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1. Introduction

In this paper, we consider the following composite optimization problem:

min
x∈Rn

ϕ(x) = f (x) + h(x), (1.1)

where f (x) is a differentiable function with a Lipschitz constant L > 0 for the gradient and h(x) is a
convex function that is possibly nonsmooth. Many models in sparse optimization can be formulated as
problems (1.1), such as the l1-regularized minimization in compressive sensing [1–3] and total variation
regularization in image processing [4–6].

A special case of model (1.1) is the constrained problem over a convex set, when h(x) is the indicator
function of a convex set Ω, i.e.,

h(x) = lΩ(x)
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and

lΩ(x) =

0, i f x ∈ Ω,

+∞, i f x < Ω.

For this case, a simple and famous algorithm is the gradient projection method [7]. To accelerate
this projection algorithm, a scheme with line-search along the feasible direction is proposed in [8].
Using the Barzilai-Borwein (BB) stepsize [9] and nonmonotone line search strategy, Birgin et al. [10]
developed the nonmonotone spectral projected gradient method, which is particularly appealing for
large-scale problems. Dai and Fletcher [11] induced a new projected gradient method that alternately
used the two BB steplengths. In [12], the authors proposed a modified spectral conjugate gradient
projection algorithm and applied it to the total variation image restoration.

The other special case of model (1.1), which has attracted much interest in signal and image
processing and machine learning, is the well-known l2-l1 problem, i.e.,

h(x) = ∥ · ∥1.

One of the most popular methods is the iterative shrinkage thresholding algorithm [13]. Using
Nesterov’s technique, Beck and Teboulle [14] proposed the famous fast iterative shrinkage
thresholding algorithm (FISTA) by forward-backward splitting. Hale et al. [2] developed the
fixed-point continuation method for l1-minimization. They also used BB stepsize and nonmonotone
line search to enhance this algorithm in [15]. Another closely related method is the sparse
reconstruction by separable approximation algorithm (SpaRSA) [16], which involves minimizing a
non-smooth convex problem with separable structures. Hager et al. [17] showed that SpaRSA has a
sublinear convergence rate for general convex functions or R-linear when the objective function is
strongly convex. An improved version of SpaRSA based on a cyclic BB iteration and adaptive line
search was also presented in [17]. Huang and Liu [18] proposed a BB-type method for minimizing
composite function. A nonmonotone strategy was employed for determining the step length along the
search direction, which was defined by the difference between the minimizer of the approximation
objective function and the current iteration point. Recently, Cheng et al. [19] induced an algorithm
framework for the more general type of (1.1). At each step, the search direction was obtained by
solving an optimization problem. Xiao et al. [20] proposed a nonmonotone BB gradient algorithm for
l1-regularized nonsmooth minimization in compressive sensing. At each iteration, the search direction
can be easily derived by minimizing a local approximal quadratic model. Tseng and Yun [21] gave a
block coordinate gradient descent method. But numerical results showed the efficiency of this method
only for small and medium-scale problems.

There are many variable metric forward-backward (FB) approaches for solving (1.1) in recent
literatures. In this type of algorithm, the suitable symmetric positive definite scaling matrices changed
at each iteration. A clever choice of them can lead to an improvement in convergence speed [22, 23].
Bonettini et al. [24] developed a variable metric inexact-line-search-based method for nonsmooth
optimization. An Armijo-like rule was used to determine the stepsize along the descent direction. For
the general nonconvex case, they proved that all limit points of the iterate sequence are stationary. In
the last two decades, more variants of FB approaches have been proposed. These FB variants
introduce a kind of extrapolation, or inertial, step exploiting the two previous iterations and can be
traced back to two main typologies: FISTA-like methods [25] and heavy-ball ones [26]. Other recent
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results can be found in [27, 28], where the analysis applies also to the nonconvex case, assuming that
the Kurdyka-Lojasiewicz property holds.

