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1. Introduction

The notion of resolving sets (RSs) in networks has been the subject of a great deal of research
over the last few years, mostly because of its practical applications in a variety of domains, including
pattern recognition, coding theory, error correction, network design, and distance labelling systems.
The RSs are basically subsets of nodes in a network with the capacity to differentiate between each
node according to their distances from each other. RSs are often referred to as locating sets and metric
bases.

In [1], Slater presents the idea of locating sets, or RSs, first, and he also created the phrase location
number to indicate the size of the smallest RS. By following the Slater’s work, Melter and Harary
expanded on the idea of locating sets and introduced the term metric dimension (MD). They further
investigated the MD of trees [2], providing a comprehensive understanding of this idea. The application
of the MD problem has gained significant attention in addressing various real-world issues in recent
times. Its utilization spans several domains: establishing reliable sensor networks [3], authenticating
network intrusions by leveraging the network’s metric base, tackling coin weighing challenges [4], and
connected joins in networks [5]. Moreover, MD is applied in different branches of navigation [6], and
chemistry [7].

Murtaza et al. [8] estimated the constant MD of cycle-related networks. It was also discovered that
finding the MD of a connected network is an NP-hard task [9]. Chartrand et al. calculated the MD of
both unicyclic and path networks [7]. Furthermore, they provided a characterization of all connected
networks of order p that possess MD 1, p − 1, and p − 2. For calculating the MD of networks,
Murdiansyah and Adiwijaya [10] presented the particle swarm optimization technique. Fernau et
al. [11] introduced an algorithm with linear-time complexity to calculate the MD of chain networks.
These networks are bipartite and have vertices that can be arranged based on neighborhood inclusion.
In [12], Mulyono et al. focused on establishing the MD for three types of networks: the friendship
network Fn, the Petersen network P(n,m), and the lollipop network L(m, n). Moreover, the MD is
thought to be paramount for studying many other structures, such as the RS of silicate stars [13], the
exact values of MD and domination-related parameters of complete multipartite networks [14], and
the sharp bounds on the MD of honeycomb networks studied in [15].

Determining the fault-tolerant MD of a network poses a complex combinatorial challenge, offering
potential implications for sensor networks. In their exploration of the MD and fault-tolerant MD
within various interconnection networks [16], Hayat et al. discovered that silicate, Benes, and
butterfly networks have infinite fault-tolerant resolvability. Saha et al., in their research outlined
in [17], delved into the k-MD of the circulant networks for a range of possible values of n and k,
representing the required fault-tolerant MD. Investigations conducted by authors in [18, 19] focused
on the fault-tolerant MD within recognized families of convex polytope structures. Additionally, Saha
et al. tackled the 2-MD problem regarding circulant networks specifically, contributing to the field of
network resilience, as discussed in [20]. Raza et al. [21] demonstrate specific lower and upper limits
regarding the FTMD for infinite of regular graphs. For more details, see [22].

Caceres et al. [23] have pioneered the exploration of doubly resolving sets (DRSs) within graph
theory, showcasing the strong correlation between the MD of the Cartesian products and these minimal
DRSs in network G. DRSs are essential in source localization because they help reduce ambiguity,
improve accuracy, enhance robustness, and enable efficient algorithms for determining the locations
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of multiple sources [24, 25]. DRSs are a valuable tool in various applications, including radar, sonar,
wireless communication, and more, where source localization is a critical task.

In [26], Kratica et al. demonstrated that the minimal DRS problem is NP-hard and proposed the
utilization of a genetic algorithm to address large-scale instances of the problem. The problem of
determining the MDRSs has been investigated for various network families. Notably, prior research
has delved into the investigation of minimal DRSs within prisms [27], convex polytopes [28], and
Hamming networks [29]. In the work by Chen et al. [30], they established the upper and lower bounds
for the DRS problem. Additionally, in the study by Ahmad et al. [31], it was noted that circulant
networks in the same family exhibit identical MD and DRS properties.

Lately, Ahmad et al. have made significant strides in addressing the DRS problem within various
network families, as evidenced in their work [32, 33]. Jannesari [34] provided a characterization for
networks G with a double metric dimension (DMD) of 2, utilizing 2-connected subnetworks within
network G. In another recent research endeavor, Ahmad et al. [35] delved into the study of minimal
DRSs specifically in the context of chordal ring networks.

