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1. Introduction

Fractional calculus (FC) has been a key tool in many scientific fields in recent years, and it has
been used to formulate many novel and state of the art models. Fractional derivative operators are
important because they can improve the accuracy of models even when important real parameters
are not precisely known. Fractional differential operators of many kinds, including Caputo-Fabrizio,
Caputo, Riemann-Liouville, and Atangana-Baleanu, are covered in the scientific literature [1–3]. The
latter operators have proven to be effective in a variety of real-world models, especially in the field
of biology. As an example, Ghanbari and Cattani [4] have successfully used the Atangana-Baleanu
derivative to simulate two Lotka-Volterra models with mutualistic predation. An ideal control plan for
a novel variable order fractional tumor model under immune suppression was put forth by Sweilam
et al. [5]. Using fractional differential mathematical models that included memory effects, Danane et
al. [6] investigated the dynamics of the hepatitis B virus infection. A new fractional model of the human
liver was presented by Baleanu et al. [7] using the Caputo-Fabrizio fractional derivative, which is based
on the exponential kernel. A novel model of fractional SIRS-SI malaria transmission was introduced
by Kumar et al. [8]. Using the Atangana-Baleanu operator, Singh et al. [9] examined the dynamic
behaviour of a fractional fish farming model. Readers with an interest in practical models utilising
fractional derivatives are referred to references [10–13] for additional investigation. It is crucial to
remember that understanding interactions in these kinds of models depends on how they are solved.
This means that there are two main ways to solve mathematical models, analytically or numerically to
robustly apply approximate results. Analytical approaches assert themselves as powerful mathematical
tools when numerical methods fail. The application of fractional derivatives to scientific investigations
has been conducted both analytically and numerically in numerous studies [14–19]. The purpose of
these studies were to explore fractional derivative properties and applications in many different contexts
using mathematical expressions and computational simulations [20–24].

The investigation of analytical solutions for fractional partial differential equations (FPDEs) poses
a significant difficulty, leading to the emergence of many mathematical approaches aimed at tackling
this complex issue [25–27]. Researchers are particularly drawn to analytical solutions due to their
ability to offer a comprehensive understanding of the fundamental physical processes, and to reveal
the exact behavior of the modeled system, surpassing the capabilities of numerical methods [28–30].
Hence, the pursuit of analytical solutions within the domain of fractional partial differential equations
(FPDEs) is regarded as a pivotal and dynamic field of study [31]. Within the realm of scientific
literature, a multitude of mathematical techniques have been utilized to effectively address the
analytical resolution of fractional partial differential equations (FPDEs). This exemplifies the wide
range of methodologies employed by researchers in this field. Several techniques [32–40] have been
notably included among the methods being considered. Every method has distinct advantages,
expanding the range of techniques that may be used to solve fractional partial differential equations
(FPDEs) and enhancing our understanding of these intricate mathematical models [41–45].

Furthermore, a specific group of fractional partial differential equations (PDEs) presents
difficulties when attempting to solve them using traditional approaches. The proposed
approach [46–48], known for its ability to do complex algebraic calculations, is utilized for the
derivation of solitary wave solutions, peaked wave solutions, and precise wave solutions. By
employing a traveling wave transformation and the Riccati-Bernoulli equation, the specific partial
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differential equations (PDEs) undergo a smooth conversion into a set of algebraic equations. This
method simultaneously functions as a powerful mathematical tool for solving certain issues in
mathematical biology, demonstrating strong and effective performance. Further, the employed
methodology produces finite solutions, resulting in reliable and efficient outcomes for the equation
under investigation. Significantly, the notable characteristic of this phenomenon resides in the
incorporation of an unbounded assortment of solutions for the partial differential equations. The
Backlund transformation is also utilized to reveal a limitless sequence of solutions. Moreover, the
present study aims to employ this methodology in order to elucidate the fractional biological
population model. The results obtained make a substantial contribution to the understanding of
practical physical difficulties and complex scenarios, demonstrating the wide range of scientific fields
in which the suggested methodology may be effectively used.

