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Abstract: The present research is aim at investigating a thermoelastic Timoshenko system with
an infinite memory term on the shear force while the bending moment is under the influence of a
thermoelastic dissipation governed by Fourier’s law. We prove that the system’s stability holds for a
broader class of relaxation functions. Under this class of relaxation functions 4 at infinity, we establish
a relation between the decay rate of the solution and the growth of 4 at infinity. Moreover, we drop
the boundedness assumptions on the history data. We employ Neumann-Dirichlet-Neumann boundary
conditions for our result. In comparison to the bulk of results in the literature, which frequently enforce
the “equal-wave-speed” constraint, the present result shows that the infinite memory of the beam and
the thermal damping are strong enough to guarantee stability without any conditions on the parameters.
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1. Introduction
We consider the following thermoelastic Timoshenko system, for any x € (0, 1) and 7 > 0,
p1®@y — k(D + )y + f h(s)(@y + ) (1 — 5)ds = 0,
0

03P, — B, + k(D, + W) — f h(s)(®, + W) — 5)ds + yO, = 0, (1.1)
0
3®t _ﬁ®xx + )/\th = 0,

in which the shear force is affected by the viscoelastic law, while the bending moment is regulated
by thermoelastic dissipation. In (1.1) ®, ¥, and ® are functions of x and ¢z. @ is the transverse
displacement, ¥ represents the angle of rotation of the center of mass of an element, and ® stands for
the temperature difference. Also, the positive constants k, b, y, 3, p3, 02, p1 represent shear coefficient,
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flexural rigidity, adhesive stiffness, diffusivity, capacity, moment of mass inertia, and mass density
respectively. The kernel 4 is a given function to be specified later. We consider (1.1) with the following
boundary conditions;

®,(0,7) =0,0,7) =¥0,r) =0,(1,1) =0,(1,1)) =¥,H) =0,Vt > 0 (1.2)

and data

{ DO(x, —1) = Do(x, 1), Y(x,—1) = Po(x, 1), O(x,0) = Oy(x), x € [0,1],7> 0, (1.3)

D,(x,0) = Dy (x), Pi(x,0) = ¥i(x), x€][0,1].

This work is motivated by the fact that a Timoshenko system decays exponentially without additional
restrictions on the parameters py, p2, b, k, provided the transverse displacement and rotation angle are
controlled. It is pertinent to mention that in establishing our result, the famous equal-wave-speed

condition 2! = 5 is not imposed. Letting 4 = 0 in system (1.1) and removing the temperature, we get

2
the classical Timoshenko system [1, 2],

O, — k(®,+Y¥), =0, €(0,1), t>0,
{pl o« — k( ) x€(0,1) 14

PV =¥ + k(D +¥) =0, x€(0,1), £>0.

In the literature, various forms of damping have been applied to the system (1.4). The existence,
uniqueness, and stability of the resulting systems are studied rigorously; see [3] and references
therein. The system (1.4) assumes the form below when the bending moment experiences thermoelastic
dissipation.

p]q)lt - k(q)x + lI’)X = O’ X € (07 1)’ r> 07
ooy =¥ + k(D + W) +yO, =0, x€(0,1), t>0, (1.5)
p3®t _ﬁ®xx + V\th’ X € (O’ 1)’ t> O

In [4], the authors assumed that the speed wave is equal and proved an exponential stability result.
Furthermore, considering system (1.4), Rodrigues et al. [S] derived

t
1P,y — k(D, +'P), + kf h(t = $)(@, + W) (x, s)ds = 0,
0

(1.6)
!
2V — bW, + (D, + ) — kf h(t — s)(D, + P)(x, s)ds =0,
0
and further proved that (1.6) is uniformly stable if, and only if,
o1k
— = (1.7)
p2 b

Many Timoshenko systems similar to (1.5) have been studied in the literature; see [6-8]. All the
stability results were based on assumption (1.7). Also, for results related to system (1.6) without
imposing condition (1.7), see [9-12]. Regarding the stability results for Timoshenko system with past
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history (infinite memory), Al-Mahdi et al. [13] considered the following memory-type Timoshenko

system
plq)tt - K@, +%¥), =0,

+00

lePtt - b\Pxx + K((Dx + \P) + fg(s)\yxx(t - S)dS = 09
0

(1.8)

with Dirichlet boundary conditions, where Q is a positive nonincreasing function satisfying, the
following condition

g1 < -&nQ0Gg®),  VYi=0. (1.9)

The authors established some new results under some appropriate conditions on & and Q. See also [14—
16] for additional results on viscoelastic problems with infinite memory. The following provide the
organization of the remainder of our work: We give preliminary resources in Section 2 that will be
useful in getting our results. We establish several important lemmas in Section 3. Lastly, in Section 4,
we examine how fast the energy associated with (1.1)—(1.3) decays.

