p
.

Therefore, after Λ1 + (21 − 1) iterations, the sub-rectangle ΩΛ1−1 has been examined clearly. By (8),
Theorem 4, and Step 3 of Algorithm ISBBA, ΩΛ1−1 should be discarded from the partitioning set TΛ1 .
Furthermore, the remaining sub-rectangles will be placed in the set TΛ1−1, where

TΛ1−1 = TΛ1 \ {Ω
Λ1−1} = TΛ1+1 \ {Ω

Λ1−1,ΩΛ1 ,ΩΛ1+1} = {Ωt, t = 1, . . . ,Λ1 − 2}.

Similarly, after Algorithm ISBBA executed Λ1 +(21−1)+(22−1) iterations, the sub-rectangle ΩΛ1−2

has been examined clearly, and which should be discarded from the partitioning set TΛ1−1. Furthermore,
the remaining sub-rectangles will be put into the set TΛ1−2, where

TΛ1−2 = TΛ1−1 \ {Ω
Λ1−2} = TΛ1+1 \ {Ω

Λ1−2,ΩΛ1−1,ΩΛ1 ,ΩΛ1+1} = {Ωt, t = 1, . . . ,Λ1 − 3}.

Reduplicate the above procedures, until all sub-rectangles Ωt(t = 1, 2, . . . ,Λ1 + 1) are completely
eliminated from Ω0. Thus, by (7), after at most

Λ = Λ1 + (21 − 1) + (22 − 1) + (23 − 1) + . . . + (2Λ1−1 − 1) = 2Λ1−1 = 2
p∑

i=1
dlog2

p(β0
i −α

0
i )

ε e

− 1

iterations, Algorithm ISBBA will stop, and the proof of the theorem is completed. �

Remark 1. By Theorem 5, from the above complexity analysis of Algorithm ISBBA, the running time
of Algorithm ISBBA is bounded by 2ΛT (m + 2p, n + p) for finding an ε-global optimal solution for the
problem (FP), where T (m + 2p, n + p) represents the time taken to solve a linear programming problem
with (n + p) variables and (m + 2p) constraints.

4. Numerical experiments

In this section, we numerically compare Algorithm ISBBA with the software ”BARON” [25] and
the branch-and-bound-algorithm presented in Jiao & Liu [10], denoted by Algorithm BBA-J. All used
algorithms are coded in MATLAB R2014a, all test problems are solved on the same microcomputer
with Intel(R) Core(TM) i5-7200U CPU @2.50GHz processor and 16 GB RAM. We set the maximum
time limit for all algorithms to 4000 seconds. These test problems and their numerical results are listed
as follows.
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Table 1. Numerical comparisons among Algorithm ISBBA, BBA-J, and BARON on
Problem 1.

(p,m, n) algorithms iteration of algorithm CPU time in seconds

min. ave. max. min. ave. max.

(2,100,5000) BBA-J 40 104.8 244 186.21 530.14 1244.53
BARON 1 1.2 3 920.05 1083.93 1408.27
ISBBA 30 37.5 46 139.76 194.13 253.43

(2,100,8000) BBA-J 32 84.9 139 276.25 802.90 1323.32
BARON ? ? ? ? ? ?
ISBBA 29 38.2 48 261.68 355.27 487.13

(2,100,10000) BBA-J 35 76.6 112 405.80 933.54 1414.22
BARON ? ? ? ? ? ?
ISBBA 31 36 45 355.57 405.93 510.31

(2,100,20000) BBA-J 41 69.4 105 1239.04 2216.69 3495.84
BARON ? ? ? ? ? ?
ISBBA 32 36.2 41 950.13 1075.0 1233.14

(3,100,5000) BBA-J ? ? ? ? ? ?
BARON 3 9.8 31 1320.47 2310.83 3113.8
ISBBA 65 249.9 482 398.56 1815.11 3600.96

(3,100,8000) BBA-J ? ? ? ? ? ?
BARON ? ? ? ? ? ?
ISBBA 95 217.9 338 1030.95 2564.92 3985.77

Table 2. Numerical comparisons among Algorithm ISBBA and BARON on Problem 2.

(p,m, n) algorithms iteration of algorithm CPU time in seconds

min. ave. max. min. ave. max.

(10,100,300) BARON 3 9.2 13 8.28 12.66 17.64
ISBBA 9 13.6 19 5.28 8.87 12.7

(10,100,400) BARON 9 35.8 93 22.28 30.86 42.33
ISBBA 10 16 25 6.90 12.65 20.66

(10,100,500) BARON ? ? ? ? ? ?
ISBBA 10 17.4 30 8.07 15.89 26.52

(15,100,400) BARON 11 34 157 36.14 47.92 79.81
ISBBA 50 121.6 201 46.78 118.75 201.66

(15,100,500) BARON ? ? ? ? ? ?
ISBBA 49 118.1 258 54.57 137.92 303.49

(20,100,300) BARON 5 14 17 22.53 36.14 51.11
ISBBA 157 321.2 861 126.19 255.46 694.20

(20,100,400) BARON ? ? ? ? ? ?
ISBBA 99 399.9 1134 99.06 425.77 1199.2

Test Problem 1 is a problem with large-size variables, with the given termination error ε =