Biological population models are essential in many areas of life and greatly advance our
knowledge of the dynamics of the environment, public health, and ecology. These models are
essential to ecology because they help anticipate and control species interactions, population increase,
and the effects of changing environmental conditions on ecosystems. They also act as essential
instruments in conservation biology, assisting researchers in determining a species’ susceptibility and
creating successful conservation plans. Biological population models play a key role in public health
research by helping to understand how infectious diseases spread, assess programs, and forecast the
start of epidemics. Numerous scientific studies have been conducted by scholars from different fields
to investigate a range of epidemic models with the goal of clarifying the complexities of disease
transmission dynamics and offering crucial information for the creation of successful public health
interventions [49–52]. In this study, we aim at solving the fractional biological population model with
the help of the presented methodology based on the Backlund transformation and based on the
previous work in fractional modeling. Traditional methods are often inadequate at capturing the
nuanced dynamics of biological populations due to the intricacies of ecological modeling. The
purpose of this study is to build upon the foundation laid by previous research and provide new
insight into the complex interplay of factors influencing population dynamics. Moreover, this paper
aims to investigate a wide range of soliton wave solutions, which could reveal hitherto undiscovered
phenomena and improve our comprehension of ecological systems and capacity to tackle urgent
environmental problems. The mathematical model of the general biological model can be represented
as [53]: Dα

t (F) = Dβ
x(D

β
x(F)) + Dγ

y(Dγ
y(F)) + χ(F), x, y ∈ Ω, t ≥ 0.

F = F(x, y, t), 0 < α, β, γ ≤ 1.
(1.1)

Consider the following: In mathematical biology, population density is presented as the variable
(F), and the population contribution from births and deaths is presented as the variable (χ). For a
region (Ω), (F) and (χ) are both time (t) and position (x, y) dependent functions that describe the
distribution dynamics of the diffusion of a biological species over (Ω). For a specific time (t) and
position (x, y), the F(x, y, t) function measures the number of people in a unit volume. In each given
subregion, the integral of F(x, y, t) offers a thorough representation of the entire population at any
given (t). Conversely, the function χ(F) explicates the average rate of individual introduction per unit
volume at (x, y) as a result of births and deaths. Three relevant cases are presented, illustrating the
intricate relationship between population dynamics and the underlying processes of birth and death,
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and emulating the constitutive equations for χ(F) for α→ 1.

(i) χ(F) = k, where k is an arbitrary constant. This leads to the Malthusian Law.
(ii) χ(F) = F(k1 − k2F), where k1 and k2 are positive constants. This leads to the Verhulst Law.

(iii) χ(F) = −kFδ, where k ≥ 0 and 0 < δ < 1. This leads to porous media.

In the current investigation, we consider several forms of Eq (1.1), defining the particular forms as
follows:

Dα
t (F) = Dβ

x(D
β
x(F)) + Dγ

y(Dγ
y(F)) + K

(
F2 − δ

)
. (1.2)

Dα
t (F) = Dβ

x(D
β
x(F)) + Dγ

y(Dγ
y(F)) + F (1 − δF) . (1.3)

The operator that represents the derivatives of order α adheres to the definition provided in
reference [54].

Dβ
ϕρ(ϕ) = lim

t→0

ρ(t(ϕ)1−β − ρ(ϕ))
t

, 0 < β ≤ 1. (1.4)

This investigation leverages the subsequent properties of this derivative:
Dβ
ϕϕ

j = jϕ j−β.

Dβ
ϕ ( j1η(ϕ) ± j2t(ϕ)) = j1Dβ

ϕ(η(ϕ)) ± j2Dβ
ϕ(t(ϕ)).

Dβ
ϕχ

[
ξτ(ϕ)

]
= χ

ϕ
ξ (ξ(ϕ))Dβ

ϕξ(ϕ).

(1.5)

2. Methodology

Suppose the following fractional partial differential equation were to arise:

P1

(
f ,Dα

t ( f ),Dβ
ζ1

( f ),Dγ
ζ2

( f ), f Dβ
ζ1

( f ), . . .
)

= 0, 0 < α, β, γ ≤ 1. (2.1)

The above polynomial consists of both the fractional order derivatives and the nonlinear terms.
The primary steps of this method will be discussed intensively, and we will consider the more
sophisticated wave transformation as a possible means to observe the feasible solutions for Eq (1.1).

