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1. Introduction

Fixed point theory, a cornerstone of mathematical analysis, investigates the existence and
uniqueness of solutions represented by “fixed points” of a function. This theory plays a crucial role
in various scientific disciplines [1–3]. In this particular theory, the foundational breakthrough emerges
with the Banach contraction principle [4], notable for its application within the realm of complete
metric spaces. The concept of the metric space itself was introduced by M. Frechet [5] in 1906. Inspired
by the impact of this seminal work on fixed point theory, numerous researchers have undertaken
endeavors to extend these concepts in recent years (see. [6–8]). The concept of Gm-metric space was
first introduced in 2006 by Mustafa et al. [9]. They established some outcomes in fixed point theory for
contractive functions in this space. Thereafter, Mustafa et al. [10] obtained coincidence point theorems
for generalized-weakly contractive mappings. Kaewchareon et al. [11] introduced the concept of
Housdorff distance function in the setting of Gm-metric spaces and established fixed point theorems for
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multivalued mappings. Afterward, Tahat et al. [12] utilized the idea of foregoing the Housdorff distance
function to establish coincidence point and common fixed point results. Following the pioneer article
of Mustafa et al. [9], a number of authors have established various results (see [13–18]). Subsequently,
Samet et al. [19,20] observed that several previously published theorems in the context of a quasimetric
spaces may be used to deduce some results in the setting of Gm-metric space. According to Samet et
al., one may construct an analogous result in the configuration of a quasimetric space if the contractive
condition employed in the result constructed in the framework of Gm-metric space can be reduced
to two variables from three variables. More specifically, they noted that the Gm-metric produces a
quasimetric d, defined by d(h, ω) = Gm(h, ω, ω).

On the other hand, Samet et al. [21] introduced the notions of α-admissble mapping and (α, ψ)-
contraction in the framework of complete metric spaces and the generalized Banach contraction
principle. Subsequently, Alghamdi et al. [22] extended the concept of α-admissible mapping to G-
metric spaces. Later on, Mustafa et al. [23] gave the idea of multivalued α-admissible mapping in the
context of G-metric spaces.

Recently, Jleli et al. [24] introduced a new type of contraction named the κ-contraction and
established some fixed point results. Li et al. [25] used this new contraction and proved some
generalized fixed point theorems. Al-Rawashdeh et al. [26] established common fixed point results
for κ-contraction and extended some well-known results of literature.

In this research article, we introduce new concepts such as (κGm)-contractions and generalized
(α, κGm)-contraction to establish new fixed point, coincidence point and common fixed point theorems.
These findings extend and generalize several results found in existing literature.

2. Preliminaries

We present a few needed definitions and outcomes in this part.

Definition 1. ( [9]) A nonempty set M with the Gm : M × M × M → R+ is a mapping with the
following characteristics.

(Gm1) 0 < Gm (h, h, ω) , for all h, ω ∈ M with h , ω,
(Gm2) Gm (h, ω,Φ) = 0 if h = ω = Φ,
(Gm3) Gm (h, ω,Φ) = Gm (h,Φ, ω) = Gm (ω,Φ, h) = · · · (symmetry in all three variables),
(Gm4) Gm (h, h, ω) ≤ Gm (h, ω,Φ) , for all h, ω,Φ ∈ M with ω , Φ,
(Gm5) Gm (h, ω,Φ) ≤ Gm (h, a1, a1) +Gm (a1, ω,Φ) , for all h, ω,Φ, a1 ∈ M (rectangle inequality).
The pair (M,Gm) is referred to a generalized metric space, and the mapping is known as a

generalized metric or Gm metric onM.

Definition 2. ( [9]) Considering (M,Gm) to be a generalized-metric space and
(
hg

)
to be a sequence

ofM points, we may say that (hn) is Gm-convergent to h ∈ M . if limn,p→∞Gm

(
h, hn, hp

)
= 0, that is,

considering ϵ > 0, there exists s ∈ N such that Gm

(
h, hn, hp

)
< ϵ, for all n, p ≥ s. A point of the series

is named h so hn → h or limn→∞hn = h .

Proposition 1. ( [9]) A generalized metric space would be (M,Gm). The following claims are
equivalent.
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(1) (hn) is Gm-convergent to h,
(2) Gm (hn, hn, h)→ 0 as n→ ∞,
(3) Gm (hn, h, h)→ 0 as n→ ∞,
(4) Gm

(
hn, hp, h

)
→ 0 as n, p→ ∞.

Definition 3. ( [9]) In a generalized metric space (M,Gm), if for each ϵ > 0, there is s ∈ N such that
Gm

(
hn, hp, hq

)
< ϵ, for all n, p, q ≥ s, then the sequence (ht) is said to be Gm-Cauchy sequence that is

Gm

(
hn, hp, hq

)
→ 0 as n, p, q→ +∞.

Definition 4. ( [9]) Every Gm-Cauchy sequence must be Gm-convergent in a Gm-metric space (M,Gm)
which is Gm-complete.

The metric dGm onM defined by any generalized metric onM is given below

dGm (h, ω) = Gm (h, ω, ω) +Gm (ω, h, h) , (2.1)

for all h, ω ∈ M.

Example 1. ( [9]) Let (M, d) be a metric space. The mapping Gm :M×M×M → [0,+∞), defined
by

Gm(h, ω,Φ) = max{d(h, ω), d(ω,Φ), d(Φ, h)},

Gm(h, ω,Φ) = d(h, ω) + d(ω,Φ) + d(Φ, h),

for all h, ω,Φ ∈ M, is a generalized metric onM.

Theorem 1. ( [9]) Considering (M, d) to be a metric space, (M, d) is a complete metric space if and
only if, (M,Gm) is a complete generalized metric space.