2. Preliminaries

Henceforth, the variable C will signify a generic positive constant. We represent the canonical norm
in L2(0, 1) by ||.|l. On the relaxation function &, we consider the following assumptions.

(D)) his a positive nonincreasing C'—function defined from [0, +oo) to (0, +c0) and satisfying
O<l=k- f h(s)ds. 2.1
0

(D») There exist a C! linear function Q defined from [0, +o0) to [0, +o0) or strictly C? convex function
on (0, r], satisfying r < h(ty), Yto > 0 with Q(0) = Q’(0) = 0 and a positive nonincreasing function
&1 [0, +00) — (0, +00), which is differentiable and satisfies

W (t) < =10 (h(1)), t=>0. (2.2)

Remark 2.1. (1) Conditions (D,) and (D,) imply that Q is a C*—convex function which is strictly
increasing on (0, r] and satisfies Q(0) = Q’(0) = 0. Therefore, there exists Q, an extension of Q
that is increasing strictly and is a strictly convex C*—function. For instance,

o0 = %Sz +(Q' () = Q" (NN)s + Q) = Q' (Nr + Qz(r)

P> (2.3)

(2) Since h is continuous, positive and h(0) > 0, then for any t > ty, ty > 0, we have

f h(s)ds > fo h(s)ds = hg > 0. 2.4)
0 0

Remark 2.2. [17] Using the strict convexity of Q on (0,r] and the fact that Q(0) = 0, then the
Jollowing inequality holds:

O(vz) <v0(@), 0<v<landze (0,r]. (2.5)
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Remark 2.3. We now define four functions that are invaluable in this work. We begin with a decreasing

function on (0, r] given by

|
ciw= f 0"

The remaining three functions Q,, Qs, and Q4 are defined below:
Q1) = 1Q'(eot),  Q3(D) = 1(Q)7 (1), Qu() = () (0),
which are all convex and increasing on (0, r].
In view of (1.2), integrate (1.1); and (1.1); over (0, 1) and get
d2
ar
Solving Eq (2.8) and applying the initial data result to

(D(x Hdx = —f Ox, Hdx =

1 1 1 1 1
f O(x,)dx =t f O (x)dx + f Dy(x)dx, f O(x, Hdx = f ®Op(x)dx.
0 0 0 0 0

Thus, for all £ > 0, 1 1
f O(x,)dx =0 and f O(x,t)dx =0
0 0
provided

1 1
O(x, 1) = D(x, 1) — ¢ f O (x)dx — f DOy (x)dx,
0 0

1
O(x, 1) = O(x, 1) — f O (x)dx.
0

A consequence of Eq (2.10) is that
IO15 < 10415, 1915 < [1D]3.
In addition, (@, P, ®) satisfies (1.1) with initial data for ® and @ given as

1

Dy (x) = Py(x) — \[o Dy(x)dx,
1

D (x) = Oy(x) — ‘fo D, (x)dx,

1
Op(x) = Oy(x) _fo BOp(x)dx.

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

Henceforth, we take ® = ®, ® = @. Thus, ®, = ®,, and ®, = @,. For convenience, we write ® and

®. The following spaces are required for stating our well-posedness result:

1
=12(0,1) = {w e L*(0,1): f w(x)dx = 0},
0
H. =H.0,1)= H'(0,1)n L2(0, 1),
HY = HY(0,1) = {w € H(0,1) : w(0) = w,(1) = 0}.

The statement of the well-posedness is as follows:
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Theorem 2.1. Suppose (Dy, @, Yy, ¥1,0,) € Hi X Li X Hé x L? X Hi and condition (Dy) hold. Then,
problem (1.1)—(1.3) has a global weak unique solution (®,¥, ®) such that

(@, ) € C ([0, +00), H} x Hy) N C' ([0, +00), L2 x L?),
(2.14)
© € C ([0, +00), H}) N L? ([0, +00), H, N Hy).

