
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(6): 15928–15936.
DOI: 10.3934/math.2024770
Received: 01 March 2024
Revised: 01 April 2024
Accepted: 15 April 2024
Published: 06 May 2024

Research article

Graphs with a given conditional diameter that maximize the Wiener index

Junfeng An and Yingzhi Tian*

College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, China

* Correspondence: Email: tianyzhxj@163.com.

Abstract: The Wiener index W(G) of a graph G is one of the most well-known topological indices,
which is defined as the sum of distances between all pairs of vertices of G. The diameter D(G) of G
is the maximum distance between all pairs of vertices of G, and the conditional diameter D(G; s) is
the maximum distance between all pairs of vertex subsets with cardinality s of G. When s = 1, the
conditional diameter D(G; s) is just the diameter D(G). The authors in [18] characterized the graphs
with the maximum Wiener index among all graphs with diameter D(G) = n − c, where 1 ≤ c ≤ 4.
In this paper, we will characterize the graphs with the maximum Wiener index among all graphs with
conditional diameter D(G; s) = n − 2s − c (−1 ≤ c ≤ 1), which extends partial results above.
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1. Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). The order and the size of G
are n = |V(G)| and m = |E(G)|, respectively. The distance between two vertices u and v, denoted
by d(u, v) = dG(u, v), is the length of the shortest path connecting u and v in G. There are plenty
of distance-based topological indices, which are widely used in mathematical chemistry in order to
describe and predict the properties of chemical compounds. One of the most well-known topological
indices is the Wiener index, which was introduced in 1947 by Wiener [20]. The Wiener index W(G) of
a graph G is defined as the sum of distances between all (unordered) pairs of vertices of G, that is,

W(G) =
∑

{u,v}⊆V(G)

d(u, v).

Mathematical properties and applications of the Wiener index have been extensively studied, see [1, 3,
5–7, 9–12, 16, 17, 21, 22] for references.

The diameter D(G) of G is the maximum distance between all pairs of vertices in V(G), that is,
D(G) = maxu,v∈V(G)d(u, v). For two nonempty vertex subsets V1 and V2, the distance between V1 and
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V2, denoted by d(V1,V2) = dG(V1,V2), is the minimum of the distances d(x, y) among all x ∈ V1 and
y ∈ V2. Given a graphical property P satisfied by at least one pair (V1,V2) of nonempty subsets of
V(G), the conditional diameter DP(G) of G is

DP(G) = max{d(V1,V2) : ∅ , V1,V2 ⊆ V(G), (V1,V2) satis f ies P}.

Note that DP(G) = 0 holds if and only if V1 and V2 overlap for every (V1,V2) ⊆ V(G) × V(G) that
satisfies P. Conditional diameter measures the maximum distance between subgraphs satisfying a
given property. So, their consideration could be of some interest if in some applications we need to
control the communication delays between the network clusters modeled by such subgraphs.

The first choice of such a graphical property P1 is defined as follows: (V1, V2) satisfies P1 if and
only if |V1| = |V2| = s, where s is a positive integer. In this case, the conditional diameter is denoted by
D(G; s), which is defined as

D(G; s) = max{d(V1,V2) : V1,V2 ⊆ V(G), |V1| = |V2| = s}.

Clearly, D(G; 1) is the standard diameter D(G) of G. Thus D(G; s) can be seen as a generalization of
the diameter D(G). When |V(G)| < 2s, then D(G; s) = 0. Moreover, when |V(G)| ≥ 2s, it is easy to see
that the inequality D(G; s) ≤ n − 2s + 1 holds.

Although the Wiener index has been extensively studied, there are still some unsolved interesting
questions. For example, Plesnı́k [15] posed the open problem “What is the maximum average
distance among graphs of order n and diameter d?”; DeLaViña and Waller [8] conjectured that
W(G) ≤ W(C2d+1) for any graph G with diameter d ≥ 3 and order 2d + 1, where C2d+1 is the cycle of
length 2d + 1. Some results related to the Wiener indices of graphs with given diameter can be seen
in [13, 14, 19]. Particularly, Cambie [4] gave an asymptotic solution to the open problem of Plesnı́k,
and Sun et al. [18] characterized the graphs with the maximum Wiener index among all graphs with
diameter D(G) = n − c, where 1 ≤ c ≤ 4.