F(x, y, t) = eiψ f (ψ). (2.2)

where,

ψ(x, y, t) = p
(
tα

α

)
+ q

(
xβ

β

)
+ r

(
yγ

γ

)
, p, q, r ∈ R. (2.3)

Whereas ψ represents the phase function. These functions are related to the complex variables x
and y, as well as the temporal variable t, hence demonstrating their reliance on the precise coordinates
and time. Equation (2.1) is subject to a modification resulting in the emergence of a nonlinear
ordinary differential equation (NODE), assuming the modified mathematical expression.

P2

(
f ,

d f
dψ

,
d2 f
dψ2 , f

d f
dψ

, . . .

)
= 0. (2.4)
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Consider the formal solution for Eq (2.4)

f (ψ) =

n∑
i=−n

biϑ(ψ)i. (2.5)

The bi constants must be found under the constraint that bn , 0, b−n , 0 at the same time.
Meanwhile, the Backlund transformation that follows produces the function.

ϑ(ψ) =
−τY + Xφ(ψ)

X + Yφ(ψ)
. (2.6)

Let (τ), (X), and (Y) be constants, with the condition that Y , 0. Additionally, let φ(ψ) be a function
that may be defined as:

dφ
dψ

= τ + φ(ψ)2. (2.7)

The solutions of Eq (2.7) are widely recognized [55] to be as follows:

(i) If τ < 0, then φ(ψ) = −
√
−τ tanh(

√
−τψ), or φ(ψ) = −

√
−τcoth(

√
−τψ). (2.8)

(ii) If τ > 0, then φ(ψ) =
√
τ tan(

√
τψ), or φ(ψ) = −

√
τcot(

√
τψ). (2.9)

(iii) If τ = 0, then φ(ψ) =
−1
ψ
. (2.10)

It should be noted that, out of the theoretical framework for Eq (2.4), it is possible to describe
the positive integer (N) by utilizing the homogeneous balancing principles. These principles equate
the nonlinear variables of Eq (2.5) in terms of the highest order derivatives. Indeed, for some degree
D[ f (ψ)] = N, the degrees of the associated expressions are

D
[
dp f
dψp

]
= N + p, D

[
f J dp f

dψp

]s

= NJ + s(p + N). (2.11)

In other words, combining Eq (2.5) and Eq (2.7) into Eq (2.4) and then redistributing the terms with
respect to the power of f (ψ) and setting them equal to zero, algebraic equations are created that may
then be solved. When Maple is used, this system is algorithmically solved to yield numerical values
for the parameters. As a result, this method allows one to solve accurately Eq (2.1) using the solutions,
which have the characteristics of solitons.

3. Evaluation of problems

Here, we utilize the process outlined in Section 2 to determine exact single wave solutions for the
fractional biological population model (1). We examine two particular scenarios within the biological
population model, simplifying each by using the wave transformation described in Eq (2.2) to make
the associated equations easier to understand.
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3.1. Problem 1

Examine the first case of the biological population model provided by Eq (1.2). Here, we present the
model following the transformation, which yields a nonlinear ordinary differential equation (NODE)
from the initial fractional partial differential equation (FPDE).

pF′ −
(
q2 + r2

)
F′′ − K

(
F2 − δ

)
= 0. (3.1)

In the study we incorporate the replacement given in Eq (2.5) into Eq (3.1) as well as Eqs (2.7)
and (2.4). Carefully collecting coefficients associated with φi(ψ), an algebraic system of equations is
built and then set equal to zero. With the aid of the computational tool Maple, we are able to solve the
system of algebraic equations given above and obtain the following results:
Case 1

b0 = 1/2
√
−τ−1b−1, b1 = 0, b−1 = b−1, b−2 = 1/2 τ

√
−τ−1b−1, b2 = 0, p = 10

(
q2 + r2

) 1
√
−τ−1

, q = q,

r = r, δ = −
b−1

2

τ
,K = −12 τ

(
q2 + r2

) 1
√
−τ−1

b−1
−1.

(3.2)

Case 2

b0 = 2 b2τ, b1 = 4
√
−τb2, b−1 = −4 √b2τ, b−2 = b2τ

2, b2 = b2, p = −20
√
−τ

(
q2 + r2

)
, q = q,

r = r, δ = 64 b2
2τ2,K = −6

q2 + r2

b2
.