There are many different kinds of network metric generators in use right now, and each kind is the
subject of theoretical and practical research based on how useful and well-linked it is (for details
see: [36]). However, while defining networks utilizing these metric generators, there are other
viewpoints that have not yet been fully considered. Assume a network where vertices are accurately
monitored and uniquely identified by a metric generator. However, if an intruder enters the network
through its edges rather than its vertices, it is impossible to pinpoint their location, which makes
surveillance impossible.

To address these kinds of issues, Ahmad et al. introduced a novel metric generator called EVDRSs
in [37]. For the edge form of DRSs, only a few network families have been studied in the literature.
The EVDRSs for the sunlet networks and prisms were found in [37]. The concept of the minimal
EVDRSs has also been examined in [38] concerning the family of layer-sun networks. Moreover,
the investigation of minimum-ordered EVDRSs in chorded cycles was carried out in [39], where the
authors established that the least size of the EVDRSs for the chorded cycles is precisely one more than
its edge version of MD. Additionally, the EVDRS problem for cocktail networks, jellyfish networks,
and necklace networks has been examined in previous works, such as [40], and [41], respectively. In
another study [42], Ahmad et al. tackled the problem of identifying the minimum EVDRSs for kayak
paddle networks.

In this research article, we focus on EVDRSs in circulant networks Cn(1, 2). A set is considered an
EVDRS in a network if it has the ability to uniquely distinguish between any two edges of the
network using any pair of edges from a subset of that network. The study of EVDRSs is relatively
new and has gained attention as it provides additional information about the structure of a network.
The main objective of this research is to investigate the existence, size, and structure of EVDRSs in
circulant networks Cn(1, 2). By providing insights into the EVDRSs of circulant networks Cn(1, 2),
we contribute to the broader understanding of this intriguing class of networks and expand the
knowledge base of RSs. The research findings in this study hold implications for real-life situations in
various domains; a few of them are as follows:
Communication Networks: The EVDRSs can help improve error detection and correction
mechanisms in communication networks, which will increase the dependability of data transfer.
Distributed Sensor Networks: The design and optimization of distributed sensor networks, where
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effective data collection and processing are essential, may find applications from the insights gained
from this study.

Furthermore, these findings may have an impact on the development of network navigation and
localization algorithms. The characterization of EVDRSs in circulant networks Cn(1, 2) provides the
groundwork for the development of location-aware systems that are more reliable and accurate,
influencing domains like tracking, surveillance, and autonomous navigation. To summarize, the study
of EVDRSs in circulant networks Cn(1, 2) has both theoretical and practical implications for
enhancing the performance, efficiency, and reliability of different kinds of communication and sensing
systems in real-world applications. The key contribution of the article is explained below:

• The Section 2 introduces the notation and preliminary definitions required for our study.
• Section 3 presents our main results on the existence and structure of EVDRSs in Cn(1, 2).
• We discuss the implications and applications of these results in Section 4.
• Finally, we conclude the article in Section 5 by summarizing our findings, highlighting their

significance and limitations, and suggesting directions for future research.

2. Preliminaries

We take an undirected, connected, and simple network G consisting of the set of vertices V(G)
and E(G), which is the set of edges. Let v1, v2 ∈ V(G), then the distance d(v1, v2) is the smallest path
between v1 and v2. Let an ordered subset R = {ri, 1 ≤ i ≤ l} ⊆ V(G), and for any v ∈ V(G), the
representation of v with respect to R is the l-tuple

(
d(v, r1), d(v, r2), . . . , d(v, rl)

)
and written as r(v,R).

The set R is said to be a RS, when different vertices of G have different representations with respect
to R. The minimum number of vertices in subset R is called a basis for G, and the cardinality or size
of the basis is known as the MD of G, represented by dim(G). For R ⊂ V(G), r(x,R) = 0, whenever
x = ri, the ith component of R . Therefore, to prove that R is resolvable, we have to demonstrate
that r(x,R) , r(y,R), whenever x , y ∈ V(G) \ R. Let w and x be any two vertices of G, where
|V(G)| ≥ 2. If for the vertices u, v ∈ G, d(u,w) − d(u, x) , d(v,w) − d(v, x), i.e., the difference between
their distances to w and x is not equal, then we say that u and v are doubly resolved by w and x. A
subset D is said to be DRS, if some of its vertices doubly resolve every pair of the vertices in G. A
DRS with the smallest possible size is said to be a minimal DRS, and its size is called as the double
metric dimension (DMD), denoted by the ψ(G).

