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involve simultaneously considering multiple, often conflicting objectives in transportation planning. 

Unlike traditional transportation problems, which typically focus on minimizing a single objective such as 

cost or distance, MOTPs aim to balance multiple objectives to find the optimal solution. These problems 

appear in various real-world applications such as logistics, supply chain management, and transportation, 

where decision-makers need to consider multiple criteria when designing transportation networks, routing 

vehicles, or scheduling deliveries. The primary challenge lies in the uncertainty in real-world transportation 

scenarios, where logistics involve factors beyond cost and distance. We investigated a multi-choice solid 

fractional multi-objective transportation problem (MCSF-MOTP) based on supply, demand, and 

conveyance capacity, where the coefficients of the objective functions were of the multi-choice type due to 

uncertainty. To address this uncertainty, the proposed model employed the Newton divided difference 

interpolation polynomial method, and the suitability of this model was validated through a numerical 

illustration employing a ranking approach. 
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1. Introduction 

The primary and most notable application of linear programming problems is in the field of 

transportation [25]. It has a wide range of applications in inventory control, supply management, 

logistics systems, and production planning, among other areas. The dimensions of the classic 

transportation problem are cost, supply, and demand. However, in light of the current intensity of 

market rivalry, it is conceivable that the criteria may not be articulated with utmost precision. The price 

of the product may fluctuate periodically or be contingent upon the manufacturing process. 

Furthermore, the lack of relevant information on the shipment of products may result in an uncertain 

and unclear relationship between supply and demand. In response to these factors and with the aim of 

addressing indeterminate data, [28] established the concept of fuzziness. 

Decision-making is of paramount importance in several disciplines such as Economics, 

Psychology, Philosophy, Mathematics, and Statistics. The indispensability of transportation as a 

component of distribution networks must be recognized. The primary goal of the transportation 

problem (TP) is to minimize the cost associated with the movement of commodities from producers to 

consumers, hence facilitating the fulfillment of customer requests by manufacturers. The transportation 

problem (TP) involves considerations of price, supply, and demand. Goods can be transported from 

origins to destinations using various modes of transportation within a transportation system, enabling 

cost savings and meeting deadlines. The first foundational theoretical principles (TPs) were formulated 

by Hitchcock [12] and subsequently extensively debated by several writers, as documented in the 

literature. 

The solid transportation problem (STP), also known as the three-dimensional TP, is an enhanced 

iteration of the renowned TP first formulated by Haley [10]. The primary goal of the process known 

as STP is to efficiently convey uniform commodities from their point of origin to their destination 

using transportation methods in order to decrease the overall expense of transportation. Key 

components of a three-dimensional TP include product availability at source locations, demand at 

destination locations, and the capacity of transportation modes (such as trucks, cargo flights, goods 

trains, and ships) used to transport products from sources to destinations. The parameters of the 

problem are non-deterministic in reality owing to the existence of several elements such as machine 

breakdowns and labor problems in production, market circumstances, road conditions, and weather 

conditions during transportation. Random variables are often used to characterize these uncertainties, 

especially those that are stochastic. When developing a practical SPP (Shortest Path Problem), it is 

crucial to consider optimizing many objectives, such as reducing transportation time, limiting loss 

during transit, and lowering transportation expenses. We must consider a stochastic multi-objective 

STP based on this understanding. The STP has great importance as a research field, both in terms of 

theory and practical application. Many scholars in this discipline have made significant contributions. 

The study presents an expanded modi-method to solve a multi-index transportation problem involving 

three indices [10]. 

A pressing problem in the transportation industry that requires immediate attention and resolution 

is the solid transportation problem. Inadequate transportation infrastructure can lead to delays, 

congestion, or limited connectivity. For example, if a city’s public transportation infrastructure is 

antiquated and incapable of accommodating the increasing demand, the city may face a significant 

transportation problem. Consequently, travelers may encounter crowded buses, prolonged waiting 

times, and feelings of annoyance. In order to facilitate the seamless and effective transportation of 
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people and goods, addressing substantial transportation challenges requires meticulous strategic 

planning, substantial investments in infrastructure development, and proficient administration. 

Most real-world decision-making problems are often represented using several options. Multi-

choice optimization approaches have become more significant in several domains, such as technology, 

business, transportation, and military applications. The price indices are the objective function’s focus. 

In this context, the variable 𝑐𝑖𝑗𝑘 denotes the cost associated with transporting a unit of production from 

a specific source 𝑖  to a designated destination 𝑗  using a particular mode of conveyance 𝑘 . We 

propose using a multiple-choice format for the cost coefficients of the goal function in the 

transportation problem, in response to the increase in fuel costs and other important factors. To 

accurately capture market price fluctuations for all goods, multi-choice supply and demand factors are 

essential. Healy [11] first created multiple choice programming as a technique for tackling linear 

programming problems with zero-one variables. 

Mathematicians and computer scientists use Newton’s split difference interpolation as a 

computational method to estimate a function based on a set of data points. This method enables the 

generation of a polynomial function that interpolates the given data points. The use of Newton’s 

Divided Difference Interpolation allows for the resolution of a multi-choice fractional stochastic 

transportation problem by converting it into a deterministic model [1]. The MCFS-MOTPs may be 

solved by using a technique that involves interpolating multi-choice parameters, changing probabilistic 

constraints, linearizing the problem, and applying fuzzy goal programming and the ϵ-constraint method. 

This approach was proposed by Sayed and Baky [24]. The MOTPs may be effectively addressed by 

treating it as a chance-constrained programming problem and using the global criteria technique and 

fuzzy goal programming methodology. This approach allows for the identification of optimal solutions 

within a realistic timeframe [6]. A novel methodology for analysing Shortest Path Problems (SPP) is 

proposed, which integrates multi-choice programming with stochastic programming. Additionally, a 

transformation technique is used to identify the best solution [22]. The study conducted by Nomani et 

al. [19] proposes a weighted goal programming method to address multi-objective transportation 

challenges. This methodology allows for the generation of compromise solutions that align with the 

decision-maker's preferences. The authors, Joshi et al. [13] propose a weighted goal programming 

method to tackle multi-objective transportation problems. This technique aims to identify compromise 

solutions based on the decision-maker’s preferences. The authors include a numerical example to 

demonstrate the use of their method. 

The study by Pradhan and Biswal [20] proposes an approach for solving linear programming models 

with multi-choice parameters. This technique involves changing the model into a non-linear mixed integer 

probabilistic programming problem and using chance constrained programming. The article presents a 

method for resolving a challenging transportation problem using an objective function that is the quotient 

of two linear functions [3]. The new goal programming method handles “more/better” and “less/better” 

aspirations in complex decision problems [4]. The authors propose an alternative method to formulate 

multi-choice aspiration levels in goal programming, which is easier to understand and can be solved by 

common linear programming packages [5]. The use of an innovative conic scalarizing function in a recently 

introduced multi-choice goal programming formulation enables improved adaptability, effectiveness, and 

dependability in the decision-making process [26]. The researchers address the optimization of 

transportation problem that include uncertainty and various objectives, specifically focusing on the ratios 

of costs. They the use of techniques such as weighted sum and fuzzy programming to identify the most 

favourable trade-offs [23]. They use neutrosophic sets to represent uncertain multi-objective transportation 
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problems and utilizes neutrosophic compromise programming to determine optimum solutions [14]. A 

novel approach addresses multi-objective transportation problem by considering goals as ratios of linear 

functions, such as cost per unit carried. This technique builds upon earlier research and has been confirmed 

by numerical examples provided by Joshi and Saini [15]. The problem of uncertainty in supply and demand 

for transportation is addressed using a fractional target (cost per unit) and utilizing a range-based strategy 

for generating robust decisions [16]. 

The Solid Fractional Transportation Problem (SFTP) is an extended formulation that incorporates the 

features of both the FTP and the STP. Within the context of SFTP, each item being carried is evaluated 

based on three properties: the source, the destination, and a third feature often known as the “mode of 

transport” or “conveyance”. The third feature might denote the mode or means used for conveying the 

merchandise, so introducing an additional level of intricacy to the problem. Quadratic fractional solid 

transportation problem was proposed by Basu and Acharya [2]. The SFTP entails optimizing the allocation 

of items from different suppliers to diverse customers, taking into account the fractional amounts and the 

unique transportation method for each item. This problem scenario arises in situations when things may be 

separated into fractional pieces and the transportation procedure requires several techniques, routes, or 

vehicles. To solve the SFTP, one must address both fractional amounts and the method of transport’s 

associated characteristic. Advanced optimization approaches, such as mixed-integer linear programming 

or specialized algorithms, are often used to discover optimum or nearly optimal solutions. The SFTP has 

practical applications in many real-world situations, including Multi-Modal Transportation, Supply Chain 

with Divisible Goods, Logistics Planning, Emergency Response, and Infrastructure Development. The 

inclusion of fractional numbers and the mode of transport feature in the SFTP (Figure 1) demonstrates the 

complexities of real-world transportation situations, resulting in a more precise and complete method for 

allocating and distributing resources. 

 

 

Figure 1. Tabular representation of supply (𝑚), demand (𝑛), and conveyance (𝑙). 
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In order to solve the SFTP, a minimum of 𝑚𝑛𝑙 − (𝑚 − 1)(𝑛 − 1)(𝑙 − 1)  variables 𝑥𝑖𝑗𝑘 

(Figure 2) must have nonzero values in a basic feasible solution. While a fundamental feasible solution 

to the transportation problem is always present, it may not always be the case for the solid problem. 

However, it can be demonstrated that there always a solution with the appropriate number of nonzero 

variables that satisfies all constrains except for the nonnegative ones. Such a solution will be termed a 

‘basic’ solution. Only 𝑚𝑛 + 𝑛𝑙 + 𝑙𝑚 −𝑚 − 𝑛 − 𝑙 + 1 equations (nonzero 𝑥𝑖𝑗𝑘’s) so 𝑚 + 𝑛 + 𝑙 −

1 are set at zero [10]. 

 

Figure 2. Tabular representation of SFTP by visualizing the cost 𝑐𝑖𝑗𝑘 , profit 𝑑𝑖𝑗𝑘  and 

decision variables 𝑥𝑖𝑗𝑘. 

The proposed method addresses the multi-objective capacitated transportation problem (MOCTP) 

by converting uncertain input data into a deterministic format. The resulting MOCTP is then solved to 

get a compromise solution, as described by Healy [11]. The use of Fuzzy AI in manufacturing enables 

the resolution of decision-making challenges arising from uncertainties in transportation. It produces 

customized solutions with associated confidence levels, facilitating the selection of optimal 

alternatives that satisfy multiple objectives [17]. This method solves fuzzy linear programming 

problems with trapezoidal fuzzy numbers for imprecise data using multi-objective programming with 

different solution approaches [27]. A new fuzzy linear programming method with trapezoidal fuzzy 

numbers considers decision-maker’ risk tolerance and solves problems using goal programming [7]. 

