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Abstract: One essential component of the futuristic way of living in “smart cities” is the installation 

of surveillance cameras. There are a wide variety of applications for surveillance cameras, including 

but not limited to: investigating and preventing crimes, identifying sick individuals (coronavirus), 

locating missing persons, and many more. In this research, we provided a system for smart city outdoor 

item recognition using visual data collected by security cameras. The object identification model used 

by the proposed outdoor system was an enhanced version of RetinaNet. A state of the art object 

identification model, RetinaNet boasts lightning-fast processing and pinpoint accuracy. Its primary 

purpose was to rectify the focal loss-based training dataset's inherent class imbalance. To make the 

RetinaNet better at identifying tiny objects, we increased its receptive field with custom-made 

convolution blocks. In addition, we adjusted the number of anchors by decreasing their scale and 

increasing their ratio. Using a mix of open-source datasets including BDD100K, MS COCO, and 

Pascal Vocab, the suggested outdoor object identification system was trained and tested. While 

maintaining real-time operation, the suggested system's performance has been markedly enhanced in 

terms of accuracy. 
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1. Introduction 

By lowering the cost of computing resources, smart cities aim to improve and sustainably increase 
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the efficiency of the urban environment. A large number of cameras were placed in various locations 

around the urban areas for the aim of surveillance. All sorts of municipal problems, including traffic 

management, crime prevention, identifying diseases (coronavirus), energy consumption reduction, etc., 

may be better addressed with the utilization of the massive amounts of visual data collected by these 

cameras. The strength of smart cities' infrastructures and data centers determines how well they 

function. As a result, developing fast and accurate data processing algorithms is crucial. Data 

processing in smart cities primarily serves to identify dangers, such as people, cars, motorcycles, 

firearms, and a plethora of other items. 

Smart cities prioritize public safety and security. Public areas, transit hubs, and important 

infrastructure are frequently monitored by surveillance cameras. Systems powered by deep learning 

can aid with the detection and monitoring of intruders, suspicious items, or illegal cars, among other 

possible dangers, in real time. Object detection in real conditions such as surveillance using traditional 

approaches is generally error-prone and requires human involvement. By automating the process of 

object detection, deep learning algorithms can make surveillance systems more efficient and less 

reliant on human oversight. This mechanization lessens the burden on human operators and allows for 

quicker responses to security problems. Many computer vision tasks, such as object identification and 

fault diagnosis [1,2], have been tremendously improved by deep learning approaches, especially 

convolutional neural networks (CNN). These algorithms excel at accurately recognizing moving 

objects in surveillance systems because they can learn intricate patterns and characteristics from raw 

pixel data. 

Deep learning models for object detection tasks have been made easier by the availability of large-

scale annotated datasets like ImageNet and COCO (common objects in context). There is a wealth of 

material for building reliable surveillance systems in these datasets, which include a wide variety of 

images and videos shot in various settings. 

Modern hardware accelerators, such as tensor processing units (TPUs) and powerful graphics 

processing units (GPUs), have made deep learning model training and inference faster. This makes it 

possible to evaluate high-resolution surveillance footage in real-time or near-real-time, which speeds 

up the process of detecting moving objects in busy areas. 

Smart city projects like urban planning, pedestrian flow analysis, and intelligent transportation 

systems may work in tandem with object detection systems powered by deep learning. These 

technologies can help with better urban administration and allocation of resources by giving real-time 

data regarding the movement of people and vehicles. 

Deep learning models have recently become the basis of the majority of object identification and 

detection methods. A CNN and a region proposal method were used to create the region-based 

convolutional neural network (R-CNN) [3], which greatly improved the object identification model's 

performance. Subsequently, other object identification models were suggested using the RCNN's 

architecture, including the Fast R-CNN [4], the faster R-CNN [5], the region-based fully convolutional 

network (R-FCN) [6], and the mask R-CNN [7]. Although all of those types are incredibly accurate 

detectors, they are quite sluggish and have a complicated construction. Redesigning the object 

detection model to utilize a single network and do away with the region proposal process might lead 

to greater performance. To detect objects, Yolo was the first to deploy a single CNN [8]. Yolo 

approaches object detection as a regression issue and finds a solution. Even though it was lightning 

quick, the Yolo model had trouble recognizing little things and had poor detection precision overall. 