In this paper, following the same lines as in [24] that exploiting some variable metric information
and nonmonotone line search in [18, 19] can lead to fast image restorations, we propose a BB-type
algorithm with adaptive nonmonotone line search and scaling technique. The nonmonotone strategy
includes a convex combination of the maximum function value of some previous iterations and the
current function value. At each step, the search direction of the algorithm is obtained by solving an
optimization subproblem involving a quadratic term with a variable metric matrix and BB steplength
plus h(x). Then, we perform a nonmonotone line search along this direction. We prove that the method
with the nomonotone line search techniques is globally convergent. Similar to [17, 18, 24], the new
method does not need to know the value of the Lipschitz constant L. Then, we apply this method
to total variation image restoration, such as parallel magnetic resonance imaging [29, 30], Poisson and
Cauchy noise removal [24]. Numerical experiments show that our approach is competitive with several
other known methods.

The rest of the paper is organized as follows: In Section 2, we present the new method for solving
the model (1.1) . The convergence of the new algorithm is proved in Section 3. In Section 4, we show
the results of the numerical experiments. Finally, the conclusion is given in Section 5.

Throughout this paper, we denote ⟨x, y⟩ = xT y as the inner product of two vectors x, y ∈ Rn. ∥ · ∥
denotes the Euclidean norm. The scaled Euclidean norm associated with a symmetric positive definite
matrix D is

∥x∥2D = xT Dx.

Given
µmax > µmin > 0,

M[µmin,µmax] denotes the set of all symmetric positive definite matrix with all eigenvalues contained in the
interval [µmin, µmax]. For any

D ∈ M[µmin,µmax],

we have the result
µmin∥x∥2 ≤ ∥x∥2D ≤ µmax∥x∥2. (1.2)

2. Proposed method

In this section, we first introduce the search direction and then introduce a new nonmonotone line
search to determine the step length along this direction. At last, the new method is presented.

Our iteration step for solving (1.1) can be described as follows:

xk+1 = xk + λkdk, (2.1)

where λk ∈ (0, 1] is the step length and dk ∈ Rn is the search direction, which is given by

dk := arg min
v∈Rn
{∇ f (xk)T v +

αk

2
vT Dkv + h(xk + v)}, (2.2)

where αk > 0, and Dk is a symmetric positive definite matrix. Let

x̃k = xk + dk,
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from (2.2), we can get that x̃k is the minimizer of

min
z∈Rn

f (xk) + ⟨z − xk,∇ f (xk)⟩ +
αk

2
∥z − xk∥

2
Dk
+ h(z). (2.3)

In fact, the problem (2.3) can be rewritten as the proximity operator style associated with the convex
function h(x), which is defined as

x̃k = proxαkDk
h (yk) = arg min

z∈Rn
h(z) +

αk

2
∥z − yk∥

2
Dk
, (2.4)

where
yk = xk − (αkDk)−1∇ f (xk).

So, (2.1) is equivalent to

xk+1 = xk + λk(proxαkDk
h (xk − (αkDk)−1∇ f (xk)) − xk). (2.5)

The setting of Dk and αk will affect the performance of the method (2.5). A clever choice of them
can lead to significant improvements in the practical convergence speed [31, 32]. Firstly, about the
metric selection, we assume that

Dk ∈ M[µmin,µmax].

Different problems can choose a different scaling matrix Dk. So, we will discuss how to choose Dk in
the section on numerical experiments. Next, we will focus on how to choose the parameter αk. Similar
to [17–20], we choose αk as follows:

αk =
⟨sk−1, yk−1⟩

⟨sk−1, sk−1⟩
, (2.6)

where
sk−1 = xk − xk−1, yk−1 = ∇ f (xk) − ∇ f (xk−1).

In fact, this step length was first proposed by Barzilai and Borwein for solving unconstrained
problems [9]. Due to its efficiency, the BB approach has received considerable attention. As said
in [9], a good property of αk is that it satisfies the quasi-Newton condition

αk := arg min
α∈R
∥αsk−1 − yk−1∥

2.