Additionally, if the initial data
(Do, Dy, Vo, ¥1,00) € H: N H, x H, x H* N Hy x Hy x H> N H},
then the unique weak solution (©,Y, ®) achieves more regularity as follows:
® € C ([0, +00), Hy N H,) N C' ([0, +00), H, ).
Ye c([o, +00), H* N Hg) NnC' ([0, +oo),Hg),
®c c((o, +00), H2 N Hl) nC' ([0, +oo),H1).

Using Galerkin approximation method [18], Theorem 2.1 can be easily established. We now present
some foundational lemmas necessary for this work.

2
loc

Lemma 2.1. For any function u € L? ([0, +00), L*(0, 1)), the following inequalities are true:

2

1 oo
f (f h(t — s)(u(t) — u(s))ds) dx < (1 =D(hou)r), (2.15)
0o \Jo

2

1 X
f ( f u(y, t)dy) dx < [wl, (2.16)
0 0

(hou)r) = fo h(s)lu(r) = u(t = s)ll3ds.

where

Proof. The result is just a consequence of the Cauchy-Schwarz and Poincaré inequalities. O

Similar to [17], for any « € (0, 1), take

8(t) = ah(r) - K (1)

_ +00 I’lz(S)
b= ], G- F

Another foundational lemma is as follows:

Lemma 2.2. Let (O,¥, ©) be the solution of problem (1.1)—(1.3). Then, for any 0 < a < 1, we have

2

1 00
f (f h(s) (D + ¥)(1) — (O, + )t — 5)) dS) dx < D, (g 0 (0, + ) (1), (2.17)
0 0

and

where .
(go (@, +¥) ()= fo gD, + VY1) — (D, + )t — 9)I5ds.
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Proof. 1t follows that

2

1/ oo
f (f h(s) (D, +P)(1) — (D, + )£ — 5)) ds) dx
0o \Jo

1 ) h(S) )2
= V&) (P, +P)(@) — (P, + V)t — 5))ds| dx
fo [ 0 g(s)

< f ds f f 9(5) (@, + B)(1) — (D, + W)t — 5))° dsdx
0 0 0

g(s)
=D, (g o (D, +'P)) ().

3. Important lemmas

We present additional lemmas that are pivotal for the principal result.

Lemma 3.1. The energy of the system (1.1)—(1.3) satisfies

1 1
E® =3 (plllq)tlli + P2l 3 + DI + €D, + lI‘)II%) +5 (e (@ + 1)) (1) + %H@II%,

where (®, V¥, ®) is the solution of (1.1)—(1.3). Moreover, E(t) satisfies

1 1
E'(t) = —Eh(t)ll(Dx + |15 + 3 (W o (@, +¥) () - BlO,5 <0, V>0,

where

(ho (D +¥) () = f h(I(@, +¥)(1) = (O, + ¥)(7 = 5)ll5ds.
0

(2.18)

3.1

(3.2)

Proof. Multiply Eq (1.1), by ®,, Eq (1.1), by ¥,, and Eq (1.1); by ®. Then, integrate all terms over

(0, 1) in view of the boundary conditions. Adding the results, we obtain

1d
5 (P + IR, + I + ol ¥, + BIE.I1 + p3]1OE)

1 oo
- f (O, + ‘I’),f h(s)(®D, + P)(x,t — s)dsdx = —B|O.|)3.
0 0

T

The estimate of the term T is as follows:
1 00
T = f (D, + ‘I’),f h(s) (D, +P)(x, 1) — (D, + P)(x,t— 5))dsdx
0 0
00 1
- f h(s)dsf (D, + V)(D, + V)dx
0 0

1 00
= l f f h(S)i(((Dx + ‘{’)(x, [) - ((I)x + "II)(_X,', f— S))2 dsdx
2o Jo dt

(3.3)
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1

o0 d
) fo h(s)dsd—tlld)x+‘l‘||§

_ %% (ho (@, +¥)) (1) - %(h' o (@, +¥)) (1)

1d

* 1
_14 21, 2 2
3T (fo h(s)ds||D, + lI’llz) + 2h(t)||CDx + P|5. (3.4)

The inequality (3.2) is obtained by subbing (3.4) into (3.3). It follows from (3.2) that the energy E(f)
is decreasing and bounded above by E(0). O

The next lemma is as follows:

Lemma 3.2. For all t > O, there exists a positive constant M, that satisfies

f‘” (S|P, + P)(£) — (D, + P)(t — 5)|[3dsdx < Mihy(t), V't >0, (3.5)

with ho() = [ h(t + ) (1 + (@ + P)ou()II?) ds.