Subsequently, further Yolo versions [9–11] were suggested to better improve its functionality. The 
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single-shot multi-box detector (SSD) [12] was later suggested as a way to strike a balance between 

accuracy and speed. Using faster R-CNN's specified anchors on a single CNN is what the SSD does. 

In order to identify items at various sizes, it suggests using multi-scale feature maps. By striking a 

superior balance between speed and precision while operating in real-time, the SSD outperformed the 

Yolo. One major issue with single-network detection models is their poor accuracy due to a lack of 

balanced classes. In order to address this issue, RetinaNet [13] suggested reducing the cross-entropy 

loss function's emphasis on high-accuracy classes and increasing it on intriguing scenarios when 

classes have poor accuracy. “Focal loss” describes the novel loss function. In order to achieve a more 

balanced global accuracy throughout the whole dataset, this rescaling strategy enables the network to 

zero in on classes with lower accuracy. Compared to detectors built on the region proposals network, 

the RetinaNet's single-network detectors are just as precise. Indoor object detection [14] and traffic 

sign identification [15] are only two of the numerous uses for the suggested object detection models. 

The importance of outdoor moving object detection to smart city surveillance systems prompted 

us to examine it in this work. The most significant difficulty with outdoor moving object detection is 

that all objects appear small due to the distance separating them from the acquisition camera. Other 

difficulties include complicated backgrounds, inter-class variation, intra-class variation occlusion, and 

the object's movement. The given work is motivated by these problems. Constructing an object 

detection system capable of surmounting the obstacles encountered was the primary goal. 

In this paper, we present OMOD-RetinaNet, an improved version of the RetinaNet model for 

outdoor object recognition in smart city surveillance. In order to tackle the given issues, RetinaNet 

was enhanced to function better. The most notable modifications were as follows: (1) Increasing 

feature collection for tiny object recognition by decreasing the kernel size of the ResNet 101 model's 

first convolution layer [14]; (2) Expanding the detecting layers' receptive fields by using a receptive 

field module; (3) Modify the anchor scales so they can detect tiny items; (4) Optimizing the focus loss 

settings for outstanding detection performance. 

It is well-known that training a CNN requires an enormous quantity of data. To that end, we 

suggest merging three open-source datasets to increase the quantity of training data. For outdoor 

moving object detection, the existing datasets include a large number of classes that are irrelevant. To 

train the network, we used datasets including 13 classes—people, dogs, cats, cows, sheep, horses, birds, 

cars, trucks, buses, bicycles, motorbikes, and trains—as positive examples of outside moving things 

in an urban setting. The datasets that have been suggested are the BDD100K dataset [16], the MS 

COCO dataset [17], and the pascal voc dataset [18]. On an Nvidia GTX960 GPU, the OMOD-

RetinaNet achieved a mAP50 of 71.18% and a processing speed of 26 FPS during the test on the 

suggested dataset combination, proving its efficiency. 

The following are the primary contributions to this paper: 

⚫ Proposing to include a feature for the identification of outside moving items in smart city 

surveillance systems. 

⚫ Enhancing the RetinaNet object detection model for outdoor moving object detection by adjusting 

the kernel size of the ResNet101 backbone’s first convolution layer to gain useful information 

about tiny objects, incorporating a receptive field module to expand the detection layer's receptive 

field, and adjusting the anchor sizes, scales, and aspect ratios to pick up on tiny objects. 

⚫ Increasing the amount of training data by merging three publicly available datasets. 

The remainder of the paper is organized as follows. Section 2 is reserved for detailing and 

discussing related works. The proposed approach is presented with details in Section 3. In Section 4, 
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the experimental results are presented and discussed. Section 4 contains the conclusions and future 

work. 

2. Related works 

Researchers are drawn to generic object detection as a fascinating computer vision challenge 

because of its usefulness in many applications. Outdoor moving object detection is a specialized 

subtask of general object detection that we're dealing with here. There have been several proposals for 

works that aim to attain the utmost performance, but there is still room for development in this area. 