We take
αk = min{αmax,max{αmin,

⟨sk−1, yk−1⟩

⟨sk−1, sk−1⟩
}}, (2.7)

where αmax > αmin > 0 are fixed constants.
When the search direction is determined, a suitable stepsize along the decent direction should be

found to determine the next iterative point. In the following, we will show how to determine the
step length λk. We know that the performance of the BB algorithm benefits from the nonmonotone
line search (see [10, 11]). The earliest nonmonotone line search technique, which differs from the
traditional Armijo line search or the Wolfe-Powell line search, was given by Grippo et al. [33] for
smooth, unconstrained optimization. In order to overcome some disadvantages of the nonmonotone
line search, Amini et al. introduced a more relaxed nonmonotone strategy that included a convex
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combination of the largest objective function in some recent past iteration and the current function
value [34]. However, they are not directly applied to the nonsmooth problems. In [18], the authors
proposed a line search for solving the nonsmooth problem (1.1) as follows:

ϕ(xk + λdk) ≤ ϕ(xl(k)) −
γ

2
λαk∥dk∥

2, (2.8)

where γ ∈ (0, 1) is a constant and

ϕ(xl(k)) = max
0≤ j≤min{k,M−1}

ϕ(xk− j), (2.9)

where M is a fixed integer and l(k) is an integer such that

k −min{k,M − 1} ≤ l(k) ≤ k.

Motivated by the idea from [18, 34], we modified the line search (2.8) and used the following
acceptance criterion to determine the step length λk:

ϕ(xk + λdk) ≤ Rk(η) −
γ

2
λαk∥dk∥

2
Dk
, (2.10)

where
Rk(η) = ηϕ(xl(k)) + (1 − η)ϕ(xk), (2.11)

and 0 ≤ η ≤ 1. Since
ϕ(xk) ≤ ϕ(xl(k)),

we have
ϕ(xk) ≤ Rk(η) ≤ ϕ(xl(k)). (2.12)

Given all the above derivations, we now describe the nonmonotone variable metric Barzilai-Borwein
type algorithm as Algorithm 1 shows.

Algorithm 1 Variable metric BB method for solving (1.1).
Step 0: Given an initial point x0 ∈ Rn, k := 0, η > 0,

M, αmin, αmax, µmin, µmax, γ ∈ (0, 1).
Step 1: Stop if ∥dk∥ = 0. Otherwise, continue.
Step 2: Compute dk via (2.2),

where αk ∈ [αmin, αmax], Dk ∈ M[µmin,µmax].
Step 3: Compute λk via (2.10).
Step 4: Let xk+1 = xk + λkdk.
Step 5: Set k := k + 1 and go to Step 1.

Algorithm 1 is closely related to the method in [18]. However, compared (2.10) with (2.8), it can
be easily found differences. Algorithm 1 use the adaptive nonmonotone line search and the variable
metric matrix Dk to get the step length λk. If η = 1 and Dk = I, Algorithm 1 is reduced to the algorithms
in [18]. Similar to the idea in [24], the variable metric technique is adopted to compute the descent
direction, while the paper [24] used the modified Armijo line search to determine the step length λk.
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3. Convergence analysis

In this section, we analyze the convergence of Algorithm 1.
First, we give some useful properties of dk. In the nonsmooth case (1.1), dk is a descent direction

for ϕ(x) at xk if ϕ′(xk; dk) < 0, where ϕ′(x; d) is the direction derivative of ϕ(x) at x in the direction
d ∈ Rn and is defined as [35]

ϕ′(x; d) = lim
t→0

ϕ(x + td) − ϕ(x)
t

.

A feasible point x is said to be a stationary point of ϕ(x) if ϕ′(x; d) ≥ 0 for all d. Using the definition
of ϕ′(x; d) and the property of stationary point, we show that the direction defined by (2.2) is descent if
dk , 0 and if dk = 0, xk is a stationary point of ϕ(x) in the following two lemmas. The proof is similar
to the proofs of Lemmas 2.2 and 2.3 in [19]. So, we omit it here.

Lemma 3.1. For any xk ∈ Rn and dk ∈ Rn determined by (2.2), we have

ϕ′(xk; dk) ≤ ∇ f (xk)T dk + h(xk + dk) − h(xk) ≤ −
αk

2
dkDT

k dk.

Lemma 3.2. xk ∈ Rn is a stationary point of (1.1) if and only if dk = 0.

Next, we show that Algorithm 1 is well defined.