Motivated by the results above, we will investigate the maximum Wiener index among all graphs
with given conditional diameter in this paper. Specifically, we will characterize the graphs with the
maximum Wiener index among all graphs with conditional diameter D(G; s) = n − 2s − c, where
−1 ≤ c ≤ 1. Some lemmas will be given in the next section. Main results will be presented in the
last section.

2. Preliminaries

The graphs considered in this paper are simple and undirected. For undefined notation and
terminologies, we follow [2]. For a graph G, we denote by G − u and G − uv the graphs obtained
from G by deleting the vertex u ∈ V(G) and the edge uv ∈ E(G), respectively. Similarly, G + xy is the
graph obtained from G by adding an edge xy < E(G). The induced subgraph G[U] for a vertex subset
U ⊆ V(G) is G − V(G) \ U. The neighborhood of u in G is NG(u) = {v|uv ∈ E(G)}. The degree dG(u)
of u in G is |NG(v)|. If dG(u) = 1, then u is called a pendent vertex of G. Denote by Pn and Cn the path
and the cycle on n vertices, respectively.

The sum of distances between u and all other vertices of G is DG(u) =
∑

v∈V(G) d(u, v).

Lemma 2.1. ( [9]) Let G be a graph of order n, v a pendent vertex of G, and u the vertex adjacent to
v. Then W(G) = W(G − v) + DG−v(u) + n − 1.
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Lemma 2.2. ( [13]) Let Pn = v1v2 . . . vn be a path on n vertices, then DPn(v j) > DPn(vk) for 1 ≤ j <
k ≤ bn/2c.

Lemma 2.3. ( [13]) Let G be a non-trivial connected graph on n vertices and let v ∈ V(G). Suppose
that two paths P = vv1v2 · · · vk, Q = vu1u2 · · · ul of lengths k, l are attached to G by their end vertices
at v, respectively, to form Gk,l, as shown in Figure 1. If l ≥ k ≥ 1, then W(Gk,l) < W(Gk−1,l+1).

Gk,l Gk−1,l+1

vv

v1

vk−1

vk

u1

ul−1

ul

v1

vk−1

u1

ul−1

ul

vk

G G

ul

Figure 1. Gk,l and Gk−1,l+1.

3. Main results

It was proved in [11] that W(Pn) is maximum among all trees on n vertices. Since removing of an
edge from a connected graph results in an increased Wiener index, it is observed that the Wiener index
of a connected graph is less than or equal to the Wiener index of its spanning tree. Thus, W(Pn) is
maximum among all connected graphs on n vertices. By D(Pn; s) = n − 2s + 1 (n ≥ 2s), we have the
following theorem.

Theorem 3.1. Let G be a connected graph on n vertices and D(G; s) = n−2s + 1, where s is a positive
integer and n ≥ 2s. Then W(G) ≤ W(Pn), and equality holds if and only if G � Pn.

Let T i
n be the tree on n vertices obtained from Pn−1 = x1x2 · · · xn−1 by attaching a pendent vertex to

xi. See Figure 2 for an illustration.

x1 x2 xi xn−2 xn−1

w

Figure 2. Tree T i
n.

Theorem 3.2. Let G be a connected graph on n vertices and D(G; s) = n − 2s, where s is a positive
integer and n ≥ 2s + 3. Then W(G) ≤ W(T s+1

n ), and equality holds if and only if G � T s+1
n .

Proof. Let d(L,R) = n − 2s, where L = {x1, . . . xs} and R = {xn−s, . . . , xn−1}. Assume P = xsxs+1 · · · xn−s

is a path of length n− 2s connecting L and R in G. Denote M = {xs+1, . . . , xn−s−1} and W = V(G) \ (L∪
M ∪ R) = {w}.
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Claim. We can choose L and R such that w is adjacent to vertices in M.

By n ≥ 2s + 3, w can not be adjacent to both vertices in L and R. If w is only adjacent to vertices
in L, then xs+1 must be adjacent to another vertex w′ ∈ L other than xs. Otherwise, the distance between
L − xs + w and R would be n − 2s + 1, a contradiction. Thus, we replace L by L′ and W by W ′, where
L′ = L − w′ + w and W ′ = {w′}. The case w is only adjacent to vertices in R and can be analyzed
similarly. So, the claim holds.