The following ideas were recently suggested by Kaewchareon et al. [11]. We will refer to the
family of all closed, bounded subsets ofM that are not empty as CB (M). The Hausdorff Gm-distance
on CB (M) is denoted by H (A1, B2,C3) and defined as:

HGm (A1, B2,C3) = max
{

sup
h∈A1

Gm (h, B2,C3) , sup
h∈B2

Gm (h,C3, A1) , sup
h∈C3

Gm (h, A1, B2)
}
,

where

Gm (h, B2,C3) = dGm (h, B2) + dGm (B2,C3) + dGm (h,C3) ,

dGm (A1, B2) = inf
{
dGm (a1, b2) , a1 ∈ A1, b2 ∈ B2

}
,

dGm (h, B2) = inf
{
dGm (h, ω) , ω ∈ B2

}
.

Remember that Gm (h, ω,C3) = inf {Gm (h, ω,Φ) , Φ ∈ C3} . A function ŵ : M −→ 2M is named as a
multivalued function. If h ∈ ŵh, then the point h ∈ M is referred to as a fixed point of ŵ.

Lemma 1. If A1, B2 ∈ CB(M) and a1 ∈ A1, at the point ∀ ε > 0, there remains b2 ∈ B2 such that

Gm (a1, b2, b2) ≤ HGm (A1, B2, B2) + ϵ.
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Definition 5. ( [11,12]) LetM be a given set containing at least one element. Suppose that j :M −→
M and ŵ : M −→ 2M. If f = j(h) ∈ ŵ(h) for some h ∈ M, then h is named a coincidence point of
mapping ŵ and j. Also, f is said to be a point of coincidence of j and ŵ. If f = h, then f is said to be
a common fixed point of j and ŵ. Functions j and ŵ are named as weakly compatible if j(h) ∈ ŵ(h) for
some h ∈ M implies jŵ (h) ⊆ ŵ j (h) .

Proposition 2. ( [11, 12]) LetM be a given set containing at least one element. Suppose two weakly
compatible functions j and ŵ, where j :M −→M and ŵ :M −→ 2M. If the point of coincidence ‘ f ’
of j and ŵ is unique, then f will be the unique common fixed point of j and ŵ.

A new contraction and a related fixed point theorem was established by Jleli et al. [24], which is
given below.

Definition 6. Consider a mapping κ : (0,∞)→ (1,∞) fulfilling:

(κ1) κ is a nondecreasing function,
(κ2) for every sequence {αn} ⊆ R

+, limn→∞ κ(αn) = 1 if, and only if, limn→∞(αn) = 0,
(κ3) there exist z ∈ (0,∞] and 0 < r < 1 such that limα→0+

κ(α)−1
αr = z;

A mapping L : M → M is said to be a κ-contraction if there exist any constant λ ∈ (0, 1) and a
function κ satisfying (κ1)-(κ3) and

d(Lh,Lω) , 0 =⇒ κ(d(Lh,Lω)) ≤ [κ(d(h, ω))]λ, (2.2)

for all h, ω ∈ M.

Theorem 2. ( [24]) Let (M, d) be a complete metric space and L :M→M be a κ-contraction, then
L has a unique fixed point.

Subsequently, Hancer et al. [27] added a general condition (κ4) to the aforementioned Definition 6,
which is stated as follows:

(κ4) If A1 ⊂ (0,∞) with inf A1 > 0, then inf κ(A1) = κ(inf A1).

We represent the set of all continuous functions κ : (0,∞) → (1,∞) satisfying the conditions (κ1)-
(κ4) by Ω, in accordance with Hancer et al. [27].

3. Main result

We introduce the notion of (κGm)-contraction in this section and present our main result with
corollaries and examples.

Definition 7. Consider the generalized metric space (M,Gm), the multivalued function L : M −→
CB (M) , and the self function j : M −→ M. The functions L and j satisfy (κGm)-contraction if there
exist κ ∈ Ω and λ ∈ (0, 1) such that

HGm (Lh,Lω,LΦ) > 0 implies κ
(
HGm (Lh,Lω,LΦ)

)
≤

[
κ (Gm ( jh, jω, jΦ))

]λ , (3.1)

for all h, ω,Φ ∈ M.
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Theorem 3. Let (M,Gm) be a generalized metric space , L : M −→ CB (M) be a multivalued
function, and j :M −→ M is a self-mapping. Suppose that there exist κ ∈ Ω and λ ∈ (0, 1) such that
the functions L and j satisfy (κGm)-contraction. Then, j and L have a point of coincidence inM, if for
any h ∈ M, Lh ⊆ j (M) and j (M) is a Gm-complete subspace ofM. Moreover, if we suppose that
ju ∈ Lu and jv ∈ Lv implies Gm ( jv, ju, ju) ≤ HGm (Lv,Lu,Lu), then
(i) j and L have a unique point of coincidence.
(ii) Furthermore, if j and L are weakly compatible, then j and L have a unique common fixed point.

Proof. Let h0 represent any chosen point inM. Since Lh0 ⊆ j (M) , choose h1 in the setM such that
jh1 ∈ Lh0. If jh1 = jh0, then j and L have a point of coincidence. So, we suppose that jh0 , jh1.
Now, Lh1 , ∅, and if Lh0 = Lh1, then, again, j and L have a point of coincidence by the fact that
jh1 ∈ Lh0 = Lh1. So, we assume that Lh0 , Lh1. Then, HGm (Lh0,Lh1,Lh1) > 0.

Now, by the inequality (3.1), we have

κ (Gm ( jh1,Lh1,Lh1)) ≤ κ
(
HGm (Lh0,Lh1,Lh1)

)
≤

[
κ (Gm ( jh0, jh1, jh1))

]λ . (3.2)

From ( κ4), we know that

κ (Gm ( jh1,Lh1,Lh1)) = inf
ω∈Lh1

κ(Gm ( jh1, ω, ω)).