Furthermore, a two-stage method for fuzzy multi-objective linear programs (such as engineering 

project selection) uses fuzzy numbers and TOPSIS to find the best project portfolio while considering 

decision-maker preferences [8]. This research proposes a new method to address uncertainties in 

transportation problems with multiple objectives [18]. 

We delved into the multi-choice solid fractional multi-objective transportation problem (MCSF-

MOTP) with the factors supply, demand, and conveyance capacity. The coefficients of the objective 

functions are of the multi-choice type due to inherent uncertainty. To mitigate this uncertainty, the 

proposed model utilizes the Newton divided difference interpolation polynomial method to condense 
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the multi-option parameters into a single choice. This ensures that the final solution either achieves the 

ideal or approaches it as closely as possible. Furthermore, we conduct a comparison with other studies 

to demonstrate the superiority of our model, which exhibits significant proximity to the ideal value. 

The effectiveness of this model is validated through a numerical illustration employing a ranking 

approach. Comparison of the approaches are given in Table 1. 

The paper is structured in the following manner: Section 1 provides a comprehensive overview 

of the relevant literature and serves as an introduction. The fundamental terms relevant to this study 

are presented in Section 2. The notation of this article is discussed in Section 3. The comprehensive 

problem statement is outlined in Section 4. The solution methodology for the given issue is shown in 

Section 5. Section 6 introduces a novel approach solution process. Section 7 assesses the effectiveness 

of the suggested solution approach using a series of numerical examples. Section 8 explores the 

theoretical and practical consequences of the suggested approach. The work is concluded in Section 9, 

which also provides suggestions for future research topics. 

Table 1. Comparison of the approach to the present models. 

Reference 

(year) 

Problem type Parameter 

Multi-

choice 

Multi-

objective 

Weight 

assign to 

each 

objective 

Ranking Methodology 

Solid Fractional 
Supply and 

demand 
Conveyance 

Ustun 

(2012) 
  ✓  ✓    

Goal programming 

and conic 

scalarizations 

Joshi 

(2022) 
  ✓   ✓ ✓  

Goal programming 

using weighted sum 

Joshi 

(2022) 
 ✓ ✓   ✓   

The neutrosophic 

theory 

Roy 

(2014) 
✓  ✓ ✓ ✓    Weibull distribution 

Agarwal 

(2020) 
 ✓ ✓  ✓    

Newton’s divided 

difference 

Roy S. K. 

(2023) 
 ✓ ✓  ✓ ✓   

Newton’s divided 

difference 

Joshi 

(2019) 
 ✓ ✓   ✓   Goal programming 

Bhatia 

(1978) 
✓ ✓ ✓ ✓     

Modified 

distribution method 

Joshi 

(2011) 
 ✓ ✓   ✓   Duality theory 

This 

paper 
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Newton’s divided 

difference and 

proposed method 



16037 

 

AIMS Mathematics  Volume 9, Issue 6, 16031–16060. 

2. Basic definitions 

In this section, we present basic definitions of various types of solutions to optimization problems. 

2.1 Optimal solution 

An optimal solution is a result that achieves the best possible outcome based on the given criteria 

or objectives. It is like finding the most favourable answer among all the available choices. 

2.2 Ideal solution 

When a problem involves minimization, the ideal solution is one in which each objective function 

achieves its optimal minimum. 

2.3 Anti-ideal solution 

When a problem involves minimization, the anti-ideal solution is one in which each objective 

function achieves its maximum value. 

2.4 Feasible solution 

A feasible solution to an optimization problem is a set of values for the decision variables that 

satisfies all of the constraints of the problem. 

2.5 Pareto optimal solution 

If the objective function cannot be enhanced without decreasing one or more other objective 

values. A feasible option is referred to as a Pareto optimum solution (Figure 3). 
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Figure 3. Pareto optimal solution. 

3 List of notation used in this study 

In this section, we provide a list of the notation that will be utilized throughout this research, 

ensuring clarity and consistency in our presentation and analysis. 

• 𝑅: number of objective functions. 

• 𝑚: number of supply sources. 

• 𝑛: number of demand destinations. 

• 𝑙: number of conveyances. 

• 𝑥𝑖𝑗𝑘: The number of shipment units from 𝑖𝑡ℎ supply source to 𝑗𝑡ℎ demand destination using 

𝑘𝑡ℎ transportation mode. 

• 𝑍𝑟: 𝑟𝑡ℎ objective function.  

• 𝑐𝑖𝑗𝑘(𝑟): The cost of transporting one unit of the shipment from 𝑖𝑡ℎ supply source to 𝑗𝑡ℎ 

demand destination using 𝑘𝑡ℎ transportation mode of 𝑟𝑡ℎ objective function.  

• 𝑑𝑖𝑗𝑘(𝑟): The profit of transporting one unit of the shipment from 𝑖𝑡ℎ supply source to 𝑗𝑡ℎ 

demand destination using 𝑘𝑡ℎ transportation mode of 𝑟𝑡ℎ objective function.  

• 𝐴𝑗𝑘: Required number of units using 𝑘𝑡ℎ transportation mode to be send to destination 𝑗. 

• 𝐵𝑘𝑖: Required number of units using 𝑘𝑡ℎ  transportation mode to be send from source 𝑖. 
• 𝐸𝑖𝑗:  Number of available units at source 𝑖 demanded by destination 𝑗. 

• 𝑍𝑟
𝑈: Upper value of 𝑟𝑡ℎ objective function. 

• 𝑍𝑟
𝐿: Lower value of 𝑟𝑡ℎ objective function. 

• 𝑈𝑟: Upper bound of the 𝑟𝑡ℎ objective function. 

• 𝐿𝑟:  Lower bound of the 𝑟𝑡ℎ objective function. 

• 𝑔𝑟: the aspiration or target level for the 𝑟𝑡ℎ goal. 

• 𝜂: Satisfaction level of the decision maker. 

• 𝜌: The general deviational variable for all objectives. 
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• 𝜇𝑟(𝑍𝑟(𝑥)): Linear membership function for the 𝑟𝑡ℎ objective function. 

• 𝑊𝑟: The weight assigned to the 𝑟𝑡ℎ objective function. 

• 𝑍𝑟
∗: The ideal objective. 

4 Problem statement 

A transportation company needs to transport its goods from various manufacturing sites to 

different retail locations. In this scenario, where a uniform product is transported from the 𝑖𝑡ℎ 

manufacturing facility to the 𝑗𝑡ℎ  retail store using the 𝑘𝑡ℎ  vehicle, there are 𝑚  manufacturing 

facilities, 𝑛 retail stores, and 𝑙 vehicles. Let 𝑥𝑖𝑗𝑘 represent the quantity of the product in units. 

The mathematical formulation of the problem is as follows, with solid fractional transportation 

cost functions assumed to be of the multi-choice random parameters, meaning their values are not 

always fixed. 

Model 1: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍𝑟 =
∑ ∑ ∑ 𝑐𝑖𝑗𝑘(𝑟)𝑥𝑖𝑗𝑘

𝑙
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1

∑ ∑ ∑ 𝑑𝑖𝑗𝑘(𝑟)𝑥𝑖𝑗𝑘
𝑙
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1

, 

Where 𝑐𝑖𝑗𝑘(𝑟) = (𝑐𝑖𝑗𝑘
1 (𝑟), … , 𝑐𝑖𝑗𝑘

𝑠−1(𝑟)). 

Subject to 

∑ 𝑥𝑖𝑗𝑘 = 𝐴𝑗𝑘
𝑚
𝑖=1 .                                 (1) 

∑ 𝑥𝑖𝑗𝑘 = 𝐵𝑘𝑖
𝑛
𝑗=1 .                                 (2) 

∑ 𝑥𝑖𝑗𝑘 = 𝐸𝑖𝑗
𝑙
𝑘=1 .                                 (3) 

∑ 𝐴𝑗𝑘 =
𝑛
𝑗=1 ∑ 𝐵𝑘𝑖

𝑚
𝑖=1 , ∑ 𝐵𝑘𝑖 =

𝑙
𝑘=1 ∑ 𝐸𝑖𝑗

𝑛
𝑗=1 , ∑ 𝐸𝑖𝑗 =

𝑚
𝑖=1 ∑ 𝐴𝑗𝑘

𝑙
𝑘=1 .           (4) 

∑ ∑ 𝐴𝑗𝑘
𝑙
𝑘=1

𝑛
𝑗=1 = ∑ ∑ 𝐵𝑘𝑖

𝑚
𝑖=1

𝑙
𝑘=1 = ∑ ∑ 𝐸𝑖𝑗

𝑛
𝑗=1

𝑚
𝑖=1 .                 (5) 

𝑥𝑖𝑗𝑘 ≥ 0, ∀ 𝑖, 𝑗, 𝑘.                               (6) 

The MCFS-MOTP is a complex optimization problem encompassing multiple factors in real-

world transportation scenarios. Application of MCFS-MOTP are as follows 

➢ Supply chain management: In supply chain management, the transportation of goods from 

multiple sources to multiple destinations often involves multiple objectives such as cost minimization, 

time minimization, and carbon footprint reduction. The multi-choice solid fractional multi-objective 

transportation problem can help optimize the allocation of goods, considering multiple objectives 

simultaneously. 

• Container shipping: Choosing the most cost-effective and environmentally friendly route for 

containerized goods, considering multiple carriers and partial shipments. 
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• Air cargo transportation: Optimizing air cargo delivery, balancing cost, delivery time, and 

carbon emissions while dealing with discrete aircraft capacity and potentially splitting shipments. 

• Oil and gas pipeline transportation: Choosing optimal pumping schedules and flow rates to 

minimize operational costs and energy consumption while satisfying demand at various delivery points. 

➢ Emergency services planning: During emergencies, such as natural disasters or accidents, 

emergency services need to be efficiently deployed to affected areas. The multi-choice solid fractional 

multi-objective transportation problem can aid in determining the optimal allocation of emergency 

resources, considering factors like response time, cost, and the number of affected individuals. 

➢ Urban transportation planning: In order to enhance urban transportation systems, policymakers 

must take into account various objectives, including the minimization of travel time, the reduction of 

congestion, and the maximization of passenger satisfaction. The multi-choice solid fractional multi-

objective transportation problem can be utilized to optimize the allocation of transportation resources, 

such as buses or trains, in order to achieve these objectives. 