Proof.
1 00
f f h(s) (@, + P)(D) — (D, + P)(t — 5))* ds
0 t
< 2@, + PO f h(s)ds + 2 f H(I(@, +P)t - s)|Pds
< 2sup||(D, + ‘P)(s)ll% foo h(t+ s)ds +2 foo h(t + 9)||(D, + lI’)(—s)ll%ds
4320 . 0 . 0 (36)
< (—E(s))f h(t + s)ds + Zf h(t + 9)||(D, + ‘P)Ox(s)||§ds
f 0 0
< (é—lE(O)) f h(t + $)ds +2 f h(t + 9@y + P)ou(9)IEds
f 0 0
< M, f h(t + 5) (1 + (@ + W)ou()I13) ds,
0
where M; = max {2, (%E(O))}. O

Lemma 3.3. Let (®,¥, ©) be the unique solution obtained in Theorem 2.1. Then, for any €, € > 0,

the functional F, defined by
1 X
P =p [ [ e0nddx
0 0

satisfies (3.7)

, Y 2 2 2 1 1 2
Fi(t) < —=||VA5 + ellYl5 + &|®, + Y5 +C|1+ —+ —]]|O,
() < 2|| Iz + ell'Fill; + ell Il> ( c EZ)II II> 3.7)

+CD, (g0 (D +¥) (1), V120,
where Q and D, are defined in Lemma 2.2.
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Proof. Start by differentiating F';, then apply (1.1), and (1.1);. Proceeding with integration by parts in
view of (2.10), we arrive at

Fi() = yn\Puz——f ¥ Odx -—f(cb %f Oy, )dydx

1
_Ps f f h(s) (@, + W)(x, 1) = (D, + ¥)(x, 1 — 5)) ds f 00, Ndydx
P2 Jo Jo 0 39

Ty

+’ﬁ " h(s)ds f (@, +¥) f Ay, Ndydx + 3 f ¥,0, dx+7::3

lC]5
P2 o

Ts Te

Applying (2.10), the Cauchy Schwarz inequality, and progressing similarly as Lemmas 2.1 and 2.2.
The following estimates hold:

C € C
Ty < llVAll3 + =105, T3 < =@, + WII3 + —11O,]5,
€ 2 €

C € C
T, < ) () + Ell@)xlli, Ts < fllfbx + |5 + 6—||®x||§, (3.9)
2
2
<Lpwig+ 8 e,
Subbing (3.9) in (3.8), we arrived at (3.7). O

Lemma 3.4. Let (O,V, ®) be the unique solution obtained in Theorem 2.1. Then, the functional F,
defined by

1 X
FZ(t) =—p1 f ((Dx + \P)f (I)t(y’ t)dydx
0 0

satisfies the estimate,
14
Fiy(f) < _i”q)x + 2|15 + Cll®|5 + CI[,|I5 + CD, (g ¢ (@ + ) (1), Y120, (3.10)

where Q and D, are defined in Lemma 2.2.

Proof. We differentiate F, directly to get

1 X 1 X
Fi(t) = —p, f (D, + ), f O,(y, dydx — p, f (D, +Y¥) f Dy (y, H)dydx.
0 0 0 0

In view of (1.1); and applying integration by parts result to

1 X
Fy(t) = =)@, + Y13 + o115 — oy f Y, f @, (y, t)dydx
0 0 (3.11)

1 00
- f (D, +P)(x, 1) f h(s) (D, + V)(x, 1) — (O, + P)(x, — 5)) dsdx.
0 0
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For any 6; > 0, we have

, 3p; . - D,
Fj(1) < —C|D, + I3 + %IIQII% + %II‘EII% +611|0, + I3 + 15 (g0 (D, + 1) ). (3.12)
1

{
Using (D;) and choosing ¢, = 3 we get (3.10). O

Lemma 3.5. Suppose the hypothesis in Lemma 3.4 holds. For any €, > 0 and ty > 0, the functional F;
defined by

1 X 00
Fs() = —p, f , f f 1(s) (@ +W)(.1) — (@, + ¥)(v. 1 — 5)) dsdydx
0 0 0

satisfies

pitk =€)
2

Fi(1) < - D5 + CIFS + &llD, + I3

1 (3.13)
+CD0,(1 +€—)(g<>(CDx+‘I’))(t), V>0,
2

and Q and D, are defined in Lemma 2.2.