Thus from (3.2), we get

inf
ω∈Lh1

κ(Gm ( jh1, ω, ω)) ≤
[
κ (Gm ( jh0, jh1, jh1))

]λ . (3.3)

Since Lh1 ⊆ j (M), we deduce that there exists h2 ∈ M and ω = jh2 ∈ Lh1 such that

κ(Gm ( jh1, jh2, jh2)) ≤
[
κ (Gm ( jh0, jh1, jh1))

]λ . (3.4)

Similarly, as jh2 ∈ Lh1, if jh2 = jh1, then w = jh1 is a point of coincidence of mapping j and
L and we obtain the required result. Suppose that jh1 , jh2. Now, if Lh1 = Lh2, then, again,
by jh2 ∈ Lh1 = Lh2, j and L have point of coincidence. So, we assume that Lh1 , Lh2. Then,
HGm (Lh1,Lh2,Lh2) > 0. Now, by (3.1), we have

κ (Gm ( jh2,Lh2,Lh2)) ≤ κ
(
HGm (Lh1,Lh2,Lh2)

)
≤

[
κ (Gm ( jh1, jh2, jh2))

]λ . (3.5)

From the condition ( κ4), we know that

κ (Gm ( jh2,Lh2,Lh2)) = inf
ω∈Lh2

κ(Gm ( jh2, ω, ω)).

Thus from (3.5), we get

inf
ω∈Lh2

κ(Gm ( jh2, ω, ω)) ≤
[
κ (Gm ( jh1, jh2, jh2))

]λ . (3.6)

Since Lh2 ⊆ j (M), we deduce that there exists h3 ∈ M and ω = jh3 ∈ Lh2 such that

κ(Gm ( jh2, jh3, jh3)) ≤
[
κ (Gm ( jh1, jh2, jh2))

]λ . (3.7)
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In the same way, we will define a sequence { jhn} ⊂ M such that jhn < Lhn, jhn+1 ∈ Lhn and

κ(Gm ( jhn, jhn+1, jhn+1)) ≤
[
κ(Gm ( jhn−1, jhn, jhn))

]λ , (3.8)

for all n ∈ N. Therefore

1 < κ(Gm ( jhn, jhn+1, jhn+1)) ≤
[
κ(Gm ( jhn−1, jhn, jhn))

]λ
≤

[
κ(Gm ( jhn−2, jhn−1, jhn−1))

]λ2

≤ · · ·

≤
[
κ(Gm ( jh0, jh1, jh1))

]λn
, (3.9)

for all n ∈ N. Since κ ∈ Ω, by taking the limit as n −→ ∞ in (3.9), we have

lim
n−→∞

κ(Gm ( jhn, jhn+1, jhn+1)) = 1. (3.10)

From the condition (κ2), we have

lim
n−→∞

Gm ( jhn, jhn+1, jhn+1) = 0.

From the condition (κ3), there exist z ∈ (0,∞] and 0 < r < 1 such that

lim
n→∞

κ(Gm ( jhn, jhn+1, jhn+1)) − 1
Gm ( jhn, jhn+1, jhn+1)r = z. (3.11)

Let us consider z < ∞. For the above condition, take B2 =
z
2 > 0. Using the condition of the limit of a

sequence, there exists n0 ∈ N, and we have

|
κ(Gm ( jhn, jhn+1, jhn+1)) − 1

Gm ( jhn, jhn+1, jhn+1)r − z| ≤ B2

for all n > n0. This implies that

κ(Gm ( jhn, jhn+1, jhn+1)) − 1
Gm ( jhn, jhn+1, jhn+1)r ≥ z − B2 =

z
2
= B2

for all n > n0. We get

nGm ( jhn, jhn+1, jhn+1)r
≤ A1n[κ(Gm ( jhn, jhn+1, jhn+1)) − 1] (3.12)

for all n > n0, where A1 =
1

B2
. Let us take z = ∞. We take B2 > 0 any random positively number. Using

condition of limit,

B2 ≤
κ(Gm ( jhn, jhn+1, jhn+1)) − 1

Gm ( jhn, jhn+1, jhn+1)r ,

for all n > n0. This implies that

nGm ( jhn, jhn+1, jhn+1)r
≤ A1n[κ(Gm ( jhn, jhn+1, jhn+1)r

− 1],
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for all n > n0, where A1 =
1

B2
. For every case, there exist A1 > 0 and n0 ∈ N,

nGm ( jhn, jhn+1, jhn+1)r
≤ A1n[κ(Gm ( jhn, jhn+1, jhn+1)r) − 1], (3.13)

for all n > n0. Thus, by (3.9) and (3.13), we get

nGm ( jhn, jhn+1, jhn+1)r
≤ A1n(

[
κ(Gm ( jh0, jh1, jh1))

]rn
− 1). (3.14)

Letting n→ ∞ in the above inequality, we obtain

lim
n→+∞

nGm ( jhn, jhn+1, jhn+1)r = 0.

Hence, there is n1 ∈ N such that

Gm ( jhn, jhn+1, jhn+1) ≤
1

n1/r , (3.15)

for all n > n1. We are now going to prove that { jhn} is a Gm-Cauchy sequence.
For p > n > n1, we have

Gm

(
jhn, jhp, jhp

)
≤

p−1∑
i=n

Gm ( jhi, jhi+1, jhi+1)

≤

p−1∑
i=n

1

i
1
r

≤

∞∑
i=1

1

i
1
r

. (3.16)

Since r ∈ (0, 1), the series
∞∑

i=1

1
i

1
r

converges. As a result, Gm

(
jhn, jhp, jhp

)
−→ 0 as p, n −→ ∞.