➢ Waste management: Waste disposal and recycling involve transportation of waste materials from 

various collection points to treatment or recycling facilities. The multi-choice solid fractional multi-

objective transportation problem can help in optimizing the transportation routes and selection of 

vehicles to minimize costs, reduce environmental impact, and maximize recycling efficiency. 

➢ Healthcare logistics: Within the healthcare industry, the delivery of medical supplies, blood, 

organs, and drugs frequently serves numerous purposes. The objectives may encompass the 

minimization of transportation expenses, the reduction of delivery duration, and the assurance of the 

quality and safety of the transported goods. The utilization of the multi-choice solid fractional multi-

objective transportation problem can optimize medical logistics and guarantee the efficient distribution 

of healthcare resources. 

These examples illustrate the practical applications of the multi-choice solid fractional multi-

objective transportation problem. The problem’s capacity to concurrently assess several objectives 

renders it a valuable instrument for decision-making and optimization across many industries. 

5 Solutions methodology 

This section outlines the methodology for addressing the transportation problem, which 

encompasses a multitude of solutions and diverse objectives. Initially, the multi-choice parameter 

undergoes modification by the utilization of Newton’s divided difference interpolation. Next, the 

probabilistic restrictions are transformed into their deterministic form by the utilization of the chance 

constrained technique. 

5.1  Newton’s divided difference interpolating polynomial for multi-choice parameters 

The best option is obtained by transforming a multi-choice parameter using Newton’s divided 

difference Interpolation approach. To allow the definition of the interpolating polynomial for each 

choice in a multi-choice parameter, declare an integer variable. Given that there are s possible cost 

alternatives in the current context, the integer variables 𝑤𝑐𝑖𝑗𝑘
𝑡  (𝑡 = 0,1, … , 𝑠 − 1) are employed. 

Every multiple-choice parameter has a unique divided difference that is specified by the 

alternatives that are offered. Using the data provided in Table 2, which outlines the diverse orders of 

divided differences, the Newton’s divided difference (NDD) interpolating polynomial is obtained for 
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the cost parameter 𝑐𝑖𝑗𝑘(𝑟) = (𝑐𝑖𝑗𝑘
1 (𝑟), … , 𝑐𝑖𝑗𝑘

𝑠−1(𝑟))  in Eq (7). The notation 𝑐𝑖𝑗𝑘 = (𝑐𝑖𝑗𝑘
1 , … , 𝑐𝑖𝑗𝑘

𝑠−1) 

will be employed in order to maintain generality. 

Table 2. Divided difference (DD). 

𝑡 𝑤𝑐𝑖𝑗𝑘
𝑡  𝑓𝑐𝑖𝑗𝑘(𝑤𝑐𝑖𝑗𝑘

𝑡 ) First DD Second DD ⋯(𝑠 − 1)𝑡ℎ order DD 

0 𝑤𝑐𝑖𝑗𝑘
0  𝑐𝑖𝑗𝑘

1     

   𝑓[𝑤𝑐𝑖𝑗𝑘
0 , 𝑤𝑐𝑖𝑗𝑘

1 ]   

1 𝑤𝑐𝑖𝑗𝑘
1  𝑐𝑖𝑗𝑘

2   𝑓[𝑤𝑐𝑖𝑗𝑘
0 , 𝑤𝑐𝑖𝑗𝑘

1 , 𝑤𝑐𝑖𝑗𝑘
2 ]  

   𝑓[𝑤𝑐𝑖𝑗𝑘
1 , 𝑤𝑐𝑖𝑗𝑘

2 ]   

2 𝑤𝑐𝑖𝑗𝑘
2  𝑐𝑖𝑗𝑘

3   𝑓[𝑤𝑐𝑖𝑗𝑘
1 , 𝑤𝑐𝑖𝑗𝑘

2 , 𝑤𝑐𝑖𝑗𝑘
3 ]  

   𝑓[𝑤𝑐𝑖𝑗𝑘
2 , 𝑤𝑐𝑖𝑗𝑘

3 ]  𝑓[𝑤𝑐𝑖𝑗𝑘
0 , 𝑤𝑐𝑖𝑗𝑘

1 , … , 𝑤𝑐𝑖𝑗𝑘
𝑠−1] 

3 𝑤𝑐𝑖𝑗𝑘
3  𝑐𝑖𝑗𝑘

4   ⋮  

⋮ ⋮ ⋮ ⋮   

𝑠 − 2 𝑤𝑐𝑖𝑗𝑘
𝑠−2 𝑐𝑖𝑗𝑘

𝑠−2  𝑓[𝑤𝑐𝑖𝑗𝑘
𝑠−3, 𝑤𝑐𝑖𝑗𝑘

𝑠−2, 𝑤𝑐𝑖𝑗𝑘
𝑠−1]  

   𝑓[𝑤𝑐𝑖𝑗𝑘
𝑠−2, 𝑤𝑐𝑖𝑗𝑘

𝑠−1]   

𝑠 − 1 𝑤𝑐𝑖𝑗𝑘
𝑠−1 𝑐𝑖𝑗𝑘

𝑠−1    

Therefore, the interpolating polynomial along with these values is 

𝐹𝑐𝑖𝑗𝑘
𝑟 (𝑤𝑐𝑖𝑗𝑘) = 𝑓[𝑤𝑐𝑖𝑗𝑘

0 ] + (𝑤𝑐𝑖𝑗𝑘 − 𝑤𝑐𝑖𝑗𝑘
0 ) 𝑓 [𝑤𝑐𝑖𝑗𝑘

0 , 𝑤𝑐𝑖𝑗𝑘
1 ] + (𝑤𝑐𝑖𝑗𝑘 − 𝑤𝑐𝑖𝑗𝑘

0 ) (𝑤𝑐𝑖𝑗𝑘 −

𝑤𝑐𝑖𝑗𝑘
1 ) 𝑓 [𝑤𝑐𝑖𝑗𝑘

0 , 𝑤𝑐𝑖𝑗𝑘
1 , 𝑤𝑐𝑖𝑗𝑘

2 ] + (𝑤𝑐𝑖𝑗𝑘 − 𝑤𝑐𝑖𝑗𝑘
0 ) (𝑤𝑐𝑖𝑗𝑘 − 𝑤𝑐𝑖𝑗𝑘

1 )… (𝑤𝑐𝑖𝑗𝑘 −

𝑤𝑐𝑖𝑗𝑘
𝑠−2) 𝑓 [𝑤𝑐𝑖𝑗𝑘

0 , 𝑤𝑐𝑖𝑗𝑘
1 , … , 𝑤𝑐𝑖𝑗𝑘

𝑠−1],                             (7) 

where 

𝑓 [𝑤𝑐𝑖𝑗𝑘
0 , … , 𝑤𝑐𝑖𝑗𝑘

𝑡 ] =
𝑓[𝑤𝑐𝑖𝑗𝑘

1 ,…,𝑤𝑐𝑖𝑗𝑘
𝑡 ]−𝑓[𝑤𝑐𝑖𝑗𝑘

0 ,…,𝑤𝑐𝑖𝑗𝑘
𝑡−1 ]

𝑤𝑐𝑖𝑗𝑘
𝑡 −𝑤𝑐𝑖𝑗𝑘

0 .                     (8) 

Similarly, for the profit parameter 𝑑𝑖𝑗𝑘, define integer values 𝑦𝑖𝑗𝑘
𝑡  and compute the interpolating 

polynomial. The software replaces the multi-choice parameters with an interpolating polynomial. This 

allows the mathematical model to be formed. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍𝑟 =
∑ ∑ ∑ 𝐹𝑐𝑖𝑗𝑘

𝑟 (𝑤𝑐𝑖𝑗𝑘)𝑥𝑖𝑗𝑘
𝑙
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1

∑ ∑ ∑ 𝐹𝑑𝑖𝑗𝑘
𝑟 (𝑦𝑖𝑗𝑘)𝑥𝑖𝑗𝑘

𝑙
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1

.                       (9) 

Subject to the constraints (1) to (6). 

5.2  Fuzzy linear membership function [9] 

The fuzzy linear membership function of the MOTP measures how well a given solution fits the 
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objective functions. Based on the degree of fulfillment or relative relevance of each goal, the 

mathematical function assigns a membership value to each one, which ranges from 0 to 1. It is possible 

to define the fuzzy linear membership function exactly as follows: 

𝜇(𝑥) = (𝑥 − 𝑎)/(𝑏 − 𝑎). 

The membership value of the objective function is denoted as 𝜇(𝑥), where 𝑥 is the value of the 

objective function, and 𝑎 and 𝑏 are the lower and upper bounds, respectively, of the objective function. 

The fuzzy linear membership function measures the degree to which a specific objective function value 

falls within the desired range. Values that are in close proximity to the lower limit exhibit a membership 

value that is nearly 0, indicating a diminished level of contentment. In contrast, values that are closer 

to the upper limit exhibit a membership value that is almost 1, signifying a higher degree of pleasure. 

Intermediate values possess membership values that span from 0 to 1, denoting the degree of 

contentment or importance. The application of the fuzzy linear membership function to each objective 

function in the Multi-Objective Transportation Problem (MOTP) allows decision makers (DMs) to 

assess the degree to which various solutions fulfill their intended results. This enables them to make 

informed assessments by taking into account the specific objectives and their related levels of 

membership. 

The mathematical model may vary depending on the specific problem formulation, as well as the 

objectives and constraints involved. Linear programming, genetic programming, fuzzy programming, 

and evolutionary algorithms can be employed to tackle the multi-objective transportation problem 

(MOTP) and offer optimal or near-optimal solutions that successfully balance the conflicting 

objectives. To successfully navigate the domain of the MOTP, one must use a complex mathematical 

model that incorporates decision factors, goals, and limitations. The model aims to find a compromise 

between reducing the highest possible values and maximizing the closest possible values for each 

objective function as commodities move from their origins to their destinations. 

5.3  Proposed method 

In the context of MOTP, the fuzzy linear membership function, denoted as 𝜇𝑟(𝑍𝑟(𝑥)), establishes 

a connection between the lower bound 𝐿𝑟 and upper bound 𝑈𝑟 of each objective function 𝑍𝑟(𝑥). To 

obtain the upper bound and lower bound value, we have to find the optimum (ideal value) and worst 

(anti ideal) values of the corresponding 𝑍𝑟(𝑥). The determination of the degree of membership or 

satisfaction for a certain solution 𝑥 is based on the given range between 𝐿𝑟 and 𝑈𝑟. 