(3.3)

Assuming Case 1, we get the following families of solutions for,

ψ =
qxβ

β
+

ryγ

γ
+ 10

(
r2 + q2

)
tα

1
√
−τ−1

α−1. (3.4)

Family 1: When τ < 0, Eq (1.2) brings about the resulting single-wave solutions:

F1(x, y, t) =eiψ

[
1
2
τ
√
−τ−1b−1

(
X − Y

√
−τ tanh

(√
−τψ

))2 (
−τY − X

√
−τ tanh

(√
−τψ

))−2

+
b−1

(
X − Y

√
−τ tanh

(√
−τψ

))
−τY − X

√
−τ tanh

(√
−τψ

) +
1
2

√
−τ−1b−1

]
.

(3.5)

or

F2(x, y, t) =eiψ

[
1
2
τ
√
−τ−1b−1

(
X − Y

√
−τ coth

(√
−τψ

))2 (
−τY − X

√
−τ coth

(√
−τψ

))−2

+
b−1

(
X − Y

√
−τ coth

(√
−τψ

))
−τY − X

√
−τ coth

(√
−τψ

) +
1
2

√
−τ−1b−1

]
.

(3.6)
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Family 2: When τ > 0, Eq (1.2) brings about the resulting single-wave solutions:

F3(x, y, t) =eiψ

[
1
2
τ
√
−τ−1b−1

(
X + Y

√
τ tan

(√
τψ

))2 (
−τY + X

√
τ tan

(√
τψ

))−2

+
b−1

(
X + Y

√
τ tan

(√
τψ

))
−τY + X

√
τ tan

(√
τψ

) +
1
2

√
−τ−1b−1

]
.

(3.7)

or

F4(x, y, t) =eiψ

[
1
2
τ
√
−τ−1b−1

(
X − Y

√
τ cot

(√
τψ

))2 (
−τY − X

√
τ cot

(√
τψ

))−2

+
b−1

(
X − Y

√
τ cot

(√
τψ

))
−τY − X

√
τ cot

(√
τψ

) +
1
2

√
−τ−1b−1

]
.

(3.8)

Family 3: When τ = 0, Eq (1.2) brings about the resulting single-wave solutions:

F5(x, y, t) = eiψ

1/2 τ√−τ−1b−1

(
X −

Y
ψ

)2 (
−τY −

X
ψ

)−2

+ b−1

(
X −

Y
ψ

) (
−τY −

X
ψ

)−1

+ 1/2
√
−τ−1b−1

 .
(3.9)

Assuming Case 2, we get the following families of solutions for,

ψ =
qxβ

β
+

ryγ

γ
− 20

√
−τ

(
r2 + q2

)
tα

α
. (3.10)

Family 1: When τ < 0, Eq (1.2) brings about the resulting single-wave solutions:

F6(x, y, t) =eiψ

b2τ
2
(
X − Y

√
−τ tanh

(√
−τψ

))2(
−τY − X

√
−τ tanh

(√
−τψ

))2 − 4

√
−τb2τ

(
X − Y

√
−τ tanh

(√
−τψ

))
−τY − X

√
−τ tanh

(√
−τψ

)
+ 2b2τ + 4

√
−τb2

(
−τY − X

√
−τ tanh

(√
−τψ

))
X − Y

√
−τ tanh

(√
−τψ

) +
b2

(
−τY − X

√
−τ tanh

(√
−τψ

))2(
X − Y

√
−τ tanh

(√
−τψ

))2

 .
(3.11)

or

F7(x, y, t) =eiψ

b2τ
2
(
X − Y

√
−τ coth

(√
−τψ

))2(
−τY − X

√
−τ coth

(√
−τψ

))2 − 4

√
−τb2τ

(
X − Y

√
−τ coth

(√
−τψ

))
−τY − X

√
−τ coth

(√
−τψ

)
+ 2b2τ + 4

√
−τb2

(
−τY − X

√
−τ coth

(√
−τψ

))
X − Y

√
−τ coth

(√
−τψ

) +
b2

(
−τY − X

√
−τ coth

(√
−τψ

))2(
X − Y

√
−τ coth

(√
−τψ

))2

 .
(3.12)
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Family 2: When τ > 0, Eq (1.2) brings about the resulting single-wave solutions:

F8(x, y, t) =eiψ

b2τ
2
(
X + Y

√
τ tan

(√
τψ

))2(
−τY + X

√
τ tan

(√
τψ

))2 − 4

√
−τb2τ

(
X + Y

√
τ tan

(√
τψ

))
−τY + X

√
τ tan

(√
τψ

) + 2b2τ

+
4
√
−τb2

(
−τY + X

√
τ tan

(√
τψ

))
X + Y

√
τ tan

(√
τψ

) . +
b2

(
−τY + X

√
τ tan

(√
τψ

))2(
X + Y

√
τ tan

(√
τψ

))2

 .
(3.13)

or

F9(x, y, t) =eiψ

b2τ
2
(
X − Y

√
τ cot

(√
τψ

))2(
−τY − X

√
τ cot

(√
τψ

))2 − 4

√
−τb2τ

(
X − Y

√
τ cot

(√
τψ

))
−τY − X

√
τ cot

(√
τψ

) + 2b2τ

+ 4

√
−τb2

(
−τY − X

√
τ cot

(√
τψ

))
X − Y

√
τ cot

(√
τψ

) +
b2

(
−τY − X

√
τ cot

(√
τψ

))2(
X − Y

√
τ cot

(√
τψ

))2

 .
(3.14)

Family 3: When τ = 0, Eq (1.2) brings about the resulting single-wave solutions:

F10(x, y, t) =eiψ

b2τ
2
(
X −

Y
ψ

)2 (
−τY −

X
ψ

)−2

− 4
√
−τb2τ

(
X −

Y
ψ

) (
−τY −

X
ψ

)−1

+ 2b2τ

+ 4
√
−τb2

(
−τY −

X
ψ

) (
X −

Y
ψ

)−1

+ b2

(
−τY −

X
ψ

)2 (
X −

Y
ψ

)−2 . (3.15)

3.2. Problem 2

Examine the second case of the biological population model provided by Eq (1.3). Here, we
present the model following the transformation, which yields a nonlinear ordinary differential
equation (NODE) from the initial fractional partial differential equation (FPDE).

pF′ −
(
q2 + r2

)
F′′ − F (1 − δF) = 0. (3.16)

In the study we incorporate the replacement given in Eq (2.5) into Eq (3.16) as well as Eqs (2.7)
and (2.4). Carefully collecting coefficients associated with φi(ψ), an algebraic system of equations is
built and then set equal to zero. With the aid of the computational tool Maple, we are able to solve the
system of algebraic equations given above and obtain the following results:
Case 1

b0 = −
b−2

τ
, b1 = 0, b−1 = 2

√
−τ−1b−2, b−2 = b−2, b2 = 0, p = −

5
12

√
−τ−1,

q = 1/12

√
−

6 + 144 r2τ

τ
, r = r, δ = −1/4

τ

b−2
,K = K.

(3.17)

Case 2

b0 = 10 b2τ, b1 = 4
√
−τb2, b−1 = −4

√
−τb2τ, b−2 = b2τ

2, b2 = b2, p = −
5

24

√
−τ

τ
,

q = 1/24

√
−
−6 + 576 r2τ

τ
, r = r, δ = 1/16

1
b2τ

,K = K.
(3.18)
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Assuming Case 1, we get the following families of solutions for,

ψ = 1/12

√
−

6 + 144 r2τ

τ
xββ−1 +

ryγ

γ
−

5
12

√
−τ−1tαα−1. (3.19)

Family 1: When τ < 0, Eq (1.3) brings about the resulting single-wave solutions:

G1(x, y, t) =eiψ

b−2

(
X − Y

√
−τ tanh

(√
−τΨ

))2(
−τY − X

√
−τ tanh

(√
−τψ

))2 + 2
√
−τ−1b−2

(
X − Y

√
−τ tanh

(√
−τψ

))
(
−τY − X

√
−τ tanh

(√
−τψ

))−1
−

b−2

τ

]
.

(3.20)

or

G2(x, y, t) =eiψ

b−2

(
X − Y

√
−τ coth

(√
−τΨ

))2(
−τY − X

√
−τ coth

(√
−τψ

))2 + 2
√
−τ−1b−2

(
X − Y

√
−τ coth

(√
−τψ

))
(
−τY − X

√
−τ coth

(√
−τψ

))−1
−

b−2

τ

]
.