If e1 and e2 are edges of the networkG, with the condition that |E(G)| ≥ 2 and dE( f1, e1)−dE( f1, e2) ,
dE( f2, e1) − dE( f2, e2), then f1 and f2 are said to be doubly resolved by e1 and e2. If an ordered subset
DG = {et, 1 ≤ t ≤ k} of edges in G doubly resolves any pair of edges f1 and f2 in E(G), then such a
subset DG is called an EVDRS of G. The minimum size of an EVDRS of G is denoted as ψE(G). For
more research on these basic concepts, see [37].

3. Edge-version of doubly resolving sets in circulant network Cn(1, 2)

The family of circulant network, denoted by Cn(1, 2) is the family of networks obtained by
constructing a cycle of length n and connecting each vertex vλ with vλ + 2 modulo n with a vertex set
VCn(1,2) = {v1, v2, . . . , vn} and edge set ECn(1,2) = H ∪ L, as shown in Figure 1, where
H = {h1, h2, . . . , hn} and L = {l1, l2, . . . , ln}.
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Figure 1. The family of circulant networks Cn(1, 2).

The edge version of MD for Cn(1, 2) was studied in [43], and the result is given below:

Theorem 3.1. [43] Let Cn(1, 2) be the circulant networks, then dimE(Cn(1, 2)) = 4, ∀ n ≥ 6.

The following proposition will be helpful in calculating the EVDRSs:

Proposition 3.1. [26] A subset DCn(1,2) = {y1, y2, . . . yk} ⊆ E(Cn(1, 2)) is an EVDRS of Cn(1, 2) if, and
only if, for every v, y ∈ E(Cn(1, 2)), there exists λ ∈ {2, 3, . . . , k} such that dE(v, yλ) − dE(v, y1) is not
equal to dE(y, yλ) − dE(y, y1).

For every edge e ∈ E(Cn(1, 2)), we define r′E(e,DCn(1,2)) = (dE(e, y2) − dE(e, y1), . . . , dE(e, yk) −
dE(e, y1)). The above proposition states that DCn(1,2) is a minimal EVDRS if and only if these distance
vectors r′E(e,DCn(1,2)) are all distinct for every edge e ∈ E(Cn(1, 2)).

The statement of the theorem for EVDRSs in circulant networks is as follows:

Theorem 3.2. Let Cn(1, 2) be the circulant networks, then ψE(Cn(1, 2)) = 4, for n ≥ 6.

Proof. To compute EVDRSs for circulant networks, we will address the following four scenarios:
Case 1. When n ≡ 0(mod 4) or n = 4k, where k ≥ 2.

Consider the set of edges RCn(1,2) = {h1, h2, h n
2−1, h n

2
}, then the distance vectors of the edges in

relation to RCn(1,2) are shown in Tables 1 and 2 as follows:
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Table 1. Distance vectors r and r′ of the edges in Cn(1, 2).

rE(h2λ−1,RCn(1,2)) λ

(0, 1, n
4 ,

n
4 ) i f λ = 1;

(λ, λ − 1, n
4 − λ + 1, n

4 − λ + 1) i f 2 ≤ λ ≤ n
4 − 1;

( n
4 ,

n
4 − 1, 0, 1) i f λ = n

4 ;

(λ, n
4 , 2, 1) i f λ = n

4 + 1;

( n
2 − λ + 2, n

2 − λ + 2, λ − n
4 + 1, λ − n

4 ) i f n
4 + 2 ≤ λ ≤ n

2 .

r′E(h2λ−1,RCn(1,2)) λ

(1, n
4 ,

n
4 ) i f λ = 1;

(−1, n
4 − 2λ + 1, n

4 − 2λ + 1) i f 2 ≤ λ ≤ n
4 − 1;

(−1,−n
4 , 1 −

n
4 ) i f λ = n

4 ;

( n
4 − λ, 2 − λ, 1 − λ) i f λ = n

4 + 1;

(0, 2λ − 3n
4 − 1, 2λ − 3n

4 − 2) i f n
4 + 2 ≤ λ ≤ n

2 .

rE(h2λ,RCn(1,2)) λ

(1, 0, n
4 − 1, n

4 ) i f λ = 1;