𝜇𝑟(𝑍𝑟(𝑥)) =

{
 

 
1,                           𝑖𝑓 𝑍𝑟(𝑥) ≤ 𝐿𝑟 ,

𝑈𝑟 − 𝑍𝑟(𝑥)

𝑈𝑟 − 𝐿𝑟
,                   𝑖𝑓 𝐿𝑟 ≤ 𝑍𝑟(𝑥) ≤ 𝑈𝑟

0,                           𝑖𝑓 𝑍𝑟(𝑥) ≥ 𝑈𝑟 ,

, 

whenever 𝐿𝑟 ≠ 𝑈𝑟 , and if 𝐿𝑟 = 𝑈𝑟 , then, 0 ≤ 𝜇𝑟(𝑍𝑟(𝑥)) ≤ 1 ∀ 𝑟, 𝑟 = 1,2, … , 𝑅. 

Within the context of real-world MOTPs, some goals possess a higher level of significance 

compared to others, considering the existing limitations. Although there are several methods that 

provide varied compromise solutions, decision makers (DMs) often have their own distinct priority 

system that is based on individual requirements. Our novel approach not only provides a middle ground 

solution when preferences are not clearly specified, but it also consistently produces outcomes that are 

in line with various desires. Goal weights are used to indicate preferences, facilitating efficient goal 

management throughout the problem-solving process. 
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Various methodologies are documented in the existing body of literature, with a selection of them 

being elaborated upon in Subsection 5.4. These methodologies aim to transform multi-objective 

optimization issues into single-objective optimization problems. The multi-objective optimization 

problem is transformed into a new single-objective transportation problem in the proposed model, with 

the objective being to 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜌′ = ∑
𝜂

𝜌(1−𝑊𝑟)
𝑅
𝑟=1  ,where 𝜌  and 𝜂  represent the general 

deviational variable and the decision maker’s satisfaction level for all objectives, respectively, and 𝑊𝑟 

is the weight assigned to the 𝑟𝑡ℎ objective. The constraints for each objective are converted into 𝑍𝑟
∗ +

𝜌(1−𝑊𝑟)

(𝑍𝑟
𝑈−𝑍𝑟

𝐿)
, where 𝑍𝑟

∗ (the ideal objective) is achieved by solving the optimization problem mentioned 

above for each objective 𝑍𝑟(𝑥), 𝑟 = 1,2, … , 𝑅 regardless of the other objectives. 

The problem with many objectives (9) can be simplified to the single-objective problem as 

follows: 

Model 2: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜌′ = ∑
𝜂

𝜌(1−𝑊𝑟)
𝑅
𝑟=1 . 

Subject to 

𝜂 ≤ 𝜇𝑟(𝑍𝑟(𝑥)), 

∑ ∑ ∑ 𝐹𝑐𝑖𝑗𝑘
𝑟 (𝑤𝑐𝑖𝑗𝑘)𝑥𝑖𝑗𝑘

𝑙
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1

∑ ∑ ∑ 𝐹𝑑𝑖𝑗𝑘
𝑟 (𝑤𝑐𝑖𝑗𝑘)𝑥𝑖𝑗𝑘

𝑙
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1

≤ 𝑍𝑟
∗ +

𝜌(1−𝑊𝑟)

(𝑍𝑟
𝑈−𝑍𝑟

𝐿)
, 

∑ 𝑥𝑖𝑗𝑘 = 𝐴𝑗𝑘
𝑚
𝑖=1 , 

∑ 𝑥𝑖𝑗𝑘 = 𝐵𝑘𝑖
𝑛
𝑗=1 , 

∑ 𝑥𝑖𝑗𝑘 = 𝐸𝑖𝑗
𝑙
𝑘=1 , 

0 ≤ 𝜂 ≤ 1,  𝑥𝑖𝑗𝑘 ≥ 0, ∀ 𝑖, 𝑗, 𝑘, 𝑟, 

∑ 𝑊𝑟 = 1, 0 ≤ 𝑊𝑟 ≤ 1, 𝑟 = 1,2, … ,
𝑅
𝑟=1 𝑅. 

Instead of utilizing a deviational variable, we have implemented a deviational function 𝜌(1 −
𝑊𝑟) in this model. However, it is possible to argue that the weights (𝑊𝑟) allocated to the 𝑟𝑡ℎ objective 

are determined by multiplying (1 −𝑊𝑟) by 𝜌. However, it should be noted that a higher value of 𝑊𝑟 

in this function will lead to a lower value of the deviational function. By allocating a higher weight, 

we will bring our objective closer to the ideal objective. This method can identify a mutually agreeable 

solution without any bias, as well as in cases where preferences are explicitly stated. Based on the 

aforementioned analysis, it can be inferred that this approach is universally applicable to many forms 

of multi-objective optimization problems. 

This model introduces a factor 
1

(𝑍𝑟
𝑈−𝑍𝑟

𝐿)
 in addition to the current 𝜌(1 −𝑊𝑟). The variables 𝑍𝑟

𝑈 

and 𝑍𝑟
𝐿 denote the upper and lower limits within which the compromised solution will be situated. 

The solution must not surpass this specified range. The optimum allocation can be used to obtain this 

range for a rth aim. The upper bound, denoted as max, is achieved by substituting the allocation of 

other objectives into the 𝑟𝑡ℎ objective. On the other hand, the lower bound, represented by the lower 

bound, corresponds to the ideal solution 𝑍𝑟
∗. 

This underscores the necessity of setting different solutions in order of priority due to the wide 
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variety of approaches available to deal with multi-objective transportation problems. To address this 

problem, a tool that facilitates the assessment and choice of the best course of action must be used. It is 

advantageous to use the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [21]. 

The TOPSIS approach facilitates the ranking of several methods by evaluating the performance of their 

optimum solutions. Within this particular framework, the alternatives represent the most favourable 

resolutions, while the criteria correspond to the objective functions. Essentially, TOPSIS assists in 

identifying the most efficient technique for attaining optimum solutions to the given challenge. 

5.4 Other approaches for solving the MCSF-MOTP 

Goal programming and improved multi-choice goal programming are used to address the Multiple 

Objective Traveling Salesman Problem (MOTP), and their definitions are provided thereafter. 

5.4.1 Goal programming (GP) approach [4] 

Now, let us quickly examine the goal programming strategy to solve MC-MOTP. Additionally, 

let 𝑑𝑟
+ = 𝑚𝑎𝑥(0, 𝑍𝑟 − 𝑔𝑟)  represent positive deviations and 𝑑𝑟

− = 𝑚𝑎𝑥(0, 𝑔𝑟 − 𝑍𝑟)  represent 

negative deviations associated with the 𝑟𝑡ℎ aim of the objective function. The mathematical model is 

defined as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑊𝑟(𝑑𝑟
+𝑅

𝑟=1 + 𝑑𝑟
−). 

Subject to 

𝑍𝑟(𝑥) − 𝑑𝑟
+ + 𝑑𝑟

− = 𝑦𝑟 (𝑟 = 1,2, … , 𝑅), 

𝑔𝑟,𝑚𝑖𝑛 ≤ 𝑦𝑟 ≤ 𝑔𝑟,𝑚𝑎𝑥 (𝑟 = 1,2,… , 𝑅), 

𝑑𝑟
+, 𝑑𝑟

− ≥ 0 (𝑟 = 1,2, … , 𝑅), 

and the constraints (1) to (6). 

The 𝑟𝑡ℎ  aspiration level, 𝑦𝑟 , is a continuous variable that falls between the upper bound 

(𝑔𝑟,𝑚𝑎𝑥) and lower bound (𝑔𝑟,𝑚𝑖𝑛). 

5.4.2 Revised multi-choice goal programming (RMCGP) approach [5] 

The Revised multi-choice goal programming approach is implemented as a solution to address 

the MOTP by assuming that the objective functions take into account various objectives, which will 

be referred to as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ [𝑊𝑟(𝑑𝑟
+𝑅

𝑟=1 + 𝑑𝑟
−) + 𝛼𝑟(𝑒𝑟

+ + 𝑒𝑟
−)]. 

Subject to 

𝑍𝑟(𝑥) − 𝑑𝑟
+ + 𝑑𝑟

− = 𝑦𝑟 (𝑟 = 1,2, … , 𝑅), 

𝑦𝑟 − 𝑒𝑟
+ + 𝑒𝑟

− = 𝑔𝑟,𝑚𝑎𝑥 𝑜𝑟 𝑔𝑟,𝑚𝑖𝑛 (𝑟 = 1,2,… , 𝑅), 

𝑔𝑟,𝑚𝑖𝑛 ≤ 𝑦𝑟 ≤ 𝑔𝑟,𝑚𝑎𝑥 (𝑟 = 1,2,… , 𝑅), 
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𝑑𝑟
+, 𝑑𝑟

−, 𝑒𝑟
+, 𝑒𝑟

− ≥ 0 (𝑟 = 1,2, … , 𝑅), 

and the constraints (1) to (6). 

Here, 𝑒𝑟
+ and 𝑒𝑟

− represent positive and negative deviations associated with the 𝑟𝑡ℎ objective 

of |𝑦𝑟 − 𝑔𝑟,𝑚𝑎𝑥|, while 𝛼𝑟 denotes the weight assigned to the total of the deviations of |𝑦𝑟 − 𝑔𝑟,𝑚𝑎𝑥|. 

5.4.3 Conic scalarization approach (CSA) [26] 

Mathematical formulation of CSA is given by 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑ [(𝑊𝑟 + 𝛽)𝑑𝑟
+𝑅

𝑟=1 + (𝛽 −𝑊𝑟)𝑑𝑟
−]  

Subject to 

𝑍𝑟(𝑥) − 𝑑𝑟
+ + 𝑑𝑟

− = 𝑦𝑟   (𝑟 = 1,2,… , 𝑅),  

𝑔𝑟,𝑚𝑖𝑛 ≤ 𝑦𝑟 ≤ 𝑔𝑟,𝑚𝑎𝑥  (𝑟 = 1,2, … , 𝑅),  

𝑑𝑟
+, 𝑑𝑟

− ≥ 0  (𝑟 = 1,2, … , 𝑅), 𝑊𝑟 , 𝛽 ∈ 𝑊, 

and the constraints (1) to (6). 