Based on the SSD model, Ning et al. [19] provided an outdoor object detection model. To enhance 

the classification accuracy of the SSD model, inception modules were used in place of SSD layers [20]. 

The inception module made use of additional approaches, such as residual connections and batch 

normalization, to improve speed. Additionally, non-maximum weighting was used instead of non-

maximum suppression. A 78.6% mAP, achieved after training and evaluation on the Pascal Voc 2007 

dataset [14], demonstrated the efficacy of the suggested enhancements. 

For the benefit of the visually impaired, an outside object detector was suggested in [21]. It is on 

the SSD model that the suggested outside object detector is built. The fundamental aim was to combine 

the feature fusion approach with a features pyramid structure. To train and test the suggested approach, 

a dataset named BLIND was also acquired. By gathering photos from varying distances, the dataset 

provides several sizes of the same thing, which might be useful for visually impaired individuals. In 

the end, this will allow for the construction of a high-performance detector with a high degree of scale 

invariance. The suggested dataset yielded a mAP of 75.4%, a 1.7% improvement over the performance 

of the first SSD model. 

Wang et al. [22] suggested an object detecting approach for outside monitoring. Identifying 

pedestrians, a crucial target for surveillance systems, was the primary objective. The suggested 

technique relies on a spatial attention module cascaded with the R-CNN model. By combining static 

and dynamic data, the suggested module trained the network to zero down on pedestrian locations. 

The suggested approach was tested on two separate datasets: the open-source DukeMTMC dataset [23] 

and a dataset developed specifically for this study [24]. Despite extensive testing, the presented 

findings reveal sluggish processing time and poor accuracy, casting doubt on the efficacy of the 

suggested method. 

To identify minute items in aerial photographs of rural areas, a CNN was suggested for use in remote 

sensing [25]. At its core, the proposed detector consists of three distinct phases. The initial step involves 

creating a landscape mask. At this point, we're using the VGG 16 model for feature extraction [26]. The 

second step is to develop an object detection model specifically for detecting coarse litter. At this point, we 

used a binary classifier to distinguish between trash and terrain. A higher sensitivity to litter than to terrain 

was programmed into the classifier during training. Class activation is the basis of the third stage, which 

consists of a convolution layer, an average pooling layer, a softmax layer, and a VGG 16 convolution block. 

The second stage's localization findings were fine-tuned using it. Results showed promise for the suggested 

method with an average accuracy of 57.5% when tested on the trushnet dataset [27]. 

Wu et al. [28] proposed a method that blends position-based spatial mapping with object-based 

feature matching to improve the accuracy and efficiency of numerous cameras' location and 

identification. To begin, the item of interest is mapped and matched using a uniform spatial constraint 

approach inside the overlapped region of several camera targets. To find a match, we look at the target 
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object's color characteristics. Second, we use homologous transformation to bring in the you only look 

once (YOLO) object identification technique, which can identify objects inside the overlapped camera 

region. Using the YOLO object identification technique as a foundation, a multi-camera 

positioning system is developed. On the test set, the YOLOv5 algorithm achieved a maximum 

mAP accuracy of 97.2%, according to the results. The YOLOv5 algorithm achieves a maximum mAP 

accuracy of 51.6% at a reasoning speed of 10 ms. The YOLOv5 algorithm's objective loss function, 

classification loss function, and GloU loss function have average values of 0.001, 0.01, and 0.015, 

respectively. Within 10 cm, the DukeMTMC-reID dataset maintains an error probability of YOLO of 

more than 96.5%. In the OTB dataset, the error probability of YOLO within 9.5cm is still greater 

than 95%. The YOLO positioning system achieves a maximum accuracy of 0.74 when the target 

item is in the way. 

Yadav et al. [29] provided a technique that uses state of the art computer vision algorithms to 

recognize and track several objects in films, both in real-time and in recorded footage. This object 

identification and tracking pipeline combines YOLO, a high-performance convolutional neural 

network for object recognition, with DeepSORT, an algorithm for splitting object instances and 

matching detections across frames based on motion and appearance. Using DeepSORT's reliable object 

tracking in conjunction with YOLO's fast object detection, the study found that accurate and immediate 

object monitoring was achieved. Areas such as object identification, traffic control, and video 

surveillance stand to benefit greatly from the proposed method's use since it enhances automation and 

situational awareness. Future developments in computer vision and artificial intelligence may be 

possible thanks to the results presented here, which open the door to further research and practical use 

of these technologies. 