Case 1. w is only adjacent to the vertices in M.

If w is adjacent to more than one vertex in M, then delete all but one of the edges incident with w.
Note that this operation does not change the conditional diameter and increases the Wiener index. So,
we assume that w is a pendent vertex. Without loss of generality, assume w is adjacent to xi, where
s + 1 ≤ i ≤ n − s − 1.

Consider the induced subgraph G[L ∪ {xs+1}]. First, we transform it to a tree by removing edges.
Removing edges in this way does not change the conditional diameter and increases the Wiener index
(by removing an edge from a graph, the distance of the two ends of this edge must increase, and the
distance of other pairs of vertices does not decrease). Then, we transform it to a path as follows: We
take one of the longest paths from {xs+1} and gradually enlarge it to an even longer path by appending
the rest of the vertices in L ∪ {xs+1} to the current end-vertex on the other side of this path, one
after another. By Lemma 2.3, each such transformation increases the Wiener index and retains the
conditional diameter. Similarly, we can transform G[R∪{xn−s−1}] to a path with one endvertex {xn−s−1}.

Now the graph G is changed to the graph isomorphic to T i
n, where s + 1 ≤ i ≤ n − s − 1. Let

T s+1
n = T i

n − xiw + xs+1w. Since T s+1
n − w � T i

n − w � Pn−1, by Lemmas 2.1 and 2.2, we have
W(T i

n) ≤ W(T s+1
n ), and equality holds if and only if i = s + 1. Thus, W(G) ≤ W(T s+1

n ), and equality
holds if and only if G � W(T s+1

n ).

Case 2. w is adjacent to vertices in both L (or R) and M.

We only need to consider the case in which w is adjacent to vertices in both L and M. Since
P = xsxs+1 · · · xn−s is a shortest path connecting L and R, we obtain that NG(w) ∩ {xs+1, . . . , xn−s} ⊆

{xs+1, xs+2}. Let x′ = xs+2 if xs+2 ∈ NG(w) and let x′ = xs+1 otherwise.

If x′ = xs+2, then consider the induced subgraph G[L ∪ {xs+1, xs+2,w}]. First, we change it to a tree
by removing some edges in E(G[L∪ {xs+1, xs+2,w}]) \ {xs+1xs+2, xs+2w}. Then, we transform it to a path
such that xs+2 is adjacent to one endvertex of this path as follows: We take one of the longest paths
from {xs+2} and gradually enlarge it to an even longer path by appending the rest of the vertices in L to
the current endvertex on the other side of this path, one after another. Note that xs+2 is still adjacent to
vertices xs+1 and w, and one of xs+1 and w must be an endvertex of this path. Now we change G to a
graph isomorphic to T s+2

n . By Case 1, we get W(G) ≤ W(T s+1
n ).

If x′ = xs+1, then, by a similar argument as above, we can change G to a graph isomorphic to T s+1
n .

Thus, W(G) ≤ W(T s+1
n ).

From the arguments above, we obtain that W(G) ≤ W(T s+1
n ), and the equality holds if and only if

G � T s+1
n . �

Let T i, j
n be a tree on n vertices obtained from Pn−2 = x1x2 · · · xn−2 by attaching two pendent vertices

to xi and x j, respectively. See Figure 3 for an illustration.
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x1 x2 xi xj xn−3 xn−2

w1 w2

Figure 3. Tree T i, j
n .

Let T i(2)
n be a tree on n vertices obtained from Pn−2 = x1x2 · · · xn−2 by attaching the endvertex of a

path of order 2 to xi. See Figure 4 for an illustration.

x1 x2 xi xn−3 xn−2

w1

w2

Figure 4. Tree T i(2)
n .

Theorem 3.3. Let G be a connected graph on n vertices and D(G; s) = n−2s−1, where s is a positive
integer and n ≥ 2s + 5. Then W(G) ≤ W(T s+1,n−s−2

n ), and equality holds if and only if G � T s+1,n−s−2
n .