Lemma 3.3. Let {xk} be a sequence generated by Algorithm 1. If xk is not a stationary point, then the
line search (2.10) is satisfied whenever

0 < λ ≤ min{1,
(1 − γ)αminµmin

L
}.

Moreover, if λk satisfies the inequality (2.10), then

λk ≥ min{1,
ρ(1 − γ)αminµmin

L
} := c, (3.1)

where ρ ∈ (0, 1).

Proof. By the inequality (2.12), the Lipschitz continuity of ∇ f (x) with constant L, the convexity of
h(x), and Lemma 3.1, we can get

ϕ(xk + λdk) − Rk(η) ≤ ϕ(xk + λdk) − ϕ(xk)

= f (xk + λdk) − f (xk) + h(xk + λdk) − h(xk)

≤ λ2L
2 ∥dk∥

2 + λ⟨∇ f (xk), dk⟩ + λ(h(xk + dk) − h(xk))

≤ λ2L
2 ∥dk∥

2 −
λαk

2 ∥dk∥
2
Dk
.

(3.2)

The use of inequality (2.10) yields

λ2L
2
∥dk∥

2 −
λαk

2
∥dk∥

2
Dk
≤ −

γ

2
λαk∥dk∥

2
Dk
.

Using the assumption (1.2) and Lemma 3.2, we can have

λ ≤
(1 − γ)αminµmin

L
.
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Now, we give the lower bound of λk. Assume that either λk = 1 or the line search (2.10) has failed
at least once. Therefore, there is a constant a ρ ∈ (0, 1) such that

ϕ(xk +
λk

ρ
dk) > Rk(η) −

γ

2
λk

ρ
αk∥dk∥

2
Dk
.

Combining the inequality (3.2) yields

λk

ρ
L∥dk∥

2 > (1 − γ)αk∥dk∥
2
Dk
.

So,

λk >
ρ(1 − γ)αminµmin

L
.

This completes the proof. □

The following theorem implies that every accumulation point of {xk} is a stationary point of (1.1).
Moreover, if f (x) is a convex function, Algorithm 1 converges to a global solution of (1.1).

Theorem 3.1. Let the sequences {xk} and {dk} be generated by Algorithm 1, then

lim
k→∞
∥dk∥ = 0 (3.3)

and
lim
k→∞

ϕ(xk) = ϕ̄,

where ϕ̄ is a constant.

Proof. Using the definition Rk, the inequalities (2.10) and (2.12), we have

ϕ(xk+1) ≤ Rk(η) −
γ

2
λαk∥dk∥

2
Dk
≤ ϕ(xl(k)) −

γ

2
λαk∥dk∥

2
Dk
. (3.4)

It indicates that
ϕ(xk+1) ≤ ϕ(xl(k)).

On the other hand, from (2.9), we get

ϕ(xl(k+1)) = max
0≤ j≤min{k+1,M}

ϕ(xk+1− j)

= max{ max
1≤ j≤min{k+1,M}

ϕ(xk+1− j), ϕ(xk+1)}

≤ max{ϕ(xl(k)), ϕ(xk+1)}

= ϕ(xl(k)).

(3.5)

Then the sequence {ϕ(xl(k))} is nonincreasing. Using the same assumption as the one in [19] that ϕ(x)
is bounded below, there is a constant ϕ̄ such that

lim
k→∞

ϕ(xl(k)) = ϕ̄. (3.6)
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By applying (3.4) with k replaced by l(k) − 1, we have

ϕ(xl(k)) = ϕ(xl(k)−1 + λl(k)−1dl(k)−1)

≤ Rl(k)−1 −
γ

2
cαmin∥dl(k)−1∥

2
Dl(k)−1

≤ ϕ(xl(l(k)−1)) −
γ

2
cαminµmin∥dl(k)−1∥

2.

Using (3.6), we obtain
lim
k→∞
∥dl(k)−1∥ = 0.

By the continuity of ϕ(x), we deduce

lim
k→∞

ϕ(xl(k)−1) = lim
k→∞

ϕ(xl(k) − λl(k)−1dl(k)−1) = ϕ̄.