5.4.4 Weighted sum method (WSM) 

The approach of the weighted sum is often used to solve a Multiple Objective Linear 

Transportation Problem (MOLTP), yielding diverse outcomes based on the assigned weights. The 

fundamental concept of this approach is assigning a non-negative weight, denoted as 𝑊𝑟 , to each 

objective function 𝑍𝑟 . The aim is to minimize the new objective function, represented as 

∑ 𝑊𝑟
𝑅
𝑟=1 𝑍𝑟(𝑥), while considering the constraints of the task. While this strategy may be user-friendly, 

it is crucial to pre-determine the weights that the decision maker (DM) will apply, since they 

significantly impact the outcome. The application of the weighted sum approach results in the 

following normalized single-objective optimization problem: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = 𝑊1𝑍1 +𝑊2𝑍2 +⋯+𝑊𝑅𝑍𝑅. 

Subject to: 

∑ 𝑥𝑖𝑗𝑘 = 𝐴𝑗𝑘
𝑚
𝑖=1 , 

∑ 𝑥𝑖𝑗𝑘 = 𝐵𝑘𝑖
𝑛
𝑗=1 , 

∑ 𝑥𝑖𝑗𝑘 = 𝐸𝑖𝑗
𝑙
𝑘=1 , 

𝑥𝑖𝑗𝑘 ≥ 0 , ∀ 𝑖, 𝑗, 𝑘. 

The weights 𝑊𝑟 , 𝑟 = 1,2, … , 𝑅 associated with the objective function must meet the following 

requirements. ∑ 𝑊𝑟 = 1, 0 ≤ 𝑊𝑟 ≤ 1, 𝑟 = 1,2, … ,
𝑅
𝑟=1 𝑅. Using the aforementioned approach, distinct 

solution points are derived for varying weights, which accurately represent the decision-maker’s 

preferences. This approach becomes ineffective when the decision maker lacks knowledge or 

understanding of the individual’s preferences. 
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6 Proposed model solution process 

Step by step procedure of the proposed algorithm is as follows (Figure 4): 

 

Figure 4. Flow chart for the proposed method. 
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Step 1: Apply the Newton’s divided difference formula to transform the Multichoice parameters 

into a single choice. 

Step 2: Construct the MCSF-MOTP by using the single option parameter obtained from step 1. 

Step 3: Optimize the MCSF-MOTP treating it as a single goal transportation problem, without 

considering any other objectives. Perform this process 𝑅 times for each of the 𝑅 goals. If the 

solution is identical, proceed to step 7 if not proceed to step 4.  

Step 4: Compute the linear membership function, denoted as 𝜇𝑟(𝑍𝑟(𝑥)) for the 𝑟𝑡ℎ objective 

function. 

Step 5: Assign a distinct weight to each target to determine its level of importance. The weight 

assigned to this factor influences the decision-making process in order to align with the priorities 

of the DMs. 

Step 6: Using the model 2 given in Section 5.3, transform the imprecise model that was created in 

Step 3 into a precise model. 

Step 7: Show the decision makers the possible solution. Continue to Step 8 if the DM is satisfied. 

If not, go back to Steps 5 and continue assessing each goal until a compromise is struck.  

Step 8: Utilize the TOPSIS approach to assess solutions and get a ranked list of optimal alternatives 

for various transportation problem. 

Step 9: Stop. 

7 Numerical example 

In this part, we use our suggested approach to demonstrate the following MCSF-MOTP instances. 

Consider the following problem (Tables 3 and 4) with integer variables 𝑤𝑖𝑗𝑘, 𝑦𝑖𝑗𝑘, 𝑢𝑖𝑗𝑘 , and 

𝑣𝑖𝑗𝑘 related to 𝑐𝑖𝑗𝑘 and 𝑑𝑖𝑗𝑘 for the first and second objective function 𝑍1 and 𝑍2, respectively. The 

mathematical formulation of the numerical example is given in the appendix. 

 



16048 

AIMS Mathematics  Volume 9, Issue 6, 16031–16060. 

 Table 3. Transportation cost 𝑐𝑖𝑗𝑘 for first and second objective functions.   

 Eij j = 1 j = 2 j = 3 j = 4 Bki 

i

= 1 

k

= 1 

c111(1)

= {15,18, 

20} 

c111(2)

= {11,13, 

15} 

 

c121(1)

= {15,16, 

18,19} 

c121(2)

= {15,16} 
 

c131(1)

= {25,26, 

27} 

c131(2)

= {14,15, 

16,17,18} 

 

c141(1)

= {19,21, 

25} 

c141(2)

= {13,16, 

18} 

 
B11

= 6 
 

k

= 2 E11 = 6 

c112(1)

= {14,17, 

19,22} 

c111(2)

= {13,15, 

16,17} 

E12 = 4 

c122(1)

= {12,15, 

19} 

c122(2)

= {10,13, 

15} 

E13 = 5 
c132(1)

= {28,29} 

c132(2)

= {12,16, 

18,19} 

E14 = 6 

c142(1)

= {10,12, 

13} 

c142(2)

= {20,21, 

23,26,29} 

 
B21

= 15 

i

= 2 

k

= 1 

c211(1)

= {16,19, 

22} 

c211(2)

= {19,21, 

23,25} 

 

c221(1)

= {25,27, 

28,30} 

c221(2)

= {15,18, 

20} 

 
c231(1)

= {19,20} 

c231(2)

= {19,20} 
 

c241(1)

= {23,29, 

31} 

c241(2)

= {27,30} 
 

B12

= 13 
 

k

= 2 E21 = 5 

c212(1)

= {11,18 

, 20} 

c212(2)

= {18,19} 
E22 = 7 

c222(1)

= {20,21, 

22,25} 

c222(2)

= {22,25, 

26,28} 

E23 = 4 
c232(1)

= {19,20} 

c232(2)

= {18,19, 

20} 

E24 = 6 

c242(1)

= {18,19, 

21} 

c242(2)

= {13,16, 

18} 

 
B22

= 9 

i

= 3 

k

= 1 

c311(1)

= {9,10, 

11} 

c311(2)

= {31,35} 
 

c321(1)

= {16,17} 

c321(2)

= {25,27, 

29,30} 

 

c331(1)

= {11,13, 

17} 

c331(2)

= {26,29} 
 

c341(1)

= {15,19, 

22} 

c341(2)

= {22,24, 

25} 

 
B13

= 15 
 

k

= 2 E31 = 7 

c312(1)

= {20,21, 

23,26,29} 

c312(2)

= {20,21, 

22,25} 

E32 = 4 

c322(1)

= {18,19, 

21} 

c322(2)

= {15,17, 

19} 

E33 = 7 
c332(1)

= {14,16} 

c332(2)

= {26,29} 
E34 = 9 

c342(1)

= {14,16, 

17} 

c342(2)

= {25,32, 

33} 

 
B23

= 12 

i

= 4 

k

= 1 
c411(1)

= {11,15} 

c411(2)

= {29,30, 

32} 

 

c421(1)

= {16,17 

, 19} 

c421(2)

= {28,30} 
 

c431(1)

= {25,29, 

32} 

c431(2)

= {20,21, 

25} 

 

c441(1)

= {12,18, 

22} 

c441(2)

= {15,17 

, 21} 

 
B14

= 6 
 

k

= 2 E41 = 3 

c412(1)

= {19,23, 

25} 

c412(2)

= {32,34} 
E42 = 5 

c422(1)

= {15,18, 

20,24} 

c422(2)

= {23,25, 

28} 

E43 = 3 
c432(1)

= {25,27} 

c432(2)

= {12,15} 
E44 = 1 

c442(1)

= {16,19, 

21,22,25} 

c442(2)

= {13,15, 

19} 

 
B24

= 6 

Ajk 
A11 = 15   A21 = 8   A31 = 11   A41 = 6     

 A12 = 6   A22 = 12   A32 = 8   A42 = 16    
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Table 4. Transportation profit 𝑑𝑖𝑗𝑘 for first and second objective functions. 

 𝐸𝑖𝑗 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝐵𝑘𝑖 

𝑖

= 1 

𝑘

= 1 

𝑑111(1)

= {8,10 

, 13} 

𝑑111(2)

= {5,7,10} 
 

𝑑121(1)

= {11,13} 

𝑑121(2)

= {12,14} 
 

𝑑131(1)

= {4,7} 

𝑑131(2)

= {3,7,9, 

13} 

 

𝑑141(1)

= {9,12, 

13} 

𝑑141(2)

= {8.11} 
 

𝐵11

= 6 
 

𝑘

= 2 
𝐸11 = 6 

𝑑112(1)

= {5,8,9, 

11} 

𝑑112(2)

= {7,9,10, 

12} 

𝐸12 = 4 
𝑑122(1)

= {9,11} 

𝑑122(2)

= {8,12} 
𝐸13 = 5 

𝑑132(1)

= {7,9} 

𝑑132(2)

= {6,7,10} 
𝐸14 = 6 

𝑑142(1)

= {12,16} 

𝑑142(2)

= {5,8,9 

, 11} 

 
𝐵21

= 15 

𝑖

= 2 

𝑘

= 1 

𝑑211(1)

= {9,12, 

15} 

𝑑211(2)

= {6,8,12} 
 

𝑑221(1)

= {7,9,11 

, 14} 

𝑑221(2)

= {2,3,5,6} 
 

𝑑231(1)

= {6,9,10} 

𝑑231(2)

= {4,5,6, 

7,9} 

 

𝑑241(1)

= {3,5,7, 

8,11} 

𝑑241(2)

= {3,7, 

9,15} 

 
𝐵12

= 13 
 

𝑘

= 2 
𝐸21 = 5 

𝑑212(1)

= {13,17} 

𝑑212(2)

= {12,18} 
𝐸22 = 7 

𝑑222(1)

= {11,13, 

14} 

𝑑222(2)

= {10,12 

, 15} 

𝐸23 = 4 
𝑑232(1)

= {3,5,8} 

𝑑232(2)

= {3,7,8} 
𝐸24 = 6 

𝑑242(1)

= {9,11, 

12,13,15} 

𝑑242(2)

= {2,3,4, 

5} 

 
𝐵22

= 9 

𝑖

= 3 

𝑘

= 1 

𝑑311(1)

= {12,16} 

𝑑311(2)

= {15,17} 
 

𝑑321(1)

= {5,8,10} 

𝑑321(2)

= {11,12, 

13,17} 

 
𝑑331(1)

= {2,3,7} 

𝑑331(2)

= {9,11, 

14} 

 

𝑑341(1)

= {2,5,6, 

9} 

𝑑341(2)

= {17,18} 
 

𝐵13

= 15 
 

𝑘

= 2 
𝐸31 = 7 

𝑑312(1)

= {12,15, 

16} 

𝑑312(2)

= {12,15} 
𝐸32 = 4 

𝑑322(1)

= {10,13} 

𝑑322(2)

= {2,3,7} 
𝐸33 = 7 

𝑑332(1)