Proof. Let d(L,R) = n − 2s − 1, where L = {x1, . . . xs} and R = {xn−s−1, . . . , xn−2}. Assume P =

xsxs+1 · · · xn−s−1 is a path of length n − 2s − 1 connecting L and R. Denote M = {xs+1, . . . , xn−s−2} and
W = V(G) \ (L ∪ M ∪ R) = {w1,w2}.
Case 1. Neither w1 nor w2 is adjacent to vertices in L ∪ R.
Subcase 1.1. w1w2 < E(G).

Note that NG(wi) ⊆ {xs+1, · · · , xn−s−2} for i = 1, 2. If wi is adjacent to more than one vertex in M,
then delete all but one of the edges incident with wi, where i ∈ {1, 2}. Note that this operation does
not change the conditional diameter and increases the Wiener index. So, we assume that wi is pendent
vertex for i = 1, 2. Without loss of generality, assume that w1 is attached to xa and w2 is attached to xb,
where s + 1 ≤ a ≤ b ≤ n − s − 2.

By a similar argument as in the proof of Case 1 in Theorem 3.2, we transform G[L ∪ {xs+1}] to a
path with one endvertex xs+1, and transform G[R ∪ {xn−s−2}] to a path with one endvertex xn−s−2. That
is, we change G to a graph isomorphic to T a,b

n , where s + 1 ≤ a ≤ b ≤ n − s − 2.
Let T a,n−s−2

n = T a,b
n − xbw2 + xn−s−2w2, kw1 = d(xs+1, xa), and kw2 = d(xn−s−2, xb). Since T a,n−s−2

n −w2 �

T a,b
n − w2, we have

W(T a,n−s−2
n ) −W(T a,b

n )
= 1 + 2 + · · · + (n − s − 2) + 2 + · · · + (s + 1) + (n − s − a)
− 1 − 2 − · · · − (n − s − 2 − kw2) − 2 − · · · − (s + 1 + kw2) − (n − s − a − kw2)

=
∑

1≤i≤kw2

(n − s − 2 − kw2 + i) −
∑

1≤i≤kw2

(s + 1 + i) + kw2 .
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Since n − 2s − 3 − kw2 ≥ 0, we have W(T i,n−m−2
n ) − W(T i, j

n ) ≥ 0, and equality holds if and only if
kw2 = 0.

Let T s+1,n−s−2
n = T a,n−s−2

n − xaw1 + xs+1w1. Since T s+1,n−s−2
n − w1 � T a,n−s−2

n − w1, we have

W(T s+1,n−s−2
n ) −W(T a,n−s−2

n )
= 1 + 2 + · · · + (s + 1) + 2 + · · · + (n − s − 2) + (n − 2s − 1)
− 1 − 2 − · · · − (s + 1 + kw1) − 2 − · · · − (n − s − 2 − kw1) − (n − 2s − 1 − kw1)

= −
∑

1≤i≤kw1

(s + 1 + i) +
∑

1≤i≤kw1

(n − s − 2 − kw1 + i) + kw1 .

By n − 2s − 3 − kw2 ≥ 0, we have W(T s+1,n−s−2
n ) − W(T a,n−s−2

n ) ≥ 0, and equality holds if and only if
kw1 = 0.

In this subcase, we conclude that W(G) ≤ W(T s+1,n−s−2
n ), and equality holds if and only if

G � T s+1,n−s−2
n .

Subcase 1.2. w1w2 ∈ E(G).
If both w1 and w2 have neighbors in M, then by deleting edge w1w2, we reduce this situation to

Subcase 1.1. So, we assume that only one of the vertices in W, say w1, has neighbors in M and the
other vertex w2 is a pendent vertex adjacent to w1. If w1 has more than one neighbor in W, then delete
all but one of the edges incident with w1. Here, the remaining edge satisfies the property that the end
other than w1 is farthest to the vertex set {xs+1, xn−s−2}. Assume, without loss of generality, that w1 is
attached to xi, where s + 2 ≤ i ≤ n − s − 3.