Let k = l(k) − j, by induction and using the similar proof of Theorem 3.1 in [19] , we can show that
the following limits are satisfied for j = 1, 2, · · · ,M,

lim
k→∞
∥dl(k)− j∥ = 0.

For
1 ≤ j = l(k) − k ≤ M,

we have

xl(k) = xk +

l(i)−k∑
j=1

λl(k)− jdl(k)− j.

This means that
lim
k→∞
∥xk − xl(k)∥ = 0.

The facts with the continuity of ϕ(x) and (3.6) indicate that

lim
k→∞

ϕ(xk) = lim
k→∞

ϕ(xl(k)) = ϕ̄. (3.7)

Taking the limits of (3.4) and (3.7), we obtain

lim
k→∞
∥dk∥ = 0.

From Lemma 3.2, we can also know that any limit point of {xk} is a stationary point of ϕ(x). Therefore,
the proof is complete. □

4. Numerical experiments

In this section, we give some numerical experiments to illustrate the effectiveness of the proposed
method. The first test problem of the form (1.1) is the total variation (TV) of magnetic resonance
imaging (MRI). As a special type of (1.1), the parallel magnetic resonance imaging model [36,37] can
be written as follows:

min
x

1
2
∥Ax − b∥2 + τ∥x∥TV ,
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where x ∈ Cn and n is the total number of pixels in the image. A ∈ Cm×n is a sample matrix, and
b ∈ Cm is the vector of measured Fourier coefficients. ∥ · ∥TV is the total variation norm, which was first
introduced in [5]. τ > 0 is the regularization parameter. Obviously,

f (x) =
1
2
∥Ax − b∥2

is Lipschitz continuous,
h(x) = τ∥x∥TV

is nonsmooth, and ϕ(x) is a convex function.
Our new method is named NMBBA, NVMBB, and NVMBBA, respectively, in different parameter

settings. We compare it with the famous algorithms SpaRSA [16] and NMBB [18]. In all the
experiments, we set

M = 5, γ = 0.001, αmin = 10−10, αmax = 1010, µmax =
√

1 + 1/k2 = 1/µmin.

In the first experiment, we use a Poisson mask with an acquisition rate 0.243. The image size
is 256 × 256 (named Data1). The regularization parameter is set as τ = 0.0005. In NMBBA , η = 0.5,
Dk = I. In NVMBB,

η = 1, Dk = 1/diag(xk).

In NVMBBA,
η = 0.7, Dk = 1/diag(xk).

In the second experiment, we use radial mask with an acquisition rate 0.424. The image size is 512×512
(named Data2). The regularization parameter is set as τ = 0.00037. In NMBBA, η = 0.5, Dk = I. In
NVMBB,

η = 1, Dk = 1/diag(xk).

In NVMBBA,
η = 0.9, Dk = 1/diag(xk).

For the subproblem (2.4), we use the FISTA [14] method to solve the minimizing total variation
proximal function. The inner iteration number is set to 5. The stopping criterion of the five algorithms
is:

∥xk+1 − xk∥

∥xk+1∥
≤ 0.0001.

We use signal-to-noise ratio (SNR) as a means of judging performance, which is defined as follows:

S NR = 20 log10
∥xk − x̂∥
∥xk − x0∥

(dB),

where x0 is the original image, xk is the recovery, and x̂ is its mean value. All algorithms are
implemented in the Matlab programming environment (Version R2011a). The experiments are
performed on a laptop with 2 GB of RAM, a 2 GHz processor, and the Windows 7 operating system.

The reconstructed images are shown in Figures 1 and 2. It is seen that all algorithms adequately
recovered the image from a small set of data samples. We can also see that NMBB appears to have
higher accuracy than other methods for Data1 and NMBBA foe Data2.
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(a) Data1 (b) SpaRSA (c) NMBB

(d) NMBBA (e) NVMBB (f) NVMBBA

Figure 1. Original image and reconstructed images of Data1 by different algorithms.

(a) Data2 (b) SpaRSA (c) NMBB

(d) NMBBA (e) NVMBB (f) NVMBBA

Figure 2. Original image and reconstructed images of Data2 by different algorithms.
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This can also be seen in Table 1. From the table, we can see that the proposed method is very
efficient in the sense that it reaches a similar SNR value in a shorter time (second) and with a lower
iteration number (Iter) compared to the other methods.