A wide variety of approaches to outdoor object detection have been suggested in the 

aforementioned papers. Outdoor item detection in urban settings is the primary goal of this study. 

Overcoming the obstacles of urban space was the goal of the suggested endeavor. Additional 

information on the suggested method will be presented in the section that follows. 

3. Proposed approach 

For the purpose of detecting outside moving objects, we suggest enhancing the current RetinaNet 

model. On the MS COCO dataset, RetinaNet performs state of the art object identification, earning it 

the title of top object detector. We investigate the use of the RetinaNet for the studied task, but the 

achieved results were poor and do not attend the desired performance. The outdoor moving objects 

detection faces the following challenges: 

⚫ Interclass variation: The classes of the outdoor moving object present a high inter-class variation. 

For example, there is a big difference between a cat, a person, and a car. Such variation makes it 

hard to balance the performance of the detector across the presented classes. 

⚫ Intra-class variation: In the outdoor scene, an object of the same class can appear in different 

colors, positions, and sizes. As an example, we take the "person" class which presents many 

variations in size (young vs adult), and in position (front, side, back). 

⚫ Occlusion: An object in urban space can be partially or totally occluded (occluded by another 

person or another object). 

⚫ Moving object and fixed sensor: Surveillance systems are based on data collection through the 

mounted cameras in the urban space where most relevant objects are moving such as persons, 
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vehicles, and animals. Thus, it is hard to detect the object while it is changing its position 

continuously. 

⚫ Small objects: Taking into account the distance separating the acquisition camera from the snaped 

object in the surveillance system, all objects are looking small even small objects will be smaller 

than usual. 

To build a high-performance outdoor moving object detector, it is important to handle the 

mentioned challenges. As a solution, we propose to improve the RetinaNet object detection model. We 

call the improved model OMOD-RetinaNet. The RetinaNet model was designed to solve the problem 

of class imbalance which is perfect for our task. Then, it still has more challenges to handle. 

As a solution for the remaining problems, we start by improving the backbone. The ResNet101 

model was proposed as a backbone for the OMOD-RetinaNet. This backbone and its variant 

ResneNet152 were the deepest neural network with 110 layers and 152 layers respectively. It was the 

winner of the image classification and object detection in the ILSVERC 2015. The high performance 

was achieved thanks to the residual block used instead of convolution layers. A residual block contains 

convolution layers (CONV), activation layers (RELU), and batch normalization layers (BN) with a 

skip connection between its input and output. The residual block used in ResNet 101 is illustrated in 

Figure 1. 

 

Figure 1. Residual block. 

Very deep neural networks can be constructed using the suggested residual block, and their 

complexity will not explode. Plus, it gets rid of the vanishing gradient issue that arises during training 

of deep neural networks. In outdoor motion, objects tend to be little, and CNN tend to store small 

object information in their base layers. We update the original 7x7 kernel size of the first convolution 

layer with a cascade of 3 filters with a 3x3 kernel size to make ResNet101 appropriate for outdoor 

moving object identification. To begin, we recommend using a stride of 1, and for the subsequent 

filters, we recommend using a stride of 2. Although processing performance is negatively impacted, a 

smaller kernel size improves accuracy and enables the detection of tiny objects. The processing speed 

will remain unaffected, and real-time processing is still within reach, because the suggested application 

is built to run on high-performance devices. 

Our next goal is to enhance the RetinaNet's detecting capabilities. We provide a receptive field 

module (RFM) as a solution to the tiny item detection problem by increasing the detection level's 

receptive field. The RFM was influenced by the human visual system. The object detection system's 

identification capabilities will be improved by expanding the receptive field. Layers of 1x1 and 3x3 
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convolution, 3x1 and 1x3 convolution, and 3x3 dilates convolution with varying rates make up the 

RFM. The suggested RFM is shown in Figure 2. 