Hence, { jhn} is a Gm-Cauchy sequence in complete subspace j (M) , and this confirms the existence of
v ∈ j (M) such that

lim
n−→∞

Gm ( jhn, jhn, v) = lim
n−→∞

Gm ( jhn, v, v) = 0. (3.17)

Since v ∈ j (M), there exists u ∈ M such that v = ju. Thus from (3.17), we have

lim
n−→∞

Gm ( jhn, jhn, ju) = lim
n−→∞

Gm ( jhn, ju, ju) = 0.

We are going to prove that ju ∈ Lu. If there exists a sequence {nµ} such that jhnµ ∈ Lu, for all µ ∈ N,
as jhnµ → ju, the proof is successfully finished, since we have obtained ju ∈ Lu because Lu is closed.
Suppose that there is n0 ∈ N such that jhn+1 < Lu, for all n ∈ N and n ≥ n0, then Lhn , Lu,

therefore,
Gm ( jhn+1,Lu,Lu) ≤ HGm(Lhn,Lu,Lu). (3.18)

So, by (3.1), we get

κ(Gm ( jhn+1,Lu,Lu)) ≤ κ(HGm(Lhn,Lu,Lu))
≤

[
κ(Gm( jhn, ju, ju))

]λ
≤ κ(Gm( jhn, ju, ju)).
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From the condition (κ1), we have

Gm ( jhn+1,Lu,Lu) ≤ Gm( jhn, ju, ju). (3.19)

Using the assumption that the function Gm is continuous on its three variables and allowing n→ ∞
in the preceding inequality, we obtain Gm( ju,Lu,Lu) = 0. As Lu is closed, we obtained ju ∈ Lu. It
follows that there exists a point of coincidence v of L and j. We shall demonstrate the uniqueness of
the point of coincidence of L and j. Assume that there exists another point of coincidence σ of L and
j such that σ = jϖ ∈ Lϖ and ju , jϖ. Thus, we have

Gm ( jϖ, ju, ju) ≤ HGm (Lϖ,Lu,Lu) .

We get by (3.1):

κ(Gm ( jϖ, ju, ju) ≤ κ(HGm (Lϖ,Lu,Lu) ≤
[
κ(Gm ( jϖ, ju, ju)

]λ .
Additionally, we get

1 < κ(Gm ( jϖ, ju, ju)) ≤
[
κ(Gm ( jϖ, ju, ju)

]λ . (3.20)

Letting n→ ∞ in (3.20), we have

lim
n→+∞

κ(Gm ( jϖ, ju, ju)) = 1.

By the condition (κ2), we get

Gm ( jϖ, ju, ju) = lim
n→+∞

Gm ( jϖ, ju, ju) = 0.

That is, jϖ = ju. Hence, the point of coincidence for j and L is unique. Assume that j and L are
weakly compatible. By using the proposition 2, we can easily obtain the common fixed point of j and
L which will be unique. □

Example 2. LetM = [0, 1]. Define functionL :M −→ CB (M) byLh =
[
0, h

25

]
and define j :M −→

M by j (h) = 3h
4 . Define a generalized metric onM by Gm (h, ω,Φ) = |h − ω| + |ω − Φ| + |h − Φ| .

We get

(1) the mappings L and j are weakly compatible;
(2) j (M) is Gm-complete;
(3) Lh ⊆ j (M);

(4) the functions L and j satisfy (κGm)-contraction, where κ(α) = exp
√
α and λ =

√
32
75 ∈ (0, 1) .

Solution: First three conditions are satisfied easily. We need to prove the condition (4) .
We have dGm (h, ω) = Gm (h, ω, ω) + Gm (ω, h, h) = 4 |h − ω| , for all h, ω ∈ M. To prove the

condition (4) , let h, ω, Φ ∈ M. If at least one of h, ω, and Φ being 0, then Lh = Lω = LΦ = 0,
and HGm (Lh,Lω,LΦ) = 0, thus we may suppose that h, ω, and Φ are nonzero. Without changing in
conception, let us suppose h < ω < Φ. We get

HGm (Lh,Lω,LΦ) = HGm

([
0,

h
25

]
,
[
0,
ω

25

]
,

[
0,
Φ

25

])
AIMS Mathematics Volume 9, Issue 6, 15949–15965.
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= max


sup0≤a1≤

h
25

Gm

(
a1,

[
0, ω25

]
,
[
0, Φ25

])
,

sup0≤b2≤
ω
25

Gm

(
b2,

[
0, h

25

]
,
[
0, Φ25

])
,

sup0≤c3≤
Φ
25

Gm

(
c3,

[
0, h

25

]
,
[
0, ω25

])
 . (3.21)

Since h < ω < Φ, then
[
0, h

25

]
⊆

[
0, ω25

]
⊆

[
0, Φ25

]
, which implies that

dGm

([
0,

h
25

]
,
[
0,
ω

25

])
= dGm

([
0,
ω

25

]
,

[
0,
Φ

25

])
= dGm

([
0,

h
25

]
,

[
0,
Φ

25

])
= 0.

Now, for each 0 ≤ a1 ≤
h
25 , we have

Gm

(
a1,

[
0,
ω

25

]
,

[
0,
Φ

25

])
= dGm

(
a1,

[
0,
ω

25

])
+ dGm

([
0,
ω

25

]
,

[
0,
Φ

25

])
+ dGm

(
a1,

[
0,
Φ

25

])
= 0.