Proof. Direct differentiation of F3; gives

1 X 00
Fi(t) = —py f ®, f f h(s) (@, + B)(y. 1) = (@) + ). 1 - 5)) dsdydx
0 0 0

1 X 00
) ﬁ (I),f(; f(; h’(s)(((I)y +¥P)y, 1) — (O, + )y, 1 — s)) dsdydx

Tg
1 X t
- pP1 f (D,f f h(t — s)(D, +¥),(y, )dsdydx .
0 0 —00
Ty

In a similar approach to obtaining the estimates in (3.9), the following hold:

(3.14)

1 00
T; = f (D, + ‘P)f h(s) (D, + P)(®) — (D, + ¥)(t — 5))dsdx
0 0
2

1 .-
+ f (f h(s) (D, +P)(x, 1) — (D, + P)(x,t— 5)) a’s) dx
0o \Jo

1
< 6|0, + ‘Pll% +CD, (1 + —) (go (D, +Y¥)) (1),Ve, > 0. (3.15)
€

1 X 00
Ty = —p f o, f f 1 (5) (@, + By, 1) = (@) + )y, 1 — 5)) dsdydx
0 0 0
1 X 00
=p fo @, fo fo 8(s) (@, + )y, 1) = (D, + W)y 1 — 5)) dsdydx
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1 X 00
—pa f @, f f h(s) ((@y + V). 1) = (@, + ¥)(y. 1 — 5)) dsdydx
0 0 0

0 c(1+D,)
< SV + ———= (g 0 (@, + ¥)) (1), Y6, > 0.
2

To estimate Ty, we recall (2.4) and (2.10). As a result, we get, for any positive d,,
1 X t
Ty = —p f (I),f f h(t — s)(®, +¥),(y, )dsdydx
0 0 —00

) 1 X
=y f h(s)ds f o, f (@, +W),(y. Ddydx
0 0 0
) 1 X
= —plf h(s)dsf d)tf D, (y, t)dydx
0 0 0
) 1 X
—plf h(s)dsf (D,f Y. (y,t — s)dydx
0 0 0
00 00 1 X
= —py f H)dsIDE - py f h(s)ds f o, f W, (., ()dydx
0 0 0 0

(p1ho)?

w13
%, IVl

0
< —pi(k - O} + fncbtu% +
Combining (3.15)—(3.17), we obtain

, C
Fi(1) < = (oi(k = €) = 6) @15 + 5—|I‘Pz||§ + &0, + I3
2

1 1
+ CD(,(I +—+ —)(g o (D, + 7)) (1).
€ 52
k—¢
Choosing 6, = % gives our desired result (3.13).

(3.16)

(3.17)

(3.18)

O

Lemma 3.6. Suppose the hypothesis of Lemma 3.4 is true. Then, the functional F, defined by F4(t) =

02 fol YWY, dx satisfies

, b
Fi(H) < - 5||\Px||§ +pallil5 + CllD, + P|I5 + CD, (g o (@, + ) () + Cl|O,|3, V>0,

where Q and D, are defined in Lemma 2.2.
Proof. We have that

1
F(0) =pall¥ill5 = I3 - kf P(Q, + ¥)dx
0

Tio

1 00 1
+ f ‘I’f h(s) (D, + V)(x,t — s)dx — 7f YO.dx.
0 0 0

T T2

(3.19)

(3.20)
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Furthermore, for any 63 > 0,

3 2 C 2
T <—||¥,I5 + =—||®, + V|5,
10 <7 1. [l5 53|| II>
00 1
T, = f h(s)ds f YD, + Y)dx
0 0

1 00
- f ‘I’f h(s)(D, +P)(x, 1) — (O, + P)(x,t — 5))dx
0 0

0 C CD,
<2PR + =10, + P2 + (g o (D, + 1)) (1),
2 53 53

3 2 C 2
T <—||V.ll5 + =1OI5.
12 S I¥ll> 53|I II>

It follows that

CD,
03

, C C
Fi(t) < = (b= 6315 + o215 + 5—||<Dx + |3 + (go (@, +¥) )+ 5—Il®x||§-
3 3

b
Then, choosing 65 = 5; gives the desired result (3.19).