(λ, λ, n
4 − λ,

n
4 − λ + 1) i f 2 ≤ λ ≤ n

4 − 1;

( n
4 ,

n
4 , 1, 0) i f λ = n

4 ;

( n
2 − λ + 1, n

2 − λ + 2, λ − n
4 + 1, λ − n

4 + 1) i f n
4 + 1 ≤ λ ≤ n

2 .

r′E(h2λ,RCn(1,2)) λ

(−1, n
4 − 2, n

4 − 1) i f λ = 1;

(0, n
4 − 2λ, n

4 − 2λ + 1) i f 2 ≤ λ ≤ n
4 − 1;

(0, 1 − n
4 ,−

n
4 ) i f λ = n

4 ;

(1, 2λ − 3n
4 , 2λ −

3n
4 ) i f n

4 + 1 ≤ λ ≤ n
2 .
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Table 2. Distance vectors r and r′ of the edges in Cn(1, 2).

rE(l2λ−1,RCn(1,2)) λ

(1, 1, n
4 − 1, n

4 ) i f λ = 1;

(λ, λ − 1, n
4 − λ,

n
4 − λ + 1) i f 2 ≤ λ ≤ n

4 − 1;

(n
4 , λ −

n
4 + 4, λ − n

4 + 1, 1) i f n
4 ≤ λ ≤

n
4 + 1;

(n
2 − λ + 1, n

2 − λ + 2, λ − n
4 + 1, λ − n

4 ) i f n
4 + 2 ≤ λ ≤ n

2 − 1;

(1, 2, n
4 ,

n
4 ) i f λ = n

2 .

r′E(l2λ−1,RCn(1,2)) λ

(0, n
4 − 2, n

4 − 1) i f λ = 1;

(−1, n
4 − 2λ, n

4 − 2λ + 1) i f 2 ≤ λ ≤ n
4 − 1;

(λ − n
2 + 4, λ − n

2 + 1, 1 − n
4 ) i f n

4 ≤ λ ≤
n
4 + 1;

(1, 2λ − 3n
4 , 2λ −

3n
4 − 1) i f n

4 + 2 ≤ λ ≤ n
2 − 1;

(1, n
4 − 1, n

4 − 1) i f λ = n
2 .

rE(l2λ,RCn(1,2)) λ

(λ, λ, n
4 − λ,

n
4 − λ) i f 1 ≤ λ ≤ n

4 − 1;

(n
4 ,

n
4 , λ −

n
4 + 1, λ − n

4 + 1) i f n
4 ≤ λ ≤

n
4 + 1;

(n
2 − λ + 1, n

2 − λ + 1, λ − n
4 + 1, λ − n

4 + 1) i f n
4 + 2 ≤ λ ≤ n

2 − 1;

(1, 1, n
4 ,

n
4 ) i f λ = n

2 .

r′E(l2λ,RCn(1,2)) λ

(0, n
4 − 2λ, n

4 − 2λ) i f 1 ≤ λ ≤ n
4 − 1;

(0, λ − n
2 + 1, λ − n

2 + 1) i f n
4 ≤ λ ≤

n
4 + 1;

(0, 2λ − 3n
4 , 2λ −

3n
4 ) i f n

4 + 2 ≤ λ ≤ n
2 − 1;

(0, n
4 − 1, n

4 − 1) i f λ = n
2 .

Case 2. When n ≡ 1(mod 4) or n = 4k + 1, where k ≥ 2.
Consider the set of edges RCn(1,2) = {h1, h⌊ n

2 ⌋
, h⌊ n

2 ⌋+1, hn}, then the distance vectors of the edges in
relation to RCn(1,2) are shown in Tables 3 and 4 as follows:
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Table 3. Distance vectors r and r′ of the edges in Cn(1, 2).

rE(h2λ−1,RCn(1,2)) λ

(0, n−1
4 ,

n−1
4 + 1, 1) i f λ = 1;

(λ, n−1
4 − λ + 1, n−1

4 − λ + 2, λ) i f 2 ≤ λ ≤ n−1
4 ;

(n−1
4 + 1, 1, 0, n−1

4 + 1) i f λ = n−1
4 + 1;