Also, for each 0 ≤ b2 ≤
ω
25 , we have

Gm

(
b2,

[
0,

h
25

]
,

[
0,
Φ

25

])
= dGm

(
b2,

[
0,

h
25

])
+ dGm

([
0,

h
25

]
,

[
0,
Φ

25

])
+ dGm

(
b2,

[
0,
Φ

25

])
=

{
0, if 0 ≤ b2 ≤

h
25 ;

4b2 −
4h
25 , if b2 ≥

h
25

which implies that

sup
0≤b2≤

ω
25

Gm

(
b2,

[
0,

h
25

]
,

[
0,
Φ

25

])
=

4ω − 4h
25

.

Furthermore, for every 0 ≤ c3 ≤
Φ
25 ,

Gm

(
c3,

[
0,

h
25

]
,
[
0,
ω

25

])
= dGm

(
c3,

[
0,

h
25

])
+ dGm

([
0,

h
25

]
,
[
0,
ω

25

])
+ dGm

(
c3,

[
0,
ω

25

])
=


0, if 0 ≤ c3 ≤

h
25 ;

4c3 −
4h
25 , if h

25 ≤ c3 ≤
ω
25 ;

8c3 −
4ω
25 −

4h
25 , if ω

25 ≤ c3 ≤
Φ
25

which implies that

sup
0≤c3≤

ω
25

Gm

(
c3,

[
0,

h
25

]
,
[
0,
ω

25

])
=

8Φ − 4ω − 4h
25

.

Thus, we deduce that

e
√

HGm (Lh,Lω,LΦ) = e
√

max{0, 4ω−4h
25 , 8Φ−4ω−4h

25 }

= e
√

8Φ−4ω−4h
25

≤ e
√

8Φ−8h
25

= e
√

8
25 |Φ−h|

= e
√

32
75 |

3Φ
4 −

3h
4 |
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= e
√

32
75 | jΦ− jh|

≤ e
√

32
75 (| jh− jω|+| jω− jΦ|+| jh− jΦ|)

= e
√

32
75 Gm( jh, jω, jΦ)

= e
√

32
75

√
Gm( jh, jω, jΦ)

By using κ(α) = e
√
α , we get

κ
(
HGm (Lh,Lω,LΦ)

)
≤

[
κ (Gm ( jh, jω, jΦ))

]λ
where λ =

√
32
75 ∈ (0, 1).

Hence, the functions L and j satisfy the (κGm)-contraction. Now, all conditions of 3 are satisfied.
Hence the functions L and j have a unique coincidence point and common fixed point, which is 0.

Corollary 1. Let (M,Gm) be a complete generalized metric space and L : M −→ CB (M) be a
multivalued mapping. Suppose that there exist κ ∈ Ω and λ ∈ (0, 1) such that

HGm (Lh,Lω,LΦ) > 0 =⇒ κ
(
HGm (Lh,Lω,LΦ)

)
≤ [κ (Gm (h, ω,Φ))]λ ,

for all h, ω,Φ ∈ M, then L has a fixed point.

Proof. By assuming that j is the identity function in 3, we can obtain the desired outcome. □

Corollary 2. Let (M,Gm) be a complete generalized metric space and L : M −→ M be a self
mapping. If there exist κ ∈ Ω and λ ∈ (0, 1) such that

Gm (Lh,Lω,LΦ) > 0 =⇒ κ (Gm (Lh,Lω,LΦ)) ≤ [κ (Gm (h, ω,Φ))]λ ,

for all h, ω,Φ ∈ M, then L has a fixed point.

Proof. By assuming that j is the identity function and L is a single-valued function in 3, we can obtain
the desired outcome. □

Alghamdi et al. [22] defined the concept of α-admissible mapping within the framework of G-metric
space, providing the following definition:

Definition 8. ( [22]) Let α : M×M×M→ [0,+∞). A mapping L : M −→ M is designated as
α-admissible if for all h, ω,Φ ∈ M, we have

α (h, ω,Φ) ≥ 1 implies α (Lh,Lω,LΦ) ≥ 1.

Mustafa et al. [23] extended the above notion to multivalued mapping as follows:

Definition 9. Let α : M×M×M→ [0,+∞). A mapping L : M −→ Cl(M) is designated as
multivalued α-admissible if for all h, ω,Φ ∈ M, we have

α (h, ω,Φ) ≥ 1 implies α (ϱ, κ, ρ) ≥ 1

for ϱ ∈ Lh, κ ∈ Lω and ρ ∈ LΦ.
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Definition 10. Let (M,Gm) be a generalized metric space and Ξ be a closed subset of M. A
multivalued mapping L : Ξ −→ CB (M) is said to be a generalized (α, κGm)-contraction if there
exist κ ∈ Ω, α : Ξ×Ξ×Ξ→ [0,+∞), and λ ∈ (0, 1) satisfying the following conditions (i) Lh∩Ξ , ∅,
for all h ∈ Ξ,
(ii) for all h, ω,Φ ∈ Ξ, we have HGm (Lh ∩ Ξ,Lω ∩ Ξ,LΦ ∩ Ξ) > 0 implying

α (h, ω,Φ) κ
(
HGm (Lh ∩ Ξ,Lω ∩ Ξ,LΦ ∩ Ξ)

)
≤ [κ (Gm (h, ω,Φ))]λ . (3.22)

Theorem 4. Let (M,Gm) be a complete generalized metric space, Ξ be a closed subset of M, and
L : Ξ −→ CB (M) is a generalized (α, κGm)-contraction. Let us consider the fulfillment of the following
conditions:
(i) L is a multivalued α-admissible mapping,
(ii) there exist h0 ∈ Ξ and h1 ∈ Lh0 ∩ Ξ such that α (h0, h1, h1) ≥ 1,
(iii) L is continuous,
then L has a fixed point.