Lemma 3.7. The functional Fs defined by

Fs(t) = fo | fo l J(t — s)(@, + P)*(x, s)dsdx, where J(t) = f, - h(s)ds,
satisfies the estimate below:
Fy(n) < —% (h o (D + W) (1) + 3(1 = OO, + P13
+ % fo 1 j: ” h(s) (h o (D + P)(1) — (D, + P)(t — 5))* dsdx.

Proof. The proof has similar steps as in [13].

Lemma 3.8. For suitable choices of W, W;, j = 1,2,3,4, the Lyapunov functional
4
L) = WE@®) + ) WiF (1)
=1

satisfies the estimate
d\E(t) < L(t) < drE(1)

and
L(t) < = A(IIOF + IVAE + W5 + D, + IS + 10,13)

b3 o @+ W), V120,

for some A > 0 and d,, d, > 0.

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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Proof. We get
|L(#) = WE@®)| < Wi [F1(D] + W2 [Fo(D)] + W3 [F5(0] + Wy [F4(0)] - (3.26)
Applying Young, Poincaré, and Cauchy-Schwarz; inequalities, we obtain

|L(t) - WE()] <C (IICI)[II% + G + A + 1D + IS + II@H%) +C(ho (D +¥) ()
<CE(?).

It follows that
(W-0O)E@) < L) <(W+ O)E®®). (3.27)

Choosing a large enough W that ensures (W — C) > 0 yields (3.24).
Then, using Lemmas 3.1-3.6 and our earlier definition g = ah — k', we get

[ p1(k — O)W;
| 2
bW, W,

|7 - Wlfl] P13 - [T -aW -W; - W4C] IO, + VI3

YW

L) <- - ch] 1,115 - [T - W,oC — WsC - W4,02] I¥,115

(3.28)

’ 11 W
—|ws - W1C(1 =4 —) - W4C] 1O + —— (h o (O + ¥)) (1)
| € € 2
W 1
“|7 - CDQ(Wl + W, + W3(1 + 6—) + W4)] (go (@, +Y¥)(1),Yt=0.
L 2

By choosing
bW, tW,

bWy oW 3.29
AW 2T AW, + W) (3.29)

€ =
the inequality (3.28) becomes

pi(k = O)Ws

L)< - >

W
L - WiC - wic - W4Pz] 12

- WZC] 1915 - |~

bW,
4

tW. Wa
W, 115 - [TZ - W4C] IO, + 25 + - (ho (D, +¥)) (1)

(3.30)

4W1 + 4(W1 + W3)

~|wB-wc(1
[B : (erw4 W,

) - W4C] 19,13
w

- [3 - CD, (W, + W, + Cy + W4)] (go (D, +¥)) (1),

with

W,

At this juncture, we carefully select our constants: First, we choose W, big enough so that

4(Wy + W
CW=W3(1+(1—3)).

W
72 —W.C > 0. (3.31)
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Second, we select W3 large enough such that

pi(k = O)Ws

e )
2 2z

Third, we take W, large enough such that

14
% —WyC = WsC = Wapy > 0.
Now, we see that
ah?(s) B ah?(s)

o) ah(s) (s O

therefore, upon applying the dominated convergence theorem, we observe that

ah?(s)
aD, f ah(s) — 7 (s)ds -0 as a—>0.

Hence, there exists o € (0, 1) such that if @ < @y < 1, we have

aD, <

2C(W1 + W,y + W5 (1 + 4(WKIT+2W3)) + W4)
1
Lastly, we choose W large enough and take @ = W so that (3.24) remains valid and

4W1 + 4(W1 + W3)
bW, kIW,

W,B—WlC(1+ )—W4C>O

and

174 4W, + Ws)
D, (W, + Wy + W1+ 2L L w, ) s 0.
2 (‘+ 2 ¥ 3( KW, ) 4)>

A combination of (3.29)—(3.36) yields (3.25).

Lemma 3.9. Suppose (D) and (D,) hold. Then, the energy functional satisfies

t
f E(s)ds < imnh, (1), ¥t € R,
0

where h(t) = (1 + fot ho(s)ds) and hy is defined in Lemma 3.2.