 

Figure 2. Proposed receptive field model. 

The 1x1 convolution layers were used to reduce the input channel of the feature map. The 

receptive field was expanded in multiple directions using the 1x3 and 3x1 convolution layers. The 

dilate convolution layers were proposed by the deep lab [30], which are used to expand the receptive 

field and to extract multi-scale features while using small kernel sizes and without exploding the 

number of parameters. The dilated convolution generates large-scale feature maps with rich spatial 

information while maintaining high-resolution. A skip connection similar to the residual blocks 

proposed by ResNet was applied in the RFM. The proposed module was designed to detect small 

objects without increasing the computation complexity of the model. 

Another optimization was applied to RetinaNet to enhance its performance for outdoor moving 

object detection. The anchors are the main component of the object detection system. In RetinaNet, 

the anchors are preselected manually. So, the anchor scales and ratios must be chosen wisely for each 

studied task. For outdoor moving object detection, the anchors must be suitable for small object 

detection. The original sizes of anchors at each layer of the 5 detection layers are {32×32, 64×64, 

128×128, 256×256, 512×512}, the original three ratios are {1:2, 1:1, 2:1} and the original three scales 

are {20, 21/3, 22/3}. At each point of the feature map, RetinaNet predicts 9 anchor boxes on the basis of 

three scales by three aspect ratios. The prediction of bounding boxes is based on the matching 
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strategy which works as follows. The tested anchor is deemed to be in good agreement with the 

ground truth box if its intersection over union (IoU) value is higher than 0.5. A negative match is 

defined as an IoU value below 0.4 between the tested anchor and the ground truth box. We shall 

match the tested anchor to the ground truth box 1 if its IoU value is greater than the IoU value of the 

identical anchor and ground truth box 2. Detecting tiny objects is not a good fit for the original 

anchors. Therefore, we propose to change the parameters of the anchor sizes, scales, and aspect 

ratios. Also, we add a shallower detection layer. The new sizes of the anchors are {8×8, 16×16, 

32×32, 64×64, 128×128, 256×256}, the new aspect ratios are {1:3, 1:2, 1:1, 2:1, 3:1}, and the new 

scales are {20, 21/2}. According to the new configurations, at each point of the feature map, the 

OMOD-RetinaNet predicts 10 bounding boxes. The main changes of the anchor scales and aspect 

ratios are illustrated in Figure 3. 

 

Figure 3. Anchor scales and aspect ratios modifications in OMOD-RetinaNet. 

Modifying the settings of the focus loss was the last optimization done on the RetinaNet. The 

cross-entropy function, with minor adjustments, is the basis of the focal loss. The cross-entropy 

function is defined as Eq (1), where 𝑝𝑖 is the estimated probability for a class i. 

𝐶𝐸(𝑝𝑖) = −log⁡(𝑝𝑖).         (1) 

The RetinaNet introduces the use of a coefficient 𝛼𝑖 to balance the foreground-background classes. 

The 𝛼𝑖 is defined as Eq (2), 

𝛼𝑖 = {
α, if⁡y = 1,

1 − α, otherwise.
         (2) 

During training, RetinaNet incorporates a modulation factor that raises the proportion of loss for 

difficult-to-recognize classes while lowering it for easily recognized classes, directing the detection 

model's attention to these more challenging classes. The modulation factor is defined as (1 − 𝑝𝑖)
𝛾, 

where 𝛾 has a fixed value. The focal loss function is presented as Eq (3), 

𝐶𝐸(𝑝𝑖) = −𝛼𝑖(1 − 𝑝𝑖)
𝛾log⁡(𝑝𝑖).       (3) 
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The large value of 𝛾 makes the model focus more on hard to recognize classes. In the studied 

task, the images are characterized by a complex background. So, we increase the original value of 𝛼𝑖 

from 0.25 to 0.5 and the value of 𝛾 from 2 to 3. We shall demonstrate the effect of the suggested 

changes in the experimental findings. To sum up, we propose to improve the RetinaNet model for 

outdoor moving objects detection. The first improvement was to use the ResNet101 as a backbone and 

modify the kernel size of its first convolution layer to extract more relevant features to detect small 

objects. The second improvement was to add the RFM to increase the receptive field in the detection 

layers. The third improvement was to optimize the anchor scales, sizes, and aspect ratios to detect 

small objects. Finally, we modify the parameters of the focal loss separate the complex background 

from the foreground, and balance the detection precision of all classes. The architecture of the OMOD-

RetinaNet is presented in Figure 4. 