= {4,6} 

𝑑332(2)

= {7,12,13} 
𝐸34 = 9 

𝑑342(1)

= {7,8,10 

, 12} 

𝑑342(2)

= {13,15} 
 

𝐵23

= 12 

𝑖

= 4 

𝑘

= 1 

𝑑411(1)

= {2,3,7} 

𝑑411(2)

= {2,5,6, 

9} 

 
𝑑421(1)

= {8,10} 

𝑑421(2)

= {9,13} 
 

𝑑431(1)

= {9,11, 

12} 

𝑑431(2)

= {2,7,9, 

10,13} 

 

𝑑441(1)

= {7,10, 

11} 

𝑑441(2)

= {16,17} 
 

𝐵14

= 6 
 

𝑘

= 2 
𝐸41 = 3 

𝑑412(1)

= {4,7,9, 

10} 

𝑑412(2)

= {9,10 

, 13} 

𝐸42 = 5 
𝑑422(1)

= {11,15} 

𝑑422(2)

= {5,7,9} 
𝐸43 = 3 

𝑑432(1)

= {6,8,9} 

𝑑432(2)

= {11,13 

, 15} 

𝐸44 = 1 

𝑑442(1)

= {12,13 

, 15} 

𝑑442(2)

= {9,11} 
 

𝐵24

= 6 

𝐴𝑗𝑘 
𝐴11 = 15   𝐴21 = 8   𝐴31 = 11   𝐴41 = 6     

 𝐴12 = 6   𝐴22 = 12   𝐴32 = 8   𝐴42 = 16    
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8 Results and discussion 

The multi-objective function, including restrictions, is represented in solid fractional form and illustrated by numerical examples. The cost 

and profit are considered as random variables with many possible values. The solutions were derived using the LINGO 18.0 software (Table 5). 

Table 5. The solutions obtained for 𝑍1, 𝑍2 separately, ignoring other objectives. 

Ideal solution Anti-ideal solution Ideal solution Anti-ideal solution Variables  

𝑍1 𝑍2 𝑍1 𝑍2 𝑖 𝑗 𝑘 
𝑋1 𝑋2 

𝑤𝑖𝑗𝑘 𝑦𝑖𝑗𝑘 𝑋𝑖𝑗𝑘 𝑢𝑖𝑗𝑘 𝑣𝑖𝑗𝑘 𝑋𝑖𝑗𝑘 

1.301181 1.355865 1.598958 1.789593 

1 1 1 0 2 4 0 2 6 

  2 0 3 2 1 1 0 

 2 1 3 1 1 1 1 0 

  2 0 1 3 0 1 4 

 3 1 0 1 1 1 1 0 

  2 0 1 4 0 2 5 

 4 1 1 1 0 1 1 0 

  2 0 1 6 0 3 6 

2 1 1 0 2 2 0 2 5 

  2 0 1 3 0 1 0 

 2 1 0 3 7 0 2 4 

  2 0 2 0 0 2 3 

 3 1 0 2 4 0 4 4 

  2 1 1 0 1 1 0 

 4 1 1 1 0 1 1 0 

  2 0 4 6 0 3 6 

3 1 1 0 1 7 0 1 1 

  2 0 2 0 0 1 6 

 2 1 1 1 0 0 3 2 

  2 0 1 4 0 2 2 

Continued on next page 
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Ideal solution Anti-ideal solution Ideal solution Anti-ideal solution Variables  

𝑍1 𝑍2 𝑍1 𝑍2 𝑖 𝑗 𝑘 
𝑋1 𝑋2 

𝑤𝑖𝑗𝑘 𝑦𝑖𝑗𝑘 𝑋𝑖𝑗𝑘 𝑢𝑖𝑗𝑘 𝑣𝑖𝑗𝑘 𝑋𝑖𝑗𝑘 

1.301181 1.355865 1.598958 1.789593 

 3 1 0 2 3 0 2 7 

  2 0 1 4 0 1 0 

 4 1 0 3 5 0 1 5 

  2 0 3 4 0 1 4 

4 1 1 0 2 2 0 3 3 

  2 0 3 1 0 2 0 

 2 1 0 1 0 0 1 2 

  2 0 1 5 0 2 3 

 3 1 0 2 3 0 1 0 

  2 1 1 0 0 2 3 

 4 1 0 2 1 0 1 1 

  2 1 1 0 0 1 0 

The comparison presented in Table 6 reveals that the objective values of the weighted sum method (WSM), Goal Programming (GP), Revised 

multi-choice goal programming (RMCGP), and Conic scalarization approach (CSA) exhibit slight variations across different weights. However, 

the proposed method consistently yields compromise optimal solutions that are closer to the ideal value for various weights. Consequently, it can 

be concluded that the proposed method demonstrates greater consistency and provides solutions that are closer to the ideal when compared to the 

WSM, GP, RMCGP, and CSA. 
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Table 6. Compromise solutions for 𝑍𝑟 using different methods. 

S. 

No. 
Weights 

WSM GP RMCGP CSA Proposed method 

𝑍1 𝑍2 𝑍1 𝑍2 𝑍1 𝑍2 𝑍1 𝑍2 𝑍1 𝑍2 

1 0.1, 0.9 1.371227 1.604873 1.342235 1.788419 1.355865 1.789593 1.346614 1.784865 1.306347 1.616966 

2 0.2, 0.8 1.346000 1.608280 1.355865 1.785585 1.355865 1.789593 1.355865 1.778499 1.306347 1.616966 

3 0.3, 0.7 1.346000 1.608280 1.342608 1.789593 1.355865 1.789593 1.350224 1.789593 1.306347 1.616966 

4 0.4, 0.6 1.346000 1.650327 1.355865 1.789593 1.355865 1.789593 1.345813 1.759179 1.306347 1.616966 

5 0.5, 0.5 1.346000 1.625268 1.350739 1.771491 1.355865 1.789593 1.355665 1.770077 1.306347 1.616966 

6 0.6, 0.4 1.325074 1.625268 1.354680 1.785872 1.355865 1.789593 1.348768 1.786667 1.306347 1.616966 

7 0.7, 0.3 1.325074 1.675497 1.350099 1.786192 1.355865 1.789593 1.353695 1.785556 1.306347 1.616966 

8 0.8, 0.2 1.306483 1.724862 1.334274 1.779360 1.355864 1.789593 1.355865 1.751209 1.306347 1.616966 

9 0.9, 0.1 1.297244 1.724289 1.350974 1.787198 1.355864 1.789593 1.353528 1.785989 1.306347 1.616966 
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Table 7. The rankings of the compromise solutions. 

S. No. Weights 
Ranking value for different methods 

WSM GP RMCGP CSA Proposed method 

1 0.1, 0.9 0.72435 0.06574 0.00319 0.05020 0.94023 

2 0.2, 0.8 0.79809 0.01705 0.00319 0.05279 0.94298 

3 0.3, 0.7 0.79809 0.06370 0.00319 0.02803 0.89778 

4 0.4, 0.6 0.67091 0.00319 0.00319 0.15894 0.98031 

5 0.5, 0.5 0.75935 0.09207 0.00319 0.09514 0.96754 

6 0.6, 0.4 0.82415 0.01672 0.00319 0.03708 0.92075 

7 0.7, 0.3 0.59452 0.03199 0.00319 0.02039 0.86467 

8 0.8, 0.2 0.39102 0.11412 0.00319 0.18920 0.98341 

9 0.9, 0.1 0.41041 0.02600 0.00319 0.01908 0.85672 

Based on the provided description, it is evident that the method suggested in the paper exhibits a 

high level of proximity to the ideal value, indicating its exceptional performance and near-equivalence 

to the optimal conclusion. The proximity of the proposed approach to the ideal value suggests that the 

proposed method exhibits a high level of effectiveness. Furthermore, the statement suggests that the 

proposed method can be considered useful for DMs who strive to make optimal choices. Given the 

tight alignment between the suggested approach and the ideal value, it can be inferred that the method 

has the potential to assist decision makers in making optimal choices. The persistent superiority of the 

suggested method in terms of objective values suggests its potential as a beneficial tool for decision-

makers to enhance their decision-making process by providing more informed and optimal options. 

Decision makers can anticipate achieving outcomes that are better aligned with their aims and 

objectives by implementing the proposed strategy, thus enhancing decision-making processes and 

results. 

These graphs Figures 5 and 6 show comparison of the two objective functions 𝑍1  and 

𝑍2 solutions in the mentioned methods which shows that the proposed method has better achievement 

result. 
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Figure 5. Comparison of 𝑍1 individual solution in different methods. 

 

Figure 6. Comparison of 𝑍2 individual solution in different methods. 

The graph in Figure 7 depicting the comparative analysis of the weighted sum, GP, RMCGP, 

Conic, and suggested technique with respect the ranking. The superiority of the suggested technique 

over the weighted sum, GP, RMCGP, and Conic is evident. It may be compared to a race, where our 

approach is achieving success by being more aligned with our desired outcome. The graph serves as a 

narrative device, conveying that the suggested technique is adept at identifying accurate solutions. The 

graph represents a solid fractional transportation problem with many objectives. 
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Figure 7. Graphical representation of a comparison of the consistency of the weighted sum, 

GP, RMCGP, Conic and Proposed Method. 

9 Conclusions 

We explore the MCSF-MOTP. Random multi-choice factors constitute the cost and profit 

parameters. Newton’s Divided Difference Interpolation was used to reduce the multi-option parameters 

to a single choice, ensuring that the final solution either becomes ideal or gets as close to it as possible. 

When compared to other studies, our model emerges as superior and is quite close to the ideal value. 

The suggested model, employing the TOPSIS approach, achieves outstanding performance and 

ranking results, placing it close to the ideal value. The model can assist decision makers in making 

better decisions, as evidenced by the close approximation to the optimal value. By enhancing 

performance and empowering manufacturers to improve their decision-making processes, our study 

significantly advances the field by providing a dependable and effective solution for MCSF-MOTPs. 

There is no suitable algorithm for discovering MCSF-MOTP compromise solutions. In addition to 

comparing our method with the conic, GP, RMCGP, and weighted sum approaches, Table 7 presents 

rankings of the compromise options. LINGO 18.0 software is used to address the MCSF-MOTP 

mentioned above. 