By a similar argument as in the proof of Case 1 in Theorem 3.2, we transform G[L ∪ {xs+1}] to a
path with one endvertex xs+1, and transform G[R ∪ {xn−s−2}] to a path with one endvertex xn−s−2. That
is, we change G to a graph isomorphic to T i(2)

n , where s + 2 ≤ i ≤ n − s − 3.
Let T (s+2)(2)

n = T i(2)
n − xiw1 + xs+2w1 and k

′

w1
= d(xs+2, xi). Since T (s+2)(2)

n −w1 −w2 � T i(2)
n −w1 −w2,

we have

W(T (s+1)(2)
n ) −W(T i(2)

n ) = 1 + 2 + · · · + (n − s − 1) + 3 + · · · + (s + 2)
+ 1 + 2 + · · · + (n − s − 2) + 2 + · · · + (s + 1)

− 1 − 2 − · · · − (n − s − 1 − k
′

w1
) − 3 − · · · − (s + 2 + k

′

w1
)

− 1 − 2 − · · · − (n − s − 2 − k
′

w1
) − 2 − · · · − (s + 1 + k

′

w1
)

=
∑

1≤ j≤k′w1

(n − s − 1 − k
′

w1
+ j) −

∑
1≤ j≤k′w1

(s + 2 + j)

+
∑

1≤ j≤k′w1

(n − s − 2 − k
′

w1
+ j) −

∑
1≤ j≤k′w1

(s + 1 + j).

Since n−2s−3−k
′

w1
≥ 0, we have W(T (s+2)(2)

n )−W(T i(2)
n ) ≥ 0, and equality holds if and only if k

′

w1
= 0.

In this subcase, we conclude that W(G) ≤ W(T (s+2)(2)
n ), and equality holds if and only if G � T (s+2)(2)

n .
Case 2. Either w1 or w2 are adjacent to vertices in L ∪ R.

If wi is only adjacent to vertices in L∪R, then we can choose L and R such that wi is adjacent to some
vertices in M for i = 1, 2. Owing to Case 1, we only need to consider three subcases in the following.
Subcase 2.1. Only one of w1 or w2, say, w1 is adjacent to vertices in L ∪ R.
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We only consider the case that w1 is adjacent to vertices in both L and M, and w2 is not adjacent to
any vertices in L ∪ R.

Since P = xsxs+1 · · · xn−s−1 is the shortest path connecting L and R, we obtain that NG(w1) ∩
{xs+1, . . . , xn−s} ⊆ {xs+1, xs+2}. Let x′ = xs+2 if xs+2 ∈ NG(w1), and let x′ = xs+1 otherwise. If x′ = xs+2,
then by a similar argument as in the proof of Case 2 in Theorem 3.2, we can change G[L∪{xs+1, xs+2,w}]
to a path such that xs+2 is still adjacent to vertices xs+1 and w, and one of xs+1 and w1 is an endvertex
of this path. If x′ = xs+1, then by a similar argument we can change G[L∪ {xs+1,w}] to a path such that
xs+1 is still adjacent to vertices xs and w1, and one of xs and w1 is an endvertex of this path.

Suppose w2 is adjacent to some vertices in M. Then delete all edges incident with w2 except for one
edge joining w2 to a vertex in M. Then, G is changed to a graph isomorphic to T i, j

n . Suppose w2 is only
adjacent to w1. Then, G is changed to a graph isomorphic to T i(2)

n .
Subcase 2.2. Both w1 and w2 are adjacent to vertices in L (or R).

We only consider the case that wi is adjacent to vertices in both L and M for i = 1, 2.
Since P = xsxs+1 · · · xn−s−1 is the shortest path connecting L and R, we obtain that NG(wi) ∩

{xs+1, . . . , xn−s} ⊆ {xs+1, xs+2} for i = 1, 2. Let x′ = xs+2 if xs+2 ∈ NG(w1), and let x′ = xs+1

otherwise. Let x′′ = xs+2 if xs+2 ∈ NG(w2), and let x′′ = xs+1 otherwise. Here we only give
the proof when x′ = xs+2 and x′′ = xs+2. Other cases can be proved similarly. We consider the
induced subgraph G[L ∪ {xs+1, xs+2,w1,w2}]. First, we change it to a tree by removing some edges in
E(G[L∪ {xm+1, xm+2,w1,w2}]) \ {xs+1xs+2, xs+2w1, xs+2w2}. Then, we transform it to a tree such that xs+2

is adjacent to two pendent vertices as follows: we take one of the longest paths from xs+2 and gradually
enlarge it to an even longer path by appending the rest of the vertices in L to the current endvertex on
the other side of this path, one after another. Note that xs+2 is still adjacent to vertices xs+1, w1, and
w2, and two of xs+1, w1, and w2 are pendent vertices adjacent to xs+2. Then, G is changed to a graph
isomorphic to T i, j

n .
Subcase 2.3. One of w1 or w2, say w1, is adjacent to vertices in L and w2 is adjacent to vertices in R.