 

Figure 4. Proposed architecture of the OMOD-RetinaNet. 

4. Experiments and results 

This work's experimental environment is a desktop running Linux on top of 32 GB of RAM, an 

Nvidia GTX960 GPU, and an Intel i7 CPU. The OMOD-RetinaNet model that was suggested was 

built using the TensorFlow deep learning system. We utilized the open cv package for picture editing 

and visualization. As a learning algorithm, the adam optimizer was employed. 

We suggest merging three open-source datasets to train the OMOD-RetinaNet model on adequate 

data to determine the target classes. One such dataset is the Pascal Vocabulary, which has been under 

development since 2005 and has undergone updates all the way up to 2012. Among its 20 offered 

classes, it found usage in object identification, instance segmentation, and object recognition. For the 

purpose of the object detection challenge, Pascal Voc 2007 and 2012 both provide picture sets. Among 

the 9963 photos in Pascal Voc 2007 are 24640 annotated objects, whereas among the 11530 images in 

Pascal Voc 2012 are 27450 annotated objects. There are a total of 21493 photos when the two databases 

are combined. The classes that are taken into consideration for this project are: automobile, train, bus, 

motorcycle, bicycle, human, bird, cat, cow, dog, horse, and sheep. The other classes are seen as 

negative instances. Second, Microsoft gathered the MSCOCO dataset in 2014 for a variety of uses, 

including object identification, instance segmentation, and keypoint estimation, among others. Eighty-

one categories were included in the data collection. With over 200,000 photos, the MSCOCO 2019 

collection is the biggest MSCOCO dataset to date. The MS COCO dataset utilizes identical classes as 

the pascal voc dataset. The BDD100K dataset, created by the artificial intelligence research team at 

Berkley, is the third dataset. Presented in 10 categories, the dataset was created for item recognition in 
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an urban setting. There are 120,000,000 pictures in the collection, produced by 100,000 films that run 

for 40 seconds at 30 frames per second. In order to identify moving objects in the outdoors, only the 

following classifications were considered: vehicle, truck, bus, bicycle, motorbike, train, and human. 

The suggested datasets provide a diverse variety of training pictures, which could improve the model's 

ability to generalize. Outdoor moving things were categorized into fourteen groups: humans, dogs, 

cats, cows, sheep, horses, birds, cars, trucks, buses, bicycles, motorbikes, and trains. 

Our proposed model's performance evaluation metric is the mean average precision, which was 

originally suggested by the Pascal Vocabulary dataset and later refined by the MSCOCO dataset by 

including the IoU threshold. To measure how well the suggested model works, we use the mean 

average precision (mAP50) and apply an IoU criterion of 0.5. 

Because of the big amount of training data, the model was trained for 50 epochs, each epoch with 

10000 steps. The model takes 2 days to be trained. By testing the model, high performance was 

achieved with mAP50 of 71.18%. Table 1 summarizes the archived average precisions (AP) per class. 

Table 1 provides valuable insights into the performance of the object detection model across 

different object classes. The object classes "Cat" and "Person" achieve the highest AP percentages 

at 77.65% and 77.54%, respectively. These classes exhibit excellent model performance, indicating 

that the object detection model can accurately detect and localize instances of cats and persons in 

images. AP percentages vary across different object classes, highlighting differences in the model's 

ability to detect and classify different types of objects. While some classes achieve high AP percentages 

(e.g., "Cat", "Person", "Train"), others exhibit lower performance (e.g., "Dog", "Sheep", "Bus"). The 

performance of the object detection model for specific object classes has practical implications for 

applications such as smart city surveillance, autonomous driving, and image classification. Classes 

with higher AP percentages are more reliably detected by the model, making them crucial for accurate 

object recognition and scene understanding. Classes with lower AP percentages may indicate areas for 

improvement in the object detection model. For example, classes such as "Dog" and "Sheep" exhibit 

relatively lower performance, suggesting that the model may struggle to accurately detect these objects. 