(3.21)

Family 2: When τ > 0, Eq (1.3) brings about the resulting single-wave solutions:

G3(x, y, t) =eiψ

b−2

(
X + Y

√
τ tan

(√
τψ

))2(
−τY + X

√
τ tan

(√
τψ

))2 + 2
√
−τ−1b−2

(
X + Y

√
τ tan

(√
τψ

))
(
−τY + X

√
τ tan

(√
τψ

))−1
−

b−2

τ

]
.

(3.22)

or

G4(x, y, t) =eiψ

b−2

(
X − Y

√
τ cot

(√
τψ

))2(
−τY − X

√
τ cot

(√
τψ

))2 + 2
√
−τ−1b−2

(
X − Y

√
τ cot

(√
τψ

))
(
−τY − X

√
τ cot

(√
τψ

))−1
−

b−2

τ

]
.

(3.23)

Family 3: When τ = 0, Eq (1.3) brings about the resulting single-wave solutions:

G5(x, y, t) = eiψ

b−2

(
X −

Y
ψ

)2 (
−τY −

X
ψ

)−2

+ 2
√
−τ−1b−2

(
X −

Y
ψ

) (
−τY −

X
ψ

)−1

−
b−2

τ

 . (3.24)

Assuming Case 2, we get the following families of solutions for,

ψ = −
1

96

(
−1 + 96 r2τ

)
xβ

τβ
+

ryγ

γ
−

5
24

√
−τtα

τα
. (3.25)
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Family 4: When τ < 0, Eq (1.3) brings about the resulting single-wave solutions:

G6(x, y, t) =eiψ

b2τ
2
(
X − Y

√
−τ tanh

(√
−τψ

))2(
−τY − X

√
−τ tanh

(√
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))2 − 4
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−τb2τ
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−τ tanh

(√
−τψ

))
−τY − X
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−τ tanh

(√
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)
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(
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√
−τ tanh

(√
−τψ

))
X − Y

√
−τ tanh

(√
−τψ

) +
b2

(
−τY − X

√
−τ tanh

(√
−τψ

))2(
X − Y

√
−τ tanh

(√
−τψ

))2

 .
(3.26)

or

G7(x, y, t) =eiψ

b2τ
2
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√
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−τψ

))2(
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−τ coth

(√
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))2 − 4
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))
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√
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)
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) +
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√
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−τψ

))2(
X − Y

√
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(√
−τψ

))2

 .
(3.27)

Family 5: When τ > 0, Eq (1.3) brings about the resulting single-wave solutions:

G8(x, y, t) =eiψ

b2τ
2
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(3.28)

or

G9(x, y, t) =eiψ
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(3.29)

Family 6: When τ = 0, Eq (1.3) brings about the resulting single-wave solutions:

G10(x, y, t) =eiψ

[
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− 4
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(3.30)
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4. Results and discussion

When it comes to biological population models, the Riccati-Bernoulli sub-ODE approach is a
potent analytical technique that is especially useful in the field of advanced biological sciences. The
efficiency of the approach resides in its capacity to provide a multitude of periodic and single traveling
wave solutions, each with unique properties. Interestingly, this is accomplished without the need of
discretization and linearization steps, which are frequently used in problem-solving techniques.
Consequently, the results provided by this method are accurate solutions for various biological
population models in modern biological science. Specifically, this method contributes to knowing the
dynamics of the constituents of biological populations through revealing the complicated rules that
regulate biological events. This method is context-aware for the subtleties of biological systems and is
further complimented by its ability to produce multiple solutions with different parameters.
Additionally, the preferred families of analytical solutions produced by the method provide
appropriate references for solving biological modeling analytically. From an analytical perspective, it
enables accurate prediction of analytical results and also supports stability investigations, which helps
make computer models of biological populations accurate. Soliton generation due to the solitons,
ability to travel with minimum energy loss is another feature of the method. When describing wave
motion in biological population models, soliton dynamics follows the same rules. Solitons represent
population dynamics and phenomena that can spread a lot and maintain their shape even after
interacting with other population waves in a unique biological population model. This fact that
phenomena resulting in solitons emerge as a consequence of this unique emphasis on linear and
nonlinear effects grants us a fresh perspective on how populations act in higher biological science. An
effective and computationally practical way for addressing complex algebraic computations is the
Riccati-Bernoulli sub-ODE method. It is commonly known that creating a general analytical
technique that can be used for any type of nonlinear partial differential equation (NLPDE) is
extremely difficult, and the Riccati-Bernoulli sub-ODE method is no different. This approach, like
other analytical techniques, aims to get exact solutions for Eq 1.1. It is crucial to remember that
efforts to improve the effectiveness of the Backlund and sub-ODE transformations are still underway.
Subsequent efforts will concentrate on developing these approaches to unleash even more potent
potential, which will enable the identification of precise solutions for a wider range of NLPDEs. For
the problems considered, the proposed approach produces three different families of solitary wave
solutions. The solitary wave solutions that fall into these categories are rational when (τ = 0),
hyperbolic when (τ > 0), and periodic when (τ < 0). Figures 1–6 show the wave behaviors of these
solutions graphically, giving a thorough knowledge of their dynamic properties.
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(a) 3D plot displaying the real component of
F5(x, y, t).