Proof. By the supposition (ii), ∃ h0 ∈ Ξ and h1 ∈ Lh0∩Ξ such that α (h0, h1, h1) ≥ 1. If h0 = h1, then h0

is the required fixed point and we have nothing to prove. So, we suppose that h0 , h1. If h1 ∈ Lh1 ∩Ξ,

then h1 is a fixed point. Let h1 < Lh1 ∩ Ξ. Then, HGm (Lh0 ∩ Ξ,Lh1 ∩ Ξ,Lh1 ∩ Ξ) > 0. Now, by the
inequality (3.22), we have

κ (Gm (h1,Lh1 ∩ Ξ,Lh1 ∩ Ξ)) ≤ κ
(
HGm (Lh0 ∩ Ξ,Lh1 ∩ Ξ,Lh1 ∩ Ξ)

)
≤ α (h0, h1, h1) κ

(
HGm (Lh0 ∩ Ξ,Lh1 ∩ Ξ,Lh1 ∩ Ξ)

)
≤ [κ (Gm (h0, h1, h1))]λ . (3.23)

From ( κ4), we know that

κ (Gm (h1,Lh1 ∩ Ξ,Lh1 ∩ Ξ)) = inf
ω∈Lh1∩Ξ

κ(Gm (h1, ω, ω)).

Thus from (3.23), we get

inf
ω∈Lh1∩Ξ

κ(Gm (h1, ω, ω)) ≤ [κ (Gm (h0, h1, h1))]λ . (3.24)

Since Lh1 , ∅, we deduce that there exists h2 ∈ Ξ such that h2 ∈ Lh1. Now since ω = h2 ∈ Lh1 ∩ Ξ,

so by the inequality (3.24), we have

κ(Gm (h1, h2, h2)) ≤ [κ (Gm (h0, h1, h1))]λ . (3.25)

Now since α (h0, h1, h1) ≥ 1 and L is a multivalued α-admissible mapping, so α (h1, h2, h2) ≥ 1 for
h1 ∈ Lh0 ∩ Ξ and h2 ∈ Lh1 ∩ Ξ. If h1 = h2, then h1 is the required fixed point and we have nothing to
prove. So, we suppose that h1 , h2. Also, if h2 ∈ Lh2 ∩ Ξ, then h2 is a fixed point. Let h2 < Lh2 ∩ Ξ.
Then, HGm (Lh1 ∩ Ξ,Lh2 ∩ Ξ,Lh2 ∩ Ξ) > 0. Now, by the inequality (3.22), we have

κ (Gm (h2,Lh2 ∩ Ξ,Lh2 ∩ Ξ)) ≤ κ
(
HGm (Lh1 ∩ Ξ,Lh2 ∩ Ξ,Lh2 ∩ Ξ)

)
≤ α (h1, h2, h2) κ

(
HGm (Lh1 ∩ Ξ,Lh2 ∩ Ξ,Lh2 ∩ Ξ)

)
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≤ [κ (Gm (h1, h2, h2))]λ . (3.26)

From ( κ4), we know that

κ (Gm (h2,Lh2 ∩ Ξ,Lh2 ∩ Ξ)) = inf
ω∈Lh2∩Ξ

κ(Gm (h2, ω, ω)). (3.27)

Thus from (3.26), we get

inf
ω∈Lh2∩Ξ

κ(Gm (h1, ω, ω)) ≤ [κ (Gm (h1, h2, h2))]λ (3.28)

Since Lh2 , ∅, we deduce that there exists h3 ∈ Ξ such that h3 ∈ Lh2. Now, since ω = h3 ∈ Lh2 ∩ Ξ,

by the inequality (3.26), we have

κ(Gm (h2, h3, h3)) ≤ [κ (Gm (h1, h2, h2))]λ .

Continuing in this way, we can find a sequence of points {hn} ⊂ Ξ such that hn+1 ∈ Lhn ∩ Ξ and

κ(Gm (hn, hn+1, hn+1)) ≤ [κ(Gm (hn−1, hn, hn))]λ , (3.29)

for all n ∈ N.
Therefore

1 < κ(Gm (hn, hn+1, hn+1)) ≤ [κ(Gm (hn−1, hn, hn))]λ

≤ [κ(Gm (hn−2, hn−1, hn−1))]λ
2

≤ · · ·

≤ [κ(Gm (h0, h1, h1))]λ
n

(3.30)

for all n ∈ N. Since κ ∈ Ω, by taking the limit as n −→ ∞ in (3.30), we have

lim
n−→∞

κ(Gm (hn, hn+1, hn+1)) = 1. (3.31)

From the condition (κ2), we have

lim
n−→∞

Gm (hn, hn+1, hn+1) = 0.

By replicating the methodology employed in establishing the validity of Theorem 3, it can be
demonstrated that {hn} conforms to the criteria of being a Gm-Cauchy sequence in Ξ. Since Ξ is a
closed subset of complete generalized metric space (M,Gm) , (Ξ,Gm) is also complete. Thus, there
exists a point h∗ ∈ Ξ such that limn→∞ hn = h∗. Now, since hn+1 ∈ Lhn ∩ Ξ and the mapping is
continuous, taking the limit as n→ ∞, we have

h∗ = lim
n→∞

hn+1 ∈ L( lim
n→∞

hn) ∩ Ξ = L(h∗) ∩ Ξ.

Hence, h∗ is a fixed point of L.
□
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Theorem 5. Let (M,Gm) be a complete generalized metric space, Ξ be a closed subset of M, and
L : Ξ −→ CB (M) is a generalized (α, κGm)-contraction. Let us consider the fulfillment of the following
conditions:

(i) L is a multivalued α-admissible mapping,
(ii) there exist h0 ∈ Ξ and h1 ∈ Lh0 ∩ Ξ such that α (h0, h1, h1) ≥ 1,
(iii) for any sequence {hn} in Ξ such that hn → x as n → ∞ and α (hn, hn+1, hn+1) ≥ 1, implying
α (hn, h, h) ≥ 1 for each n ∈ N ∪ {0},
then L has a fixed point.