10−2, numerical comparisons among Algorithm ISBBA, BBA-J, and BARON are listed in Table 1,
respectively. Test Problem 2 is a problem with the large-size number of ratios, with the given
termination error ε = 10−3, numerical comparisons among Algorithm ISBBA and BARON are listed
in Table 2, respectively. For test Problems 1 and 2, we solved arbitrary ten independently generated
test examples and recorded their best, worst, and average results among these ten test examples, and
we highlighted in bold the winners of average results in their numerical comparisons. What needs
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to be pointed out here is that “?” represents that the used algorithm failed to terminate in 4000s.
From the numerical results for Problem 1 in Table 1, first, we see that the software BARON is more
time-consuming than Algorithm ISBBA, though the number of iterations for BARON is smaller than
Algorithm ISBBA. Second, in terms of computational performance, Algorithm ISBBA outperforms
Algorithm BBA-J. Especially, when we fixed m = 100, let p = 2 and n = 8000, 10000 or 20000, or let
p = 3 and n = 8000, BARON failed to terminate in 4000s for all arbitrary ten independently generated
test examples; when we fixed m = 100, let p = 3 and n = 8000, Algorithm BBA-J and BARON all
failed to terminate in 4000s for all arbitrary ten independently generated test examples, but in all cases,
Algorithm ISBBA can globally solve all arbitrary ten independently generated test examples.

From the numerical results for Problem 2 in Table 2, we can see that when we fixed p = 10 and
n = 500, or p = 15 and n = 500, or p = 20 and n = 400, the software BARON failed to terminate in
4000s for all arbitrary ten independently generated examples, but Algorithm ISBBA can successfully
find the globally optimal solutions of all arbitrary ten independently generated tests. It should be noted
that, when p is larger for Problem 2, Algorithm BBA-J failed to solve all arbitrary ten tests in 4000s.
Therefore, we just report the computational comparisons among Algorithm ISBBA and BARON in
Table 2, this indicates the robustness and stability of Algorithm ISBBA.

Problem 1.


min

p∑
i=1

n∑
j=1

ci jx + fi

n∑
j=1

di jx + gi

s.t. Ax ≤ b, x ≥ 0,

where ci j, di j, fi, and gi ∈ R, i = 1, 2, . . . , p; A ∈ Rm×n, b ∈ Rm; ci j, di j, and all elements of A are all
randomly generated from [0, 10]; all elements of b are equal to 10; fi and gi, i = 1, 2, . . . , p, are all
randomly generated from [0, 1].

Problem 2.


min

p∑
i=1

n∑
j=1
γi jx j + ξi

n∑
j=1
δi jx j + ηi

s.t. Ax ≤ b, x ≥ 0,

where γi j, ξi, δi j, ηi ∈ R, i = 1, 2, . . . , p, j = 1, 2, . . . , n; A ∈ Rm×n, b ∈ Rm; all γi j and δi j are randomly
generated from [−0.1, 0.1]; all elements of A are randomly generated from [0.01, 1]; all elements of b

are equal to 10; all ξi and ηi satisfies that
n∑

j=1
γi jx j + ξi > 0 and

n∑
j=1
δi jx j + ηi > 0.
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5. Application in education investment

Consider finding the optimal solution of the education investment problem, whose mathematical
modelling can be given as below: 

min G(x) =
p∑

j=1

n∑
i=1

c ji xi

n∑
i=1

d ji xi

=
p∑

j=1

cT
j x

dT
j x

s.t.
n∑

i=1
xi ≤ 1,

Ax ≤ b, x ≥ 0,

where c ji ( j = 1, 2, . . . , p, i = 1, 2, . . . , n) is the i−th invested fund of the j−th education investment,
xi (i = 1, 2, . . . , n) is the investment percentage of the i−th education investment, d ji ( j = 1, 2, . . . , p, i =

1, 2, . . . , n) is the i−th output fund of the j−th education investment.
The parameters of an education investment problem are given as below:

p = 2; n = 3; c = [0.1, 0.2,−0.4; 0.1,−0.1, 0.2]; d = [0.1,−0.1, 0.1; 0.1, 0.3,−0.1];
A = [1, 1,−1;−1, 1,−1; 12, 5, 12; 12, 12, 7;−6, 1, 1]; b = [1;−1; 34.8; 29.1;−4.1].

Using the presented algorithm in this article to solve the above problem, the global optimal solution
can be obtained as below:

x = (0.7286, 0.0000, 0.2714).

It is to say, the optimal investment percentage of these three kinds of education investment is
0.7286, 0.0000, 0.2714, respectively.

6. Conclusions

We study the problem (FP). Based on the image space search, the new linearizing technique, and
the image space region reduction technique, we propose an image space branch-and-bound algorithm.
In contrast to the existing algorithm, the proposed algorithm can find an ε-approximate global optimal

solution of the problem (FP) in at most (2
p∑

i=1
dlog2

p(β0
i −α

0
i )

ε e

− 1) iterations. Numerical results show the
computational superiority of the algorithm.

A potential field for future research lies in investigating the existence of analogous linear or convex
relaxation problems with closed-form solutions in cases where both the numerators and denominators
are nonlinear functions. Furthermore, there is also need to design an efficient algorithm for globally
solving generalized nonlinear ratios optimization problems with non-convex feasible region, as well as
for more general non-convex ratios optimization problems under uncertain variable environments.
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