(n−1
2 − λ + 2, λ − n−1

4 , λ −
n−1

4 ,
n−1

2 − λ + 2) i f n−1
4 + 2 ≤ λ ≤ n−1

2 ;
(1, n−1

4 + 1, n−1
4 + 1, 0) i f λ = n−1

2 + 1.
r′E(h2λ−1,RCn(1,2)) λ

(n−1
4 ,

n−1
4 + 1, 1) i f λ = 1;

(n−1
4 − 2λ + 1, n−1

4 − 2λ + 2, 0) i f 2 ≤ λ ≤ n−1
4 ;

(−n−1
4 ,−

n−1
4 − 1, 0) i f λ = n−1

4 + 1;
(2λ − 3n−3

4 − 2, 2λ − 3n−3
4 − 2, 0) i f n−1

4 + 2 ≤ λ ≤ n−1
2 ;

(n−1
4 ,

n−1
4 ,−1) i f λ = n−1

2 + 1.
rE(h2λ,RCn(1,2)) λ

(λ, n−1
4 − λ + 1, n−1

4 − λ + 1, λ + 1) i f 1 ≤ λ ≤ n−1
4 − 1;

(n−1
4 , 0, 1,

n−1
4 + 1) i f λ = n−1

4 ;
(n−1

2 − λ + 2, λ − n−1
4 + 1, λ − n−1

4 ,
n−1

2 − λ + 1) i f n−1
4 + 1 ≤ λ ≤ n−1

2 .

r′E(h2λ,RCn(1,2)) λ

(n−1
4 − 2λ + 1, n−1

4 − 2λ + 1, 1) i f 1 ≤ λ ≤ n−1
4 − 1;

(−n−1
4 , 1 −

n−1
4 , 1) i f λ = n−1

4 ;
(2λ − 3n−3

4 − 1, 2λ − 3n−3
4 − 2,−1) i f n−1

4 + 1 ≤ λ ≤ n−1
2 .

Table 4. Distance vectors r and r′ of the edges in Cn(1, 2).

rE(l2λ−1,RCn(1,2)) λ

(λ, n−1
4 − λ + 1, n−1

4 − λ + 1, λ) i f 1 ≤ λ ≤ n−1
4 ;

(n−1
2 − λ + 2, λ − n−1

4 , λ −
n−1

4 ,
n−1

2 − λ + 1) i f n−1
4 + 1 ≤ λ ≤ n−1

2 ;
(1, n−1

4 ,
n−1

4 + 1, 1) i f λ = n−1
2 + 1.

r′E(l2λ−1,RCn(1,2)) λ

(n−1
4 − 2λ + 1, n−1

4 − 2λ + 1, 0) i f 1 ≤ λ ≤ n−1
4 ;

(2λ − 3k − 2, 2λ − 3k − 2,−1) i f k + 1 ≤ λ ≤ 2k;
(n−1

4 − 1, n−1
4 , 0) i f λ = n−1

2 + 1.
rE(l2λ,RCn(1,2)) λ

(λ, n−1
4 − λ,

n−1
4 − λ + 1, λ + 1) i f 1 ≤ λ ≤ n−1

4 − 1;
(n−1

4 , 1, 1,
n−1

4 + 1) i f λ = n−1
4 ;

(n−1
2 − λ + 1, λ − n−1

4 + 1, λ − n−1
4 ,

n−1
2 − λ + 1) i f n−1

4 + 1 ≤ λ ≤ n−1
2 .

r′E(l2λ,RCn(1,2)) λ

(n−1
4 − 2λ, n−1

4 − 2λ + 1, 1) i f 1 ≤ λ ≤ n−1
4 − 1;

(1 − n−1
4 , 1 −

n−1
4 , 1) i f λ = n−1

4 ;
(2λ − 3n−3

4 , 2λ − 3n−3
4 − 1, 0) i f n−1

4 + 1 ≤ λ ≤ n−1
2 .
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Case 3. When n ≡ 2(mod 4) or n = 4k + 2, where k ≥ 1.
Consider the set of edges RCn(1,2) = {h1, h n

2−1, h n
2
, hn}, then the distance vectors of the edges in

relation to RCn(1,2) are shown in Tables 5 and 6 as follows:

Table 5. Distance vectors r and r′ of the edges in Cn(1, 2).

rE(h2λ−1,RCn(1,2)) λ

(0, n−2
4 ,

n−2
4 + 1, 1) i f λ = 1;

(λ, n−2
4 − λ + 1, n−2

4 − λ + 2, λ) i f 2 ≤ λ ≤ n−2
4 ;