Table 1. Performance comparison of different methods in MRI reconstruction.
Data1 Data2

Algorithms Iter Time(s) SNR(dB) Iter Time(s) SNR(dB)
SpaSRA 61 73.89 19.3562 28 139.93 28.1334
NMBB 40 38.79 19.6495 27 132.86 27.1879
NMBBA 30 28.59 19.4433 21 98.20 28.5226
NVMBB 22 21.74 19.4899 22 110.91 27.9799
NVMBBA 22 20.31 19.4899 22 107.48 27.9799

In Figure 3, we plot the objective function value versus CPU time. From the figure, we can see that,
among these five algorithms, the decay rates of SpaRSA are much slower than those of the others.
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Figure 3. Objective function value versus CPU time for Data1 (a) and Data2 (b).

The reason may be that it has to solve the subproblem for each trial point on each line search,
as said in [18]. NMBBA does not use the variable metric technique. This demonstrates that the
convex combination of the maximum function value of some previous iteration and the current function
value can improve the convergence speed. If we choose the suitable scaling matrix Dk for NVMBB
and NVMBBA, they may converge quickly; for example, see their performance Data1. Otherwise,
NVMBB and NVMBBA may be a little slower than NMBBA but also faster than SpaRSA and NMBB.
So, a suitable combination of the stepsize αk and the variable metric Dk is important for the practical
problems discussed in [31].

The second test problem is TV Poisson noise image deconvolution. When the image is corrupted
by Poisson- type noise, the Kullback-Leibler divergence is often used as the data-fitting term. Let b be
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the observed blurry and noisy image, then the data discrepancy can be given as

f (x) = ⟨b, ln
b

Hx + g1
⟩ + Hx + g1 − b,

where
H ∈ Rn×n

is a blur matrix, 1 is the vector of all ones, and g is a constant background term. To deal with this
ill-posed problem, based on the prior information of the image, TV regularization with a nonnegative
constraint is added to control the noise and artifacts, i.e.,

h(x) = ρ∥x∥TV + lx≥0(x),

where ρ > 0 is a regularization parameter. Hence, the Poisson noise image restoration problem is
reformulated as a minimization problem

min
x∈Rn

ϕ(x) = ⟨b, ln
b

Hx + g1
⟩ + Hx + g1 − b + ρ∥x∥TV + lx≥0(x).

So, Algorithm 1 can be used to solve the convex composite optimization problem.
In this test, we compare it with the method named VMILA in [24]. In Algorithm 1, the variable

metric technique is the same as VMILA, with η = 1. This is to say, we use the nonmonotone line search
instead of the modified Armijo line search in VMILA to determine the step length λk. So, algorithm
1 is named NONVMILA. The two test images are Micro (128×128) and Phantom (256×256). For the
micro image, ρ = 0.09 and g = 0.5. For the Phantom image, ρ = 0.004 and g = 10. We set M = 3
for Micro and M = 9 for Phantom, and the other parameters are the same as VMILA. We also used
the FISTA [14] method to minimize the total variation of the proximal function. The inner iteration
number is set to 1500. We refer the reader to [24] for more details. Both of the compared methods
are stopped when the maximum number of iterations is more than 400. The peak-signal noise ratio
(PSNR) is used to evaluate the quality of the restored image.

The numerical performance of image restoration is recorded in Table 2. We present the CPU times
in seconds and the PSNR values of the two algorithms for various blurry observations.