Optimizing the model architecture, training data, or object detection algorithms may help improve 

performance for these classes. The performance of individual object classes contributes to the overall 

effectiveness of the object detection model. Understanding the performance characteristics of each 

class allows for targeted optimization efforts to enhance model performance across the board. When 

deploying the object detection model in real-world scenarios, it's essential to consider the performance 

of individual object classes and prioritize optimization efforts accordingly. Classes with higher AP 

percentages may require less attention, while classes with lower performance may warrant additional 

refinement and tuning. 

Table 1. Achieved APs per class. 

Class Person Dog Cat Caw sheep Bird Horse car Truck Bus bicycle motorcycle Train 

AP 

(%) 
77.54 60.74 77.65 72.64 68.72 72.19 68.35 70.45 75.28 63.39 76.23 67.82 74.35 

We compare the outcomes of our OMOD-RetinaNet with the top models for outdoor objects 

detection. In Table 2, we see how our model compares to top-tier models using mAP50 and the training 
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and testing datasets. 

Table 2. Comparison against state of the art models for outdoor objects detection. 

Model 
mAP50 

(%) 
Train/ test data 

Number of 

classes 

Number of 

images 

I-SSD [19] 78.6 Pascal voc 2007 20 9963 

FP SSD [21] 75.4 BLIND 7 8,900 

VGG+CAM [25] 57.5 trushnet 5 21,000 

RetinaNet 69.56 
Pascal 

voc+MSCOCO+BDD100K 
13 349963 

OMOD- 

RetinaNet 
71.18 

Pascal 

voc+MSCOCO+BDD100K 
13 349963 

The mAP50 indicates the overall performance of each object detection model in accurately 

detecting and localizing objects in images. The highest performing model is "I-SSD," achieving an 

mAP50 of 78.6%, followed by "OMOD-RetinaNet" at 71.18%. Conversely, "VGG+CAM" exhibits the 

lowest mAP50 at 57.5%. These variations in model performance highlight differences in the 

effectiveness of the object detection algorithms and architectures employed by each model. 

The choice of training and testing datasets significantly impacts model performance. Models 

trained on diverse and comprehensive datasets, such as "RetinaNet" and "OMOD-RetinaNet," which 

utilize a combination of Pascal VOC, MS COCO, and BDD100K datasets, tend to achieve higher 

mAP50 percentages compared to models trained on smaller or less diverse datasets. For example, 

"VGG+CAM" trained on the "trushnet" dataset achieves a lower mAP50, indicating the importance of 

dataset diversity and representativeness in training robust object detection models. 

The number of object classes present in the training data also influences model performance. 

Models trained on datasets with a larger number of classes may face greater complexity and challenges 

in object recognition, potentially affecting their mAP50. However, the relationship between the number 

of classes and model performance may vary depending on the specific characteristics of the dataset 

and the capabilities of the object detection model. 

The size of the training dataset, as indicated by the number of images, plays a crucial role in 

model training and generalization. Models trained on larger datasets, such as "RetinaNet" and 

"OMOD-RetinaNet" with 349,963 images, demonstrate higher mAP50 compared to models trained on 

smaller datasets. The availability of a large and diverse training dataset allows models to learn robust 

features and patterns, leading to improved performance in object detection tasks. 

The findings from the table have implications for model selection and deployment in practical 

applications. Object detection models with higher mAP50 percentages, trained on diverse datasets with 

a large number of images and classes, are better suited for real-world scenarios requiring accurate and 

reliable object recognition. Consideration of these factors is essential when choosing an object 

detection model for specific applications such as smart city surveillance, autonomous vehicles, and 

image analysis. 