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

Proof. To prove the above lemma, we let F(¢) = L(¢) + F5(t). Then, using (3.25) and (3.22), we obtain

the following bound for all 7 € R,

1 +00
F'(t)y < —ME(t) + % f f h(s) (D + F)(1) — (O, + V)t — 5))* dsdx,
0 t

(3.38)
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where M is some positive constant. As a result, we have
t
Mf E(s)ds < F(0) — F(1)
0
]‘41 t +00 5
+ > h(t + 5) (1 + |(D, + W)ox($)|ds)" drds (3.39)
0

< F) + Ef ho(s)ds.
2 Jo

Hence, taking /m = max {F jff), %}} we established (3.37). O

4. Decay result

In this section, we state and prove our decay result. To begin, we define

' 1
u() := —f h’(s)f (D, +P)(t) — (D, + P)(r — s)lzdxds < - E'(1), “4.1)
0 0
and let o
A1) = q(t)f f (@, + P)(0) — (D, + ¥)(t — 5)|*dxds,
0o Jo
where
Aty <1, Vr>0. 4.2)
Thus, by (3.37) we have
4o il L
q(t) := o <1 and 0<gg< mln{l, (4ﬁ1)} 4.3)

Lemma 4.1. Suppose (D) and (D;) hold, then for all t > 0,

t 1
f h(s) f (D, +P)(t) — (D, +P)(¢ — 5)Pdxds < — O (CI(’)“(I)) : (4.4)
0 0 (f) ¥(0)
where Q is as defined in Remark 2.3.
Proof. See [17] for the proof of (4.4). O

Our main result is the theorem below:

Theorem 4.1. Assume that the conditions (D) and (D,) hold. Then, we have the following decay
result. For all 0 < s < t and for strictly positive constant C,

E(O)) o [C + Jy £5)04 [ Sa(s)ho(5)] ds,] ws)

(s) [ €(s)ds

where q(s), ho(s), Q2(s), and Q4(s) are functions defined in Lemma 3.2 and Eq (2.7).

E(@) < (
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Proof. For the proof, we first combine Egs (3.5), (3.25), (4.3), and (4.4). So, for some M > 0 and for
any ¢ > 0, we have

, ¢ —1(q)u()
L'(t) < -ME() + %Q ( ) ) + c1hy(1). (4.6)
For gy < r, define a functional F; as
= E@®)q()
F(t):=Q (80 £0) )£(t).
Then, ¥ ~ E, and by noting that @N >0,q <0and E’ <0, it follows from (4.6) that
v (QEY ()= E()q(t) —( E@Mq@®)) ,
F'(1) = & E0) o (60 E0) )L(I) +0 (80 E0) )L 0]
— [ E()q(?) c1 = E@q@)\ =1 (q®Ou)
= ME0e (‘9° E(0) ) “an? (80 E0) )Q ( £ ) @7
— E
+ c1ho()Q (80%?))-
Now, let é* be the convex conjugate of Q [19], then
0(9)=s(0)"(s)-2[@)"(®]. if s€0.Q ] (4.8)
and Q* satisfies the following Young inequality
AB<Q (A)+0(B), ifAe(0,0 )], Be(0,r. (4.9)
So, with A = Q' (89 2242) and B = 0 (422), and using (2.2) and (4.7)~(4.9), we get
, — [ E(0)q(1) c1 =+ (=  E@®q(®) u()q(1)
0= MEDC (80 E(0) ) OR (Q (80 E(0) )) T (W)
—( E
+ eh(0 (80 g)q“))
© (4.10)
— [ E()q(?) E@t)—( E()q() u()q(1) '
= MEDC (80 ) ) T (80 0 ) i ( £0) )
— E
+ c1ho(H)Q (So%)-
For simplicity, let us use 0= 0. So, multiply (4.10) by &(¢) and use (4.1) and & Egzggz) < r. Also, with
, ( Eq() E@®) [ E@q@)
EOF (1) < —MEMEMQ (80 E0) )+le(t)8O%Q (80 E0) )

E
+ et)g() + erho(DEDQ (80 (’)qm)

E(0)
E()q(1)
E(0)

E
< ~(ME(0) - clso>§(r)%g' (80

E(0q() )
E©0) )

) — ClEl(l')
+ c1&Oho(NQ’ (80
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Recalling the definition of O, and choosing &y small enough, we obtain;

E(7) E(1)q(1) [ E@®)q(D)
F1(t) < =D& (E(O)) o (8ow) + c1E(Dho(H) 0 (8ow) win
_ 80, (E@q@) (. E(Mg() '
= 0? ( E(0) ) Hadnh®e (‘90 E(0) )
for some b > 0 and for all € R*, where | = £F + cE ~ E, satisfying for some ay, @; > 0.
a1 F1(t) < E@) < axF (D). (4.12)