Further research incorporating multiple-choice or unknown aspects pertaining to conveyance 

characteristics, supply, and demand can enhance the model's validity. Researchers can also investigate 

the model’s effectiveness in other fields, such supply chain management and economics. We present a 

novel approach to addressing MCSF-MOTPs, making it an invaluable resource for decision-makers in 

the industrial sector. Because modern manufacturing is dynamic, new approaches to decision-making 

are required for success in an increasingly globalized world. 
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Appendix 

Mathematical formulation of the numerical example discussed in Section 7: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍1 =
∑ ∑ ∑ 𝐹𝑐𝑖𝑗𝑘

1 (𝑤𝑐𝑖𝑗𝑘)𝑥𝑖𝑗𝑘
𝑙
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1

∑ ∑ ∑ 𝐹𝑑𝑖𝑗𝑘
1 (𝑦𝑖𝑗𝑘)𝑥𝑖𝑗𝑘

𝑙
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1

, 

and 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍2 =
∑ ∑ ∑ 𝐹𝑐𝑖𝑗𝑘

2 (𝑢𝑐𝑖𝑗𝑘)𝑥𝑖𝑗𝑘
𝑙
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1

∑ ∑ ∑ 𝐹𝑑𝑖𝑗𝑘
2 (𝑣𝑖𝑗𝑘)𝑥𝑖𝑗𝑘

𝑙
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1

. 

Where 

𝑍1 =
{
 
 
 
 
 
 
 

 
 
 
 
 
 
 [15+3𝑤111−0.5𝑤111(𝑤111−1)]𝑥111+[15+𝑤121+0.5𝑤121(𝑤121−1)−

1

3
𝑤121(𝑤121−1)(𝑤121−2)]𝑥121+[25+𝑤131]𝑥131+

[19+2𝑤141+𝑤141(𝑤141−1)]𝑥141+[16+3𝑤211]𝑥211+

[25+2𝑤221−0.5𝑤221(𝑤221−1)+
1

3
𝑤221(𝑤221−1)(𝑤221−2)]𝑥221+[19+3𝑤231]𝑥231+[23+6𝑤241−2𝑤241(𝑤241−1)]𝑥241+

[9+𝑤311]𝑥311+[16+𝑤321]𝑥321+[11+2𝑤331+𝑤331(𝑤331−1)]𝑥331+[15+4𝑤341−0.5𝑤341(𝑤341−1)]𝑥341
+[11+𝑤441]𝑥411+[16+𝑤421+0.5𝑤421(𝑤421−1)]𝑥421+[25+4𝑤431−0.5𝑤431(𝑤431−1)]𝑥431

+[12+6𝑤441−𝑤441(𝑤441−1)]𝑥441+[14+3𝑤112−0.5𝑤112(𝑤112−1)+
1

3
𝑤112(𝑤112−1)(𝑤112−2)]𝑥112

+[12+3𝑤122+0.5𝑤122(𝑤122−1)]𝑥122+[28+𝑤132]𝑥132+[10+2𝑤142−0.5𝑤142(𝑤142−1)]𝑥142

+[11+7𝑤212−2.5𝑤212(𝑤212−1)]𝑥212+[20+𝑤222+
1

3
𝑤222(𝑤222−1)(𝑤222−2)]𝑥222+[19+𝑤232]𝑥232

+[18+𝑤242+0.5𝑤242(𝑤242−1)]𝑥242+[20+𝑤312+0.5𝑤312(𝑤312−1)−
1

24
𝑤312(𝑤312−1)(𝑤312−2)(𝑤312−3)]𝑥312

+[18+𝑤322+0.5𝑤322(𝑤322−1)]𝑥322+[14+2𝑤332]𝑥332+[14+2𝑤342−0.5𝑤342(𝑤342−1)]𝑥342+
[19+4𝑤412−𝑤412(𝑤412−1)]𝑥412+[15+3𝑤422−0.5𝑤422(𝑤422−1)+0.5𝑤422(𝑤422−1)(𝑤422−2)]𝑥422
+[25+2𝑤432]𝑥432+[16+3𝑤442−0.5𝑤442(𝑤442−1)+0.125𝑤442(𝑤442−1)(𝑤442−2)(𝑤442−3)]𝑥442 }

 
 
 
 
 
 
 

 
 
 
 
 
 
 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

[8+2𝑦111+0.5𝑦111(𝑦111−1)]𝑥111+[11+2𝑦121]𝑥121+

[4+3𝑦131]𝑥131+[9+3𝑦141−𝑦141(𝑦141−1)]𝑥141+[9+3𝑦211]𝑥211+[7+2𝑦221+
1

6
𝑦221(𝑦221−1)(𝑦221−2)]𝑥221

+[6+3𝑦231−𝑦231(𝑦231−1)]𝑥231+[3+2𝑦241−
1

6
𝑦241(𝑦241−1)(𝑦241−2)+

1

6
𝑦241(𝑦241−1)(𝑦241−2)(𝑦241−3)]𝑥241+

[12+4𝑦311]𝑥311+[5+3𝑦321−0.5𝑦321(𝑦321−1)]𝑥321+[2+𝑦331+1.5𝑦331(𝑦331−1)]𝑥331

+[2+3𝑦341−𝑦341(𝑦341−1)+
2

3
𝑦341(𝑦341−1)(𝑦341−2)]𝑥341+[2+𝑦411+1.5𝑦411(𝑦411−1)]𝑥411+

[8+2𝑦421]𝑥421+[9+2𝑦431−0.5𝑦431(𝑦431−1)]𝑥431+[7+3𝑦441−𝑦441(𝑦441−1)]𝑥441+
[5+3𝑦112−𝑦112(𝑦112−1)+0.5𝑦112(𝑦112−1)(𝑦112−2)]𝑥112+[9+2𝑦122]𝑥122+[7+2𝑦132]𝑥132+

[12+4𝑦142]𝑥142+[13+4𝑦212]𝑥212+[11+2𝑦222−0.5𝑦222(𝑦222−1)]𝑥222+[3+2𝑦232+0.5𝑦232(𝑦232−1)]𝑥232

+[9+2𝑦242−0.5𝑦242(𝑦242−1)+
1

6
𝑦242(𝑦242−1)(𝑦242−2)]𝑥242+[12+3𝑦312−𝑦312(𝑦312−1)]𝑥312+[10+3𝑦322]𝑥322

+[4+2𝑦332]𝑥332+[7+𝑦342+0.5𝑦342(𝑦342−1)−
1

6
𝑦342(𝑦342−1)(𝑦342−2)]𝑥342+[4+3𝑦412−0.5𝑦412(𝑦412−1)]𝑥412

+[11+4𝑦422]𝑥422+[6+2𝑦432−0.5𝑦432(𝑦432−1)]𝑥432+
[12+𝑦442+0.5𝑦442(𝑦442−1)]𝑥442 }
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𝑍2 =
{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

[11+2𝑢111]𝑥111+[15+2𝑢121]𝑥121+[14+𝑢131]𝑥131+[13+3𝑢141−0.5𝑢141(𝑢141−1)]𝑥141+[19+2𝑢211]𝑥211

+[12+3𝑢221−0.5𝑢221(𝑢221−1)+
1

3
𝑢221(𝑢221−1)(𝑢221−2)−

1

12
𝑢221(𝑢221−1)(𝑢221−2)(𝑢221−3)]𝑥221

+[19+𝑢231]𝑥231+[27+3𝑢241]𝑥241+[31+4𝑢311]𝑥311+[25+2𝑢321−
1

6
𝑢321(𝑢321−1)(𝑢321−2)]𝑥321+[26+3𝑢331]𝑥331

+[22+2𝑢341−0.5𝑢341(𝑢341−1)]𝑥341+[29+𝑢441+0.5𝑢441(𝑢441−1)]𝑥411+[28+2𝑢421]𝑥421
+[20+𝑢431+1.5𝑢431(𝑢431−1)]𝑥431+[15+2𝑢441+𝑢441(𝑢441−1)]𝑥441

+[13+2𝑢112−0.5𝑢112(𝑢112−1)+
1

6
𝑢112(𝑢112−1)(𝑢112−2)]𝑥112+[10+3𝑢122−0.5𝑢122(𝑢122−1)]𝑥122+

[12+4𝑢132−𝑢132(𝑢132−1)+
1

6
𝑢132(𝑢132−1(𝑢132−2)]𝑥132+

[20+𝑢142+0.5𝑢142(𝑢142−1)−
1

24
𝑢142(𝑢142−1)(𝑢142−2)(𝑢142−3)]𝑥142+[18+𝑢212]𝑥212+

[22+3𝑢222−𝑢222(𝑢222−1)+0.5𝑢222(𝑢222−1)(𝑢222−2)]𝑥222+[18+𝑢232+0.5𝑢232(𝑢232−1)]𝑥232+

[13+3𝑢242−0.5𝑢242(𝑢242−1)]𝑥242+[20+𝑢312+
1

3
𝑢312(𝑢312−1)(𝑢312−2)]𝑥312+[15+2𝑢322]𝑥322+[26+3𝑢332]𝑥332+

[25+7𝑢342−3𝑢342(𝑢342−1)]𝑥342+[32+2𝑢412]𝑥412+[23+2𝑢422+0.5𝑢422(𝑢422−1)]𝑥422
+[12+3𝑢432]𝑥432+[13+2𝑢442+𝑢442(𝑢442−1)]𝑥442 }

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 [5+2𝑣111+0.5𝑣111(𝑣111−1)]𝑥111+[12+2𝑣121]𝑥121+[3+4𝑣131−𝑣131(𝑣131−1)+

2

3
𝑣131(𝑣131−1)(𝑣131−2)]𝑥131

+[8+3𝑣141]𝑥141+[6+2𝑣211+𝑣211(𝑣211−1)]𝑥211+[2+𝑣221+0.5𝑣221(𝑣221−1)−
1

3
𝑣221(𝑣221−1)(𝑣221−2)]𝑥221

+[4+𝑣231+
1

24
𝑣231(𝑣231−1)(𝑣231−2(𝑣231−3)]𝑥231+[3+4𝑣241−𝑣241(𝑣241−1)+𝑣241(𝑣241−1)(𝑣241−2)]𝑥241+

[15+2𝑣311]𝑥311+[11+𝑣321+0.5𝑣321(𝑣321−1)(𝑣321−2)]𝑥321+[9+2𝑣331+0.5𝑣331(𝑣331−1)]𝑥331