Proof. Following the proof of Theorem 4, there exists a Gm-Cauchy sequence {hn} in Ξ with hn+1 ∈

Lhn ∩Ξ and hn → h∗ as n→ ∞ and α (hn, hn+1, hn+1) ≥ 1 for each n ∈ N∪ {0}. Then by the assumption
(iii), we have α (hn, h∗, h∗) ≥ 1 for each n ∈ N ∪ {0}. Now by (3.22), we have

κ (Gm (hn+1,Lh∗ ∩ Ξ,Lh∗ ∩ Ξ)) ≤ κ
(
HGm (Lhn ∩ Ξ,Lh∗ ∩ Ξ,Lh∗ ∩ Ξ)

)
≤ α (hn, h∗, h∗) κ

(
HGm (Lhn ∩ Ξ,Lh∗ ∩ Ξ,Lh∗ ∩ Ξ)

)
≤ [κ (Gm (hn, h∗, h∗))]

λ < κ (Gm (hn, h∗, h∗)) . (3.32)

By ( κ1), we have
Gm (hn+1,Lh∗ ∩ Ξ,Lh∗ ∩ Ξ) < Gm (hn, h∗, h∗)

for all n ∈ N ∪ {0}. Taking the limit as n → ∞, we get Gm (h∗,Lh∗ ∩ Ξ,Lh∗ ∩ Ξ) ≤ 0. Since Lh∗ ∩ Ξ
is closed, h∗ ∈ Lh∗ ∩ Ξ. Hence, L has a fixed point.

□

Corollary 3. Let (M,Gm) be a complete generalized metric space, Ξ be a closed subset of M and
L : Ξ −→ CB (M) is continuous. If there exist κ ∈ Ω and λ ∈ (0, 1) such that
(i) Lh ∩ Ξ , ∅, for all h ∈ Ξ,
(ii) for all h, ω,Φ ∈ Ξ, we have HGm (Lh ∩ Ξ,Lω ∩ Ξ,LΦ ∩ Ξ) > 0 implies

κ
(
HGm (Lh ∩ Ξ,Lω ∩ Ξ,LΦ ∩ Ξ)

)
≤ [κ (Gm (h, ω,Φ))]λ ,

then L has a fixed point.

Proof. Define α : Ξ × Ξ × Ξ→ [0,+∞) by α (h, ω,Φ) = 1, for all h, ω,Φ ∈ Ξ in Theorem 4.
□

4. Application

We utilize Corollary 2 to demonstrate that the following integral equation has a solution:

h(t) =
∫ b

a
W(t, s)T (s, h(s))ds. (4.1)

Here, h(t) belongs to the set M of all continuous functions from [a, b] to R. The mappings W :
[a, b] × [a, b]→ [0,∞) and T : [a, b] × R→ R are continuous.

Establish a function L :M→M by

Lh(t) =
∫ b

a
W(t, s)T (s, h(s))ds (4.2)
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for all t ∈ [a, b].

Theorem 6. Analyze calculation 4.1 to assume the following:

1. maxt∈[a,b]

∫ b

a
W(t, s)ds < λ2, for some λ ∈ (0, 1),

2. for all h(s), ω(s) ∈ M; s ∈ [a, b], we have

|T (s, h(s)) − T (s, ω(s))| ≤ |h(s) − ω(s)|. (4.3)

Then equation (4.1) has a solution.

Proof. For h, ω,Φ ∈ M, define the generalized metric onM by

Gm(h, ω,Φ) = d(ω,Φ) + d(h, ω) + d(h,Φ) (4.4)

where
d(h, ω) = sup

t∈[a,b]
|h(t) − ω(t)|.

Now, let h(t), ω(t) ∈ M, then we have

|Lh(t) − Lω(t)| =
∣∣∣∣ ∫ b

a
W(t, s)

[
T (s, h(s)) − T (s, ω(s))

]
ds

∣∣∣∣
≤

∫ b

a
W(t, s)|T (s, h(s)) − T (s, ω(s)|ds

≤

∫ b

a
W(t, s)|h(s) − ω(s)|ds

≤

∫ b

a
W(t, s) sup

s∈[a,b]
|h(s) − ω(s)|ds

= sup
t∈[a,b]
|h(t) − ω(t)|

∫ b

a
W(t, s)ds

≤ λ2 sup
t∈[a,b]
|h(t) − ω(t)|.

Hence,
sup

t∈[a,b]
|Lh(t) − Lω(t)| ≤ λ2 sup

t∈[a,b]
|h(t) − ω(t)|. (4.5)

Similarly, we have
sup

t∈[a,b]
|Lω(t) − Lw(t)| ≤ λ2 sup

t∈[a,b]
|ω(t) − w(t)| (4.6)

and
sup

t∈[a,b]
|Lh(t) − LΦ(t)| ≤ λ2 sup

t∈[a,b]
|h(t) − Φ(t)|. (4.7)

Therefore, from 4.5, 4.6, and 4.7, we have

sup
t∈[a,b]
|Lh(t) − Lω(t)| + sup

t∈[a,b]
|Lω(t) − LΦ(t)| + sup

t∈[a,b]
|Lh(t) − LΦ(t)|
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≤ λ2 [
sup

t∈[a,b]
|h(t) − ω(t)| + sup

t∈[a,b]
|ω(t) − Φ(t)| + sup

t∈[a,b]
|h(t) − Φ(t)|

]
which implies

Gm(Lh,Lω,LΦ) ≤ λ2Gm(h, ω,Φ). (4.8)

Taking exponential, we have
e(Gm(Lh,Lω,LΦ)) ≤ eλ

2(Gm(h,ω,Φ)).