Table 2. CPU time and PSNR values of two algorithms for Poisson noise image deblurring.
VMILA NONVMILA

Images Time(s) PSNR Time(s) PSNR
Micro 4.4280 52.7215 3.8330 52.8909
Phantom 10.2243 24.6938 9.7457 25.9434

From the table, one can see that the two approaches can produce similar behaviors for the two
images. Figure 4 displays the visual results of image deblurring. In terms of visual quality, the
difference is not significant. This can also be seen from the PSNR values. Figure 5 reports the relative
decrease of the objective function with respect to the optimal value ϕ∗ (when x = x0, x0 is the original
image) as a function of the computational time. We observe that NONVMILA requires less time.
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(a) Micro (b) Blurred image (c) VMILA (d) NONVMILA

(e) Phantom (f) Blurred image (g) VMILA (h) NONVMILA

Figure 4. Original images ((a), (e)), blurred images ((b), (f)) with Poisson noise and
images recovered by NMILA ((c) PSNR=52.7215, (g) PSNR=24.6938) and NONVMILA
((d) PSNR=52.8909, (h) PSNR=25.9434).
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Figure 5. Relative decrease of the objective functions with respect to the computational time
for Mirco (a) and Phantom (b).

The last problem is Cauchy noise image deconvolution. When the image is corrupted by the
Cauchy-type noise, the log function is used as the data fitting term. Let b be the observed blurred and
noisy image, then the data discrepancy is

f (x) =
1
2

log(γ2 + (Hx − b)2),
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where

H ∈ Rn×n

is a blur matrix with the 9×9 testing kernel and the variance 1, while has been set equal to 0.02. Based
on the prior information of the image, TV regularization with a nonnegative constraint is added to
control the noise and artifacts, i.e.,

h(x) = ρ∥x∥TV + lx≥0(x),

where ρ > 0 is a regularization parameter. Hence, the Cauchy noise image restoration problem is
reformulated as

min
x∈Rn

ψ(x) =
1
2

log(γ2 + (Hx − b)2) + ρ∥x∥TV + lx≥0(x).

So, Algorithm 1 can be used to solve this composite optimization problem.

In this test, we also compare it with the VMILA type in [38,39]. In Algorithm 1, the variable metric
technique is the same as in VMILA, with η = 0.9, and is also named NONVMILA. We set M = 5 and
the other parameters are the same as VMILA. The three test images are the cameraman (256×256),
the house (256×256) and the bird (256×256). All methods are stopped when the maximum number of
iterations is more than 5000 or

|ψ(xk) − ψ(xk−10)| ≤ 10−6 ∗max{1, |ψ(xk)|}.

The numerical performance of image restoration is reported in Table 3.

Table 3. CPU time and PSNR values of two algorithms for Cauchy noise image deblurring.
VMILA NONVMILA

Images Time(s) PSNR Time(s) PSNR
Cameraman 105.2720 26.2798 48.6810 26.2892
House 87.3230 30.4242 47.5650 30.4463
Bird 123.6920 27.1690 55.8790 27.2572

We present the running time in seconds and PSNR values of the two algorithms. From the table,
we observe that the two approaches can get similar behaviors for three images in terms of PSNR. We
also find that NONVMILA requires less time than VMILA when the stopping criterion is satisfied.
Figure 6 displays the visual results of the deblurred image. From Table 3 and Figure 6, it seems that
our approach is very efficient for this tested problem.
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(a) Cameraman (b) Blurred image (c) VMILA (d) NONVMILA

(e) House (f) Blurred image (g) VMILA (h) NONVMILA

(i) House (j) Blurred image (k) VMILA (l) NONVMILA

Figure 6. Original images ((a), (e), (i)), blurred images ((b), (f), (j)) with Poisson noise and
images recovered by NMILA ((c) PSNR=26.2798, (g) PSNR=30.4242, (k) PSNR=27.1690)
and NONVMILA ((d) PSNR=26.2892, (h) PSNR=30.4463, (l) PSNR=27.2572).

5. Conclusions

In this paper, we introduce a variable metric algorithm frame for composite optimization problems.
With the nonmonotone line search techniques, the convergence of the method is discussed. With the
growing use of nonconvex objective functions in applied fields like image processing and machine
learning, the need for numerical methods in a fully nonconvex setting has increased significantly. So,
future work will focus on a general nonconvex non-Lipschitz function, including theoretical and
numerical analysis. Moreover, there is good potential to improve the convergence results using the
conditions about the regularity of the cost function and the boundedness of the Hessian matrix [40].
Also, a multi-step inertial forward-backward splitting algorithm will be considered in the
future [41, 42]. At last, it is interesting to develop a new scaling matrix and BB stepsize for solving
the composite optimization problem.
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