Since P = xsxs+1 · · · xn−s−1 is the shortest path connecting L and R, we obtain that NG(w1) ∩
{xs+1, . . . , xn−s} ⊆ {xs+1, xs+2}. Let x′ = xs+2 if xs+2 ∈ NG(w1), and let x′ = xs+1 otherwise. If
x′ = xs+2, then by a similar argument as in the proof of Case 2 in Theorem 3.2, we can change
G[L ∪ {xs+1, xs+2,w1}] to a path such that xs+2 is still adjacent to vertices xs+1 and w1, and one of
xs+1 and w1 is an endvertex of this path. If x′ = xs+1, then by a similar argument we can change
G[L ∪ {xs+1,w1}] to a path such that xs+1 is still adjacent to vertices xs and w1, and one of xs and w1 is
an endvertex of this path. Similarly, if w2xn−s−3 ∈ E(G), we can change G[R ∪ {xn−s−3, xn−s−2,w2}] to a
path such that xn−s−3 is still adjacent to vertices xn−s−2 and w2, and one of xn−s−2 and w2 is an endvertex
of this path. If w2xn−s−3 < E(G), we can change G[R ∪ {xn−s−2,w2}] to a path such that xn−s−2 is still
adjacent to vertices xn−s−1 and w2, and one of xn−s−1 and w2 is an endvertex of this path. Thus, G is
changed to a graph isomorphic to T i, j

n .
All cases lead to W(G) ≤ W(T s+1,n−s−2

n ) or W(G) ≤ W(T (s+2)(2)
n ). So, we only need to compare

W(T s+1,n−s−2
n ) and W(T (s+2)(2)

n ). Since W(T s+1,n−s−2
n ) − W(T (s+2)(2)

n ) = 1
2n2 − (s + 3

2 )n + s2 + 7s > 0,
we obtain that W(G) ≤ W(T s+1,n−s−2

n ), and equality holds if and only if G � T s+1,n−s−2
n . The proof

is completed. �
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4. Conclusions

In this paper, we characterize the graphs with the maximum Wiener index among all graphs with
conditional diameter D(G; s) = n − 2s − c (−1 ≤ c ≤ 1), which extends partial results in [18].
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that maximise the Wiener index, Appl. Math. Comput., 356 (2019), 438–448.
https://doi.org/10.1016/j.amc.2019.03.025

19. S. Wang, X. Guo, Trees with extremal Wiener indices, MATCH Commun. Math. Comput. Chem.,
60 (2008), 609–622.

20. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947), 17–20.
https://doi.org/10.1021/ja01193a005

21. K. Xu, M. Liu, K. C. Das, I. Gutman, B. Furtula, A survey on graphs extremal with
respect to distance-based topological indices, MATCH Commun. Math. Comput. Chem., 2014.
https://scidar.kg.ac.rs/handle/123456789/17378

22. X. D. Zhang, Y. Liu, M. X. Han, Maximum Wiener index of trees with given degree sequence,
Arxiv, 2009, 1–19. https://doi.org/10.48550/arXiv.0907.3772

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 6, 15928–15936.

http://dx.doi.org/https://doi.org/10.1023/a:1010767517079
http://dx.doi.org/ https://doi.org/10.48550/arXiv.1304.0873
http://dx.doi.org/ https://doi.org/10.48550/arXiv.1304.0873
http://dx.doi.org/https://doi.org/10.48550/arXiv.1510.00800
http://dx.doi.org/https://doi.org/10.48550/arXiv.2303.11405
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1017/S0004972713000816
http://dx.doi.org/https://doi.org/10.1002/jgt.3190080102
http://dx.doi.org/https://doi.org/10.1016/j.dam.2012.03.002
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1016/j.amc.2019.03.025
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1021/ja01193a005
http://dx.doi.org/https://scidar.kg.ac.rs/handle/123456789/17378
http://dx.doi.org/https://doi.org/10.48550/arXiv.0907.3772
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main results
	Conclusions