Now, we consider the mapping κ : (0,∞)→ (1,∞) defined by κ(α) = e
√
α. Thus we have

κ(Gm(Lh,Lω,LΦ)) ≤ [κ(Gm(h, ω,Φ))]λ .

Hence, all requirements of Corollary 2 are obtained. As an outcome of 2,M will contain a fixed point
of the function L, which will be the solution of 4.1. □

5. Conclusions

In this research article, we introduced the notion of κGm-contraction and generalized (α, κGm)-
contraction in complete Gm-metric spaces and worked to prove some fixed point, coincidence point,
and common fixed point theorems. Additionally, we demonstrated the usefulness of our obtained result
by applying it to the investigation of the integral equation. Also, we presented a nontrivial example
demonstrating the practicality of our primary hypothesis.
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intégrales, Fundam. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181

5. M. Frechet, Sur quelques points du calcul fonctionnel, Rendiconti del Circolo Matematico di
Palermo, 22 (1906), 1–72.

6. I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989),
26–37.

7. T. Kamran, M. Samreen, Q. U. Ain, A generalization of b-metric space and some fixed point
theorems, Mathematics, 5 (2017), 19.

8. A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces,
Num. Funct. Anal. Optimiz., 32 (2011), 243–253.

9. Z. Mustafa, B. Sims, A new approach to generalized metric space, J. Nonlinear Convex Anal., 7
(2006), 289–297.

10. Z. Mustafa, V. Parvaneh, M. Abbas, J. R. Roshan, Some coincidence point results for generalized-
weakly contractive mappings in ordered G-metric spaces, Fixed Point Theory Appl., 1 (2013),
1–23.

11. A. Kaewcharoen, A. Kaewkhao, Common fixed points for single-valued and multi-valued
mappings in G-metric spaces, Int J. Math. Anal., 5 (2011), 1775–1790.

12. N. Tahat, H. Aydi, E. Karapinar, W. Shatanawi, Common fixed points for single-valued and multi-
valued maps satisfying a generalized contraction in G-metric spaces, Fixed Point Theory Appl., 48
(2012).

13. Z. Mustafa, T. Van An, N. Van Dung, Two fixed point theorems for maps on incomplete G-metric
spaces, Appl. Math. Sci., 7 (46), 2271–2281.

14. A. E. Al-Mazrooei, A. Shoaib, J. Ahmad, Unique fixed point results for β-admissible mapping
under (β-ψ̌)-contraction in complete dislocated Gd-metric space, Mathematics, 8 (2020), 1584.

15. A. Shoaib, M. Arshad, T. Rasham, Some fixed point results in ordered complete
dislocated quasi G metric space, J. Comput. Anal. Appl., 29 (2021), 1036–1046.
https://doi.org/10.1080/09273948.2021.1956235

16. A. Shoaib, M. Arshad, T. Rasham, M. Abbas, Unique fixed points results on closed ball for
dislocated quasi G-metric spaces, T. A. Razmadze Math. In., 30 (2017), 1–10.

17. A. Shoaib, Fahimuddin, M. Arshad, M. U. Ali, Common Fixed Point results for α-Φ-locally
contractive type mappings in right complete dislocated quasi G-metric spaces, Thai J. Math., 17
(2017), 627–638.

18. Z. Mustafa, S. U. Khan, M. Arshad, J. Ahmad, M. M. M. Jaradat, Some fixed point results on
G-metric and Gb-metric spaces, Demonstr. Math., 5 (2017), 190–207.

AIMS Mathematics Volume 9, Issue 6, 15949–15965.

https://dx.doi.org/https://doi.org/10.3934/math.2023363
https://dx.doi.org/https://doi.org/10.3934/math.2023220
https://dx.doi.org/https://doi.org/10.4064/fm-3-1-133-181
https://dx.doi.org/https://doi.org/10.1080/09273948.2021.1956235


15965

19. B. Samet, C. Vetro, F. Vetro, Remarks on G-metric spaces, Int. J. Anal., 2013 (2013), Article ID
917158.

20. M. Jleli, B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory
Appl., 2012 (2012), Article ID 210.

21. B. Samet, C. Vetro, P. Vetro, Fixed point theorem for α-ψ contractive type mappings, Nonlinear
Anal., 75 (2012), 2154–2165. https://doi.org/10.1080/09273948.2021.1956235

22. M. A. Alghamdi, E. Karapınar, G-β-ψ-contractive type mappings in G-metric spaces, Fixed Point
Theory Appl., 123 (2013), 2013.

23. Z. Mustafa, M. Arshad, S. U. Khan, J. Ahmad, M. M. M. Jaradat, Common fixed points for
multivalued mappings in G-metric spaces with applications, J. Nonlinear Sci. Appl., 10 (2017),
2550–2564. https://doi.org/10.1080/09273948.2021.1956235

24. M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 38
(2014), article number 38.

25. Z. Li, S. Jiang, Fixed point theorems of JS-quasi-contractions, Fixed Point Theory and
Applications, 2016, 40.

26. A. Al-Rawashdeh, J. Ahmad, Common fixed point theorems for JS- contractions, Bull. Math. Anal.
Appl., 8 (2016), 12–22.

27. H. A. Hancer, G. Minak, I. Altun, On a broad category of multivalued weakly Picard operators,
Fixed Point Theory, 18 (2017), 229–236.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 6, 15949–15965.

https://dx.doi.org/https://doi.org/10.1080/09273948.2021.1956235
https://dx.doi.org/https://doi.org/10.1080/09273948.2021.1956235
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main result
	Application
	Conclusions