As some state of the art models present a better performance than the OMOD-RetinaNet, there is a 

big difference in the amount of testing data and the number of classes. These factors directly affect the 

performance of the model, where bigger testing data results in decreasing the precision and fewer classes 

increase the precision of the model. For example, our testing data is more than 600000 images and the 
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pascal voc2007 is 4000 images. Also, if we compare the number of classes, our dataset presents 13 

classes and the BLIND dataset presents only 7 classes. 

When it comes to processing speed, the suggested model obtained 26 FPS, which is ideal for 

processing in real-time. When taking into account the object's velocity and the frequency of the 

surveillance camera, the attained speed will adhere to the requirements of real-time processing. The 

processing speed can be enhanced by using a higher performance platform with a better GPU. 

To test the generalization power of the proposed model, we test it using new images that do not 

belong to the dataset which we collect from the internet. The result is shown in Figure 5. The achieved 

results prove that the OMOD-RetinaNet have a good generalization power to detect outdoor moving 

objects at a new environment with a complex background and presents many challenges such as 

occluded objects and intra-class variation. 

 

Figure 5. Result of the OMOD-RetinaNet on new images. 

The reported results show a big balance between class precisions. So, all the achieved precisions 

are in a compressed range of values. This proves the efficiency of the OMOD-RetinaNet and the impact 

of the proposed improvements. The modification of the parameters of the focal loss was very effective 

for class precision balancing. Reducing the kernel size of the ResNet101 helped to extract rich 

information for small object detection. The proposed anchor scales and aspect ratios have improved 

the detection task. Also, the proposed RFM was very important to expand the receptive field in the 

detection layer without increasing the computation complexity. Overall, the proposed OMOD-

RetinaNet has improved the detection precision with more than 2% compared to the original RetinaNet. 
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An ablation study was performed to show the impact of the proposed contributions on the baseline 

model. For each ablation study, we maintain the proposed modification and manipulate the desired 

parameter. First, we investigated the impact of the proposed residual blocks which replace the 7x7 

filter by 3 filters with 3x3 kernel. Table 3 summarizes the achieved results. 

Table 3. Ablation study on the kernel size of the first residual block. 

 mAP50 (%) 

7x7 kernel 70.31 

3x3 kernel x 3 71.18 

Second, the impact of the RFM was investigated by testing the proposed model with the original 

setting and with the proposed RFM. Table 4 presents the achieved results. Through this ablation study, 

it is obvious that the proposed RFM has a wide impact on the performance of the proposed model for 

outdoor object detection. 

Table 4. Ablation study on the RFM. 

 mAP50 (%) 

original 69.91 

RFM 71.18 

5. Conclusions 

In the near future, smart cities will be a new lifestyle. To optimize the services of a smart city it 

must have an artificial intelligence system able to manipulate and process a huge amount of data daily. 

Most of the intelligent systems are based on surveillance data. In this work, we propose to build an 

automatic outdoor moving object detector. Outdoor moving objects are the main elements of the smart 

city for many tasks such as crime prevention, detecting diseases (coronavirus), finding lost peoples or 

animals, etc. The proposed outdoor moving objects detector was based on the RetinaNet object detector. 

RetinaNet was improved to make it suitable for outdoor moving objects detection. For the studied task, 

objects are small and moving. So, we improve RetinaNet in this way by optimizing the existing parts 

and adding other parts. We suggest starting by making the first convolution layer of the backbone use 

a smaller kernel. Second, in order to make it work for detecting small objects, we adjusted the anchor 

sizes, scales, and aspect ratios. Third, in order to obtain a proper class balance and eliminate the 

domination of the complex backdrop, the focal loss parameters were changed. Lastly, to improve the 

capability of detecting small objects, we incorporate a receptive field module. This module expands 

the receptive field at the detection layers without revealing the intricacy of the model. Our proposal is 

to merge three open-source datasets in order to train and test the OMOD-RetinNet. On the Nvidia 

GTX960, the suggested model's efficiency was demonstrated by an examination with a mAP50 of 71.18% 

and a processing speed of 26 FPS. The model's ability to detect objects that are heavily occluded by 

other objects or environmental elements may be limited. As a future work, the proposed methods will 

be explored for fine-grained classification of detected objects, for instance, distinguishing between 

different types of vehicles or identifying specific classes of objects relevant to smart city applications. 
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