( n−2
4 + 1, 1, 0, n−2

4 + 1) i f λ = n−2
4 + 1;

( n−2
2 − λ + 3, λ − n−2

4 , λ −
n−2

4 ,
n−2

2 − λ + 2) i f n−2
4 + 2 ≤ λ ≤ n−2

2 + 1.

r′E(h2λ−1,RCn(1,2)) λ

( n−2
4 ,

n−2
4 + 1, 1) i f λ = 1;

( n−2
4 − 2i + 1, n−2

4 − 2λ + 2, 0) i f 2 ≤ λ ≤ n−2
4 ;

(−n−2
4 ,−

n−2
4 − 1, 0) i f λ = n−2

4 + 1;

(2λ − 3n−6
4 − 3, 2λ − 3n−6

4 − 3,−1) i f n−2
4 + 2 ≤ λ ≤ n−2

2 + 1.

rE(h2λ,RCn(1,2)) λ

(λ, n−2
4 − λ + 1, n−2

4 − λ + 1, λ + 1) i f 1 ≤ λ ≤ n−2
4 − 1;

( n−2
4 , 0, 1,

n−2
4 + 1) i f λ = n−2

4 ;

( n−2
2 − λ + 2, λ − n−2

4 + 1, λ − n−2
4 ,

n−2
2 − λ + 2) i f n−2

4 + 1 ≤ λ ≤ n−2
2 ;

(1, n−2
4 + 1, n−2

4 + 1, 0) i f λ = n−2
2 + 1.

r′E(h2λ,RCn(1,2)) λ

( n−2
4 − 2λ + 1, n−2

4 − 2λ + 1, 1) i f 1 ≤ λ ≤ n−2
4 − 1;

(−n−2
4 , 1 −

n−2
4 , 1) i f λ = n−2

4 ;

(2λ − 3n−6
4 − 1, 2λ − 3n−6

4 − 2, 0) i f n−2
4 + 1 ≤ λ ≤ n−2

2 ;

( n−2
4 ,

n−2
4 ,−1) i f λ = n−2

2 + 1.
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Table 6. Distance vectors r and r′ of the edges in Cn(1, 2).

rE(l2λ−1,RCn(1,2)) λ

(λ, n−2
4 − λ + 1, n−2

4 − λ + 1, λ) i f 1 ≤ λ ≤ n−2
4 ;

( n−2
2 − λ + 2, λ − n−2

4 , λ −
n−2

4 ,
n−2

2 − λ + 2) i f n−2
4 + 1 ≤ λ ≤ n−2

2 + 1.

r′E(l2λ−1,RCn(1,2)) λ

( n−2
4 − 2λ + 1, n−2

4 − 2λ + 1, 0) i f 1 ≤ λ ≤ n−2
4 ;

(2λ − 3n−6
4 − 2, 2λ − 3n−6

4 − 2, 0) i f n−2
4 + 1 ≤ λ ≤ n−2

2 + 1.

rE(l2λ,RCn(1,2)) λ

(λ, n−2
4 − λ,

n−2
4 − λ + 1, λ + 1) i f 1 ≤ λ ≤ n−2

4 − 1;

( n−2
4 , 1, 1,

n−2
4 + 1) i f λ = n−2

4 ;

( n−2
2 − λ + 2, λ − n−2

4 + 1,−n−2
4 ,

n−2
2 − λ + 1) i f n−2

4 + 1 ≤ λ ≤ n−2
2 ;

(1, n−2
4 ,

n−2
4 + 1, 1) i f λ = n−2

2 + 1.

r′E(l2λ,RCn(1,2)) λ

( n−2
4 − 2λ, n−2

4 − 2λ + 1, 1) i f 1 ≤ λ ≤ n−2
4 − 1;

(1 − n−2
4 , 1 −

n−2
4 , 1) i f λ = n−2

4 ;

(2λ − 3n−6
4 − 1, 2λ − 3n−6

4 − 2,−1) i f n−2
4 + 1 ≤ λ ≤ n−2

2 ;

( n−2
4 − 1, n−2

4 , 0) i f λ = n−2
2 + 1.