Moreover, since Q5(1) = Q'(got) + &tQ”(gpt), using the strict convexity of Q on (0,r], we find
that Q(r), 0>(1) > 0 on (0,1]. Applying the inequality (4.9) on the the last term in (4.11) with

A= (‘90 Eé’?—é’i’)), B =[S ho(1)], we obtain

B Bl e e e ]

EO0) ) 40 E(0)
E(0q(1)
%Q3(Q(o o) )) %Q{ q(r)hoa)]

d ( EOqO\( (. EDq@)

—Q4[ Lg(0)ho(0)

q(1)
E(t)q(t)
<EQ2( E(O)) BQ4[ q(l)ho(t)]

Now, combining (4.11), (4.13), and taking d small enough, we obtain
(1) 0 ( E(l)q(t)) dé(1) 0 (8 E(l)q(t))

F(t) < —b=—

a0 >\ "E©0) qt) ~2\"" E(0)
| dE)
o Q4( a )ho(f)) (4.14)
0 E(q(n)\ = dér)
16Q2( o) ) + 0 ( (r)hom)
where by = b —d > 0. (gE)(?) is decreasing since £’ < 0 and ¢’ < 0. Also, since Q, is increasing, we
have, for0 <t < T,
E(T)q(T) E(1)q(1)
Qz( E00) )SQz( E(0) ) 4.15)
Putting (4.14) into (4.15) and multiplying by ¢(7), we get
E(T)g(T
dOF () + blf(an( ( Ezgg )) a0 (S ghn(0). .16)
since ¢’ < 0, thenforall0 <7< T,
/ E(T)q(T) ¢l
(q(t)ﬁ) ) + blf(t)Qz( e ) < dEQ; (EQ(I)ho(f))- 4.17)
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Integrating (4.17) over [0, T'] and using g(0) = 1, we get

)ff()d<

oo, $<z>Q4( q(tyho(t)) dt,

f ED)0s q(r)hom)

(29 [T e004 (Saho®) dr,

which yields
(€ [ E00 (Lahy() dr,

where C = max {1, ===

(4.18)

(4.19)

(4.20)

(4.21)

O

—4_ wherev > 1anda € (0,v—1). We take () = va~

Example 4.2. For our example, we let h(t) =
and Q1) = £, so Q'(t) = apt>.

We will discuss two cases:

Case 1: If my < 1 + ||(®, + ¥)sll* < my, then, we have the following:

v+1
02(1) = axt™,

az(1 + 7 < ho(d) < ag(1 + )71,

yv+1
Q4(0) = ayt™,

T
Ci
—q(Hh d 00,
j; f(f)Q4(dq(t) o(t)) t<+
€+ [ €004 (Sa@ho(n) dr

] < (15T_($),

1+1In(1+7),

( 1+ T)—v+2+r,

1 +In(1 + T))r—<v+”1>, y=2,

(1 +T) =251,

Hence, forv > 2 or V2 < v <2, we have limy_, ... E(T) =

AIMS Mathematics

(4.22)

(4.23)

(4.24)

Volume 9, Issue 6, 16260-16279.



16277

Case 2: If mp(1 + 1) < 1 + ||[(@, + P)l> < m(1 + 1), where O < r < v — 1, then we have the
following:
Cl3(1 +t)—v+l+r < ho(l’) < Cl4(1 +t)—v+1+r’

T 4.25)
C
f isQIeon (jq(t)ho(t))dt < +o00,
0

1+In(1+T), v—r=2

q—; <agy 2, v—r>2, (4.26)
4(T) A+T)7"7, 1<yv-r<2.
Then
1 +1In(1 + T))r—w“ﬁ, y—r=2
E(T) <ary 17-Gov, y—r>2 (4.27)
(1 + T) 02571, l<v-r<2.

Thus forv —r > 2 or %(r + Vr2+4r+8) <v<r+2, wehave limy_, ., E(T) = 0.

5. Conclusions

In this work, we have shown that the Timoshenko beam system with infinite memory acting on
the shear force and heat conduction governed by Fourier law acting on the bending moment can
be stabilized without any additional conditions on coefficients parameters. We believe with some
modification, the same result can be achieve if the heat conduction is governed by Maxwell-Cattaneo
or Gurtin-Pipkin heat conductions.
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