+[17+𝑣341]𝑥341+[2+3𝑣411−𝑣411(𝑣411−1)+
2

3
𝑣411(𝑣411−1)(𝑣411−2)]𝑥411+[9+4𝑣421]𝑥421

+[2+5𝑣431−
3

2
𝑣431(𝑣431−1)+

1

3
𝑣431(𝑣431−1)(𝑣431−2)+

1

24
𝑣431(𝑣431−1)(𝑣431−2)(𝑣431−3)]𝑥431+[16+𝑣441]𝑥441+

[7+2𝑣112−0.5𝑣112(𝑣112−1)+
1

3
𝑣112(𝑣112−1)(𝑣112−2)]𝑥112+[8+4𝑣122]𝑥122+[6+𝑣132+𝑣132(𝑣132−1)]𝑥132+

[5+3𝑣142−𝑣142(𝑣142−1)+0.5𝑣142(𝑣142−1)(𝑣142−2)]𝑥142+[12+6𝑣212]𝑥212+[10+2𝑣222+0.5𝑣222(𝑣222−1)]𝑥222

+[3+4𝑣232−
3

2
𝑣232(𝑣232−1)]𝑥232+[2+𝑣242]𝑥242+[12+3𝑣312]𝑥312+[2+𝑣322+

3

2
𝑣322(𝑣322−1)]𝑥322

+[7+5𝑣332−2𝑣332(𝑣332−1)]𝑥332+[13+2𝑣342]𝑥342+[9+𝑣412+𝑣412(𝑣412−1)]𝑥412
+[5+2𝑣422]𝑥422+[11+2𝑣432]𝑥432+

[9+2𝑣442]𝑥442 }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

  

Subject to 

𝑥111 + 𝑥211 + 𝑥311 + 𝑥411 = 15, 𝑥112 + 𝑥212 + 𝑥312 + 𝑥412 = 6, 

𝑥121 + 𝑥221 + 𝑥321 + 𝑥421 = 8, 𝑥122 + 𝑥222 + 𝑥322 + 𝑥422 = 12, 

𝑥131 + 𝑥231 + 𝑥331 + 𝑥431 = 11, 𝑥132 + 𝑥232 + 𝑥332 + 𝑥432 = 8, 

𝑥141 + 𝑥241 + 𝑥341 + 𝑥441 = 6, 𝑥142 + 𝑥242 + 𝑥342 + 𝑥442 = 16, 

𝑥111 + 𝑥121 + 𝑥131 + 𝑥141 = 6, 𝑥211 + 𝑥221 + 𝑥231 + 𝑥241 = 13, 

𝑥311 + 𝑥321 + 𝑥331 + 𝑥341 = 15, 𝑥411 + 𝑥421 + 𝑥431 + 𝑥441 = 6, 

𝑥112 + 𝑥122 + 𝑥132 + 𝑥142 = 15, 𝑥212 + 𝑥222 + 𝑥232 + 𝑥242 = 9, 

𝑥312 + 𝑥322 + 𝑥332 + 𝑥342 = 12, 𝑥412 + 𝑥422 + 𝑥432 + 𝑥442 = 6, 

𝑥111 + 𝑥112 = 6, 𝑥121 + 𝑥122 = 4, 𝑥131 + 𝑥132 = 5, 

𝑥141 + 𝑥142 = 6, 𝑥211 + 𝑥212 = 5, 𝑥221 + 𝑥222 = 7, 

𝑥231 + 𝑥232 = 4, 𝑥241 + 𝑥242 = 6, 𝑥311 + 𝑥312 = 7, 

𝑥321 + 𝑥322 = 4, 𝑥331 + 𝑥332 = 7, 𝑥341 + 𝑥342 = 9, 

𝑥411 + 𝑥412 = 3, 𝑥421 + 𝑥422 = 5, 𝑥431 + 𝑥432 = 3, 

𝑥441 + 𝑥442 = 1. 
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0 ≤ 𝑤111 ≤ 2; 0 ≤ 𝑤121 ≤ 3; 0 ≤ 𝑤131 ≤ 2; 0 ≤ 𝑤141 ≤ 2; 0 ≤ 𝑤211 ≤ 2; 0 ≤ 𝑤221 ≤ 3; 0 ≤ 𝑤231
≤ 1; 0 ≤ 𝑤241 ≤ 2; 0 ≤ 𝑤311 ≤ 2; 0 ≤ 𝑤321 ≤ 1; 0 ≤ 𝑤331 ≤ 2; 0 ≤ 𝑤341 ≤ 2; 0

≤ 𝑤411 ≤ 1; 0 ≤ 𝑤421 ≤ 2; 0 ≤ 𝑤431 ≤ 2; 0 ≤ 𝑤441 ≤ 2; 0 ≤ 𝑤112 ≤ 3; 0 ≤ 𝑤122
≤ 2; 0 ≤ 𝑤132 ≤ 1; 0 ≤ 𝑤142 ≤ 2; 0 ≤ 𝑤212 ≤ 2; 0 ≤ 𝑤222 ≤ 3; 0 ≤ 𝑤232 ≤ 1; 0

≤ 𝑤242 ≤ 2; 0 ≤ 𝑤312 ≤ 4; 0 ≤ 𝑤322 ≤ 2; 0 ≤ 𝑤332 ≤ 1; 0 ≤ 𝑤342 ≤ 2; 0 ≤ 𝑤412
≤ 2; 0 ≤ 𝑤422 ≤ 3; 0 ≤ 𝑤432 ≤ 1; 0 ≤ 𝑤442 ≤ 4; 

0 ≤ 𝑦111 ≤ 2; 0 ≤ 𝑦121 ≤ 1; 0 ≤ 𝑦131 ≤ 1; 0 ≤ 𝑦141 ≤ 2; 0 ≤ 𝑦211 ≤ 2; 0 ≤ 𝑦221 ≤ 3; 0 ≤ 𝑦231
≤ 2; 0 ≤ 𝑦241 ≤ 4; 0 ≤ 𝑦311 ≤ 1; 0 ≤ 𝑦321 ≤ 2; 0 ≤ 𝑦331 ≤ 2; 0 ≤ 𝑦341 ≤ 3; 0

≤ 𝑦411 ≤ 2; 0 ≤ 𝑦421 ≤ 1; 0 ≤ 𝑦431 ≤ 2; 0 ≤ 𝑦441 ≤ 2; 0 ≤ 𝑦112 ≤ 3; 0 ≤ 𝑦122
≤ 1; 0 ≤ 𝑦132 ≤ 1; 0 ≤ 𝑦142 ≤ 1; 0 ≤ 𝑦212 ≤ 1; 0 ≤ 𝑦222 ≤ 2; 0 ≤ 𝑦232 ≤ 2; 0

≤ 𝑦242 ≤ 4; 0 ≤ 𝑦312 ≤ 2; 0 ≤ 𝑦322 ≤ 1; 0 ≤ 𝑦332 ≤ 1; 0 ≤ 𝑦342 ≤ 3; 0 ≤ 𝑦412
≤ 3; 0 ≤ 𝑦422 ≤ 1; 0 ≤ 𝑦432 ≤ 2; 0 ≤ 𝑦442 ≤ 2; 

0 ≤ 𝑢111 ≤ 2; 0 ≤ 𝑢121 ≤ 1; 0 ≤ 𝑢131 ≤ 4; 0 ≤ 𝑢141 ≤ 2; 0 ≤ 𝑢211 ≤ 3; 0 ≤ 𝑢221 ≤ 4; 0 ≤ 𝑢231
≤ 1; 0 ≤ 𝑢241 ≤ 1; 0 ≤ 𝑢311 ≤ 1; 0 ≤ 𝑢321 ≤ 3; 0 ≤ 𝑢331 ≤ 1; 0 ≤ 𝑢341 ≤ 2; 0

≤ 𝑢411 ≤ 2; 0 ≤ 𝑢421 ≤ 1; 0 ≤ 𝑢431 ≤ 2; 0 ≤ 𝑢441 ≤ 2; 0 ≤ 𝑢112 ≤ 3; 0 ≤ 𝑢122
≤ 2; 0 ≤ 𝑢132 ≤ 3; 0 ≤ 𝑢142 ≤ 4; 0 ≤ 𝑢212 ≤ 1; 0 ≤ 𝑢222 ≤ 3; 0 ≤ 𝑢232 ≤ 2; 0

≤ 𝑢242 ≤ 2; 0 ≤ 𝑢312 ≤ 3; 0 ≤ 𝑢322 ≤ 2; 0 ≤ 𝑢332 ≤ 1; 0 ≤ 𝑢342 ≤ 2; 0 ≤ 𝑢412
≤ 1; 0 ≤ 𝑢422 ≤ 2; 0 ≤ 𝑢432 ≤ 1; 0 ≤ 𝑢442 ≤ 2; 

0 ≤ 𝑣111 ≤ 2; 0 ≤ 𝑣121 ≤ 1; 0 ≤ 𝑣131 ≤ 3; 0 ≤ 𝑣141 ≤ 1; 0 ≤ 𝑣211 ≤ 2; 0 ≤ 𝑣221 ≤ 3; 0 ≤ 𝑣231
≤ 4; 0 ≤ 𝑣241 ≤ 3; 0 ≤ 𝑣311 ≤ 1; 0 ≤ 𝑣321 ≤ 3; 0 ≤ 𝑣331 ≤ 2; 0 ≤ 𝑣341 ≤ 1; 0

≤ 𝑣411 ≤ 3; 0 ≤ 𝑣421 ≤ 1; 0 ≤ 𝑣431 ≤ 4; 0 ≤ 𝑣441 ≤ 1; 0 ≤ 𝑣112 ≤ 3; 0 ≤ 𝑣122
≤ 1; 0 ≤ 𝑣132 ≤ 2; 0 ≤ 𝑣142 ≤ 3; 0 ≤ 𝑣212 ≤ 1; 0 ≤ 𝑣222 ≤ 2; 0 ≤ 𝑣232 ≤ 2; 0

≤ 𝑣242 ≤ 3; 0 ≤ 𝑣312 ≤ 1; 0 ≤ 𝑣322 ≤ 2; 0 ≤ 𝑣332 ≤ 2; 0 ≤ 𝑣342 ≤ 1; 0 ≤ 𝑣412
≤ 2; 0 ≤ 𝑣422 ≤ 2; 0 ≤ 𝑣432 ≤ 2; 0 ≤ 𝑣442 ≤ 1. 

𝑥𝑖𝑗𝑘 ≥ 0   𝑖 = 1,2,3,4   𝑗 = 1,2, 3,4   𝑘 = 1,2,   𝑤𝑖𝑗𝑘, 𝑦𝑖𝑗𝑘, 𝑢𝑖𝑗𝑘, 𝑣𝑖𝑗𝑘 ∈ 𝑍
+. 

Where the values of 𝐴𝑗𝑘, 𝐵𝑘𝑖 , 𝐸𝑖𝑗 , and the transportation cost 𝑐𝑖𝑗𝑘  and profit 𝑑𝑖𝑗𝑘  for the two 

objective functions are given in the Tables 3 and 4. 
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