Case 4. When n ≡ 3(mod 4) or n = 4k + 3, where k ≥ 1.
Consider the set of edges RCn(1,2) = {h1, hn−2, l⌊ n

2 ⌋−1, l⌊ n
2 ⌋
}, then the distance vectors of the edges in

relation to RCn(1,2) are shown in Tables 7 and 8 as follows:
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Table 7. Distance vectors r and r′ of the edges in Cn(1, 2).

rE(h2λ−1,RCn(1,2)) λ

(0, 2, n−3
4 ,

n−3
4 + 1) i f λ = 1;

(λ, λ + 1, n−3
4 − λ + 1, n−3

4 − λ + 2) i f 2 ≤ λ ≤ n−3
4 ;

(n−3
4 + 1, n−3

4 + 1, 1, 1) i f λ = n−3
4 + 1;

(n−3
2 − λ + 3, n−3

2 − λ + 2, λ − n−3
4 ,

n−3
4 − λ − 1) i f n−3

4 + 2 ≤ λ ≤ n−3
2 ;

(2, 0, n−3
4 + 1, n−3

4 ) i f λ = n−3
2 + 1;

(1, 2, n−3
4 + 1, n−3

4 + 1) i f λ = ⌊ n−3
2 + 2⌋.

r′E(h2λ−1,RCn(1,2)) λ

(2, n−3
4 ,

n−3
4 + 1) i f λ = 1;

(1, n−3
4 − 2λ + 1, n−3

4 − 2λ + 2) i f 2 ≤ λ ≤ n−3
4 ;

(0,−n−3
4 ,−

n−3
4 ) i f λ = n−3

4 + 1;

(−1, 2λ − 3n−9
4 − 3,−n−3

4 − 4) i f n−3
4 + 2 ≤ λ ≤ n−3

2 ;

(−2, n−3
4 − 1, n−3

4 − 2) i f λ = n−3
2 + 1;

(1, n−3
4 ,

n−3
4 ) i f λ = ⌊ n−3

2 + 2⌋.

rE(h2λ,RCn(1,2)) λ

(λ, λ + 2, n−3
4 − λ + 1, n−3

4 − λ + 1) i f 1 ≤ λ ≤ n−3
4 − 1;

(λ, n−3
2 − λ + 1, 1, 1) i f n−3

4 ≤ λ ≤
n−3

4 + 1;

(n−3
2 − λ + 3, n−3

2 − λ + 1, λ − n−3
4 , λ −

n−3
4 ) i f n−3

4 + 2 ≤ λ ≤ n−3
2 ;

(2, 1, n−3
4 + 1, n−3

4 + 1) i f λ = n−3
2 + 1.

r′E(h2λ,RCn(1,2)) λ

(2, n−3
4 − 2λ + 1, n−3

4 − 2λ + 1) i f 1 ≤ λ ≤ n−3
4 − 1;

(n−3
2 − 2λ + 1, 1 − λ, 1 − λ) i f n−3

4 ≤ λ ≤
n−3

4 + 1;

(−2, 2λ − 3n−9
4 − 3, 2λ − 3n−9

4 − 3) i f n−3
4 + 2 ≤ λ ≤ n−3

2 ;

(−1, n−3
4 + 1, n−3

4 + 1) i f λ = n−3
2 + 1.
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Table 8. Distance vectors r and r′ of the edges in Cn(1, 2).

rE(l2λ−1,RCn(1,2)) λ

(λ, λ + 1, n−3
4 − λ + 1, n−3

4 − λ + 1) i f 1 ≤ λ ≤ n−3
4 − 1;

(λ, n−3
2 − λ + 1, 2, n−3

4 − λ + 1) i f n−3
4 ≤ λ ≤

n−3
4 + 1;

( n−3
2 − λ + 3, n−3

2 − +1, λ − n−3
4 , λ −

n−3
4 − 1) i f n−3

4 + 2 ≤ λ ≤ n−3
2 ;

(−n−3
2 + 1, λ − n−3

2 ,
3n−9

4 − λ + 2,−n−3
4 − 1) i f n−3

2 + 1 ≤ λ ≤ ⌊n−3
4 + 2⌋.

r′E(l2λ−1,RCn(1,2)) λ

(1, n−3
4 − 2λ + 1, n−3

4 − 2λ + 1) i f 1 ≤ λ ≤ n−3
4 − 1;

( n−3
2 − 2λ + 1, 2 − λ, n−3

4 − 2λ + 1) i f n−3
4 ≤ λ ≤

n−3
4 + 1;