(b) Contour plot illustrating the real part of
F5(x, y, t).

(c) 3D plot displaying the imaginary component
of F5(x, y, t).

(d) Contour plot illustrating the imaginary part of
F5(x, y, t).

Figure 1. Within these visualizations, differing degrees of granularity are displayed for the
complex factors of F5(x, y, t).
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(a) 3D plot displaying the real component of
F8(x, y, t).

(b) Contour plot illustrating the real part of
F8(x, y, t).

(c) 3D plot displaying the imaginary component
of F8(x, y, t).

(d) Contour plot illustrating the imaginary part of
F8(x, y, t).

Figure 2. Within these visualizations, differing degrees of granularity are displayed for the
complex factors of F8(x, y, t).
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(a) 3D plot displaying the real component of
F10(x, y, t).

(b) Contour plot illustrating the real part of
F10(x, y, t).

(c) 3D plot displaying the imaginary component
of F10(x, y, t).

(d) Contour plot illustrating the imaginary part of
F10(x, y, t).

Figure 3. Within these visualizations, differing degrees of granularity are displayed for the
complex factors of F10(x, y, t). in this plots.
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(a) 3D plot displaying the real component of
G1(x, y, t).

(b) Contour plot illustrating the real part of
G1(x, y, t).

(c) 3D plot displaying the imaginary component
of G1(x, y, t).

(d) Contour plot illustrating the imaginary part of
G1(x, y, t).

Figure 4. Within these visualizations, differing degrees of granularity are displayed for the
complex factors of G1(x, y, t).
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(a) 3D plot displaying the real component of
G5(x, y, t).

(b) Contour plot illustrating the real part of
G5(x, y, t).

(c) 3D plot displaying the imaginary component
of G5(x, y, t).

(d) Contour plot illustrating the imaginary part of
G5(x, y, t).

Figure 5. Within these visualizations, differing degrees of granularity are displayed for the
complex factors of G5(x, y, t).
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(a) 3D plot displaying the real component of
G9(x, y, t).

(b) Contour plot illustrating the real part of
G9(x, y, t).

(c) 3D plot displaying the imaginary component
of G9(x, y, t).

(d) Contour plot illustrating the imaginary part of
G9(x, y, t).

Figure 6. Within these visualizations, differing degrees of granularity are displayed for the
complex factors of G9(x, y, t).

5. Conclusions

In this current work, Riccati-Bernoulli sub-ODE techniques are systematically applied to fractional-
order biological population models. The graphical illustrations of the acquired solutions validate the
effectiveness of the suggested strategies. The analysis indicates a change in the geometric features
of the issues under various circumstances. Notably, the new approaches provide a more insightful
and efficient comprehension of the dynamics inherent in the researched physical phenomena when
compared to alternative analytical methods. The investigation includes three important traveling wave
solutions: solutions for rational, hyperbolic, and trigonometric functions. These answers add to a
thorough comprehension of the various behaviors displayed by various physical events. In addition,
the current method’s adaptability is investigated in order to obtain new families of solutions for the
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given problem. The improved method makes it easier to design solutions that are closely matched with
the physical challenges that arise in applied research by adding a free parameter to the solution.
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