(−2, 2λ − 3n−9
4 − 3, 2λ − 3n−9

4 − 4) i f n−3
4 + 2 ≤ λ ≤ n−3

2 ;

(−1, 5n−15
4 − 2λ − 1, n−3

4 − 2) i f n−3
2 + 1 ≤ λ ≤ ⌊n+1

2 ⌋.

rE(l2λ,RCn(1,2)) λ

(λ, λ + 2, n−3
4 − λ,

n−3
4 − λ + 1) i f 1 ≤ λ ≤ n−3

4 − 1;

(λ, n−3
2 − λ + 1, λ − n−3

4 , 2) i f n−3
4 ≤ λ ≤

n−3
4 + 1;

( n−3
2 − λ + 2, n−3

2 − λ + 1, λ − n−3
4 , λ −

n−3
4 ) i f n−3

4 + 2 ≤ λ ≤ n−3
2 ;

(1, 1, n−3
4 + 1, n−3

4 + 1) i f λ = n−3
2 + 1.

r′E(l2λ,RCn(1,2)) λ

(2, n−3
4 − 2λ, n−3

4 − 2λ + 1) i f 1 ≤ λ ≤ n−3
4 − 1;

( n−3
2 − 2λ + 1,−n−3

4 , 2 − λ) i f n−3
4 ≤ λ ≤

n−3
4 + 1;

(−1, 2λ − 3n−9
4 − 2, 2λ − 3n−9

4 − 2) i f n−3
4 + 2 ≤ λ ≤ n−3

2 ;

(0, n−3
4 ,

n−3
4 ) i f λ = n−3

2 + 1.

The distance vectors in the above four cases show that each distance vector r′E is unique, resulting
in ψE(Cn(1, 2)) = 4. □

4. Application

EVDRSs is a mathematical tool within the field of graph theory. They serve as a tool for locating
particular edges inside a graph (network) by recognizing a collection of edges that are capable of
precisely locating a different edge or set of related edges. In practical scenarios, this variant of graph
theory finds numerous applications, including fault detection in various network types such as
computer networks and network security systems, as well as tracing the origins of epidemics within
social networks and contagious diseases, among other uses (for further information, see [44]).

An EVDRS essentially represents a set of measurements or tests that can be helpful in source
localization to detect the origin of a viral disease outbreak or a virus source in complex networks. The
term “doubly resolving” is used because it possesses the capability to not only identify the existence
of contamination but also differentiate between various source categories. Let us explore the following
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example to better understand how an EVDRS might be used to identify the origins of epidemics during
contagious disease outbreaks.

In a viral disease outbreak scenario, where the city is represented as a circulant network C8(1, 2)
with edges {h1, h2, h3, h4, h5, h6, h7, h8, l1, l2, l3, l4, l5, l6, l7, l8} as shown in Figure 2, we can employ the
minimal EVDRSs to effectively track and control the spread of the virus.

Figure 2. Origin of disease outbreak within the city.

Let us consider the following situation:

• The edges h1, h2, h3, h4, h5, and h6 represent residential areas.
• The edges l1, l2, l3, l4, l5, and l6 represent commercial areas.
• The edges h7, h8, l7, and l8 represent medical facilities.

A quick solution can be achieved by carefully placing observers across the city and ensuring exact
and well-documented distances between these edges. However, executing this comprehensive
procedure would incur substantial expenses and consume a significant amount of time. As a result,
the question arises: how many observers must be deployed to trace the origin of infection when the
initial time of commencement is unknown and transmission delays across edges vary? This demands
a system in which each edge is distinguished by its minimal distance from strategically placed
observers.

For this purpose, we need to identify a minimal set of edges (observers) that, when infection spreads,
would uniquely determine the source of the infection and help in containing the spread. In the case
where a city is represented by the circulant network C8(1, 2), we can choose the following minimal
EVDRS: RC8(1,2) = {h1, h2h3, h4}.
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Let us examine how this works:
Residential Areas: If anyone from the residential areas gets infected, then the source of infection
would be uniquely identified from these residential areas using the information collected by the
placed observers. This information can help in implementing targeted measures like quarantine,
testing, and contact tracing within the residential areas.
Commercial Areas: If an infection spreads in any one of these commercial areas, similarly, by
employing the collected data by the placed observer, the source of the infection would point to one of
these commercial areas. This knowledge can be used to implement measures like temporary closure,
sanitation, and testing within commercial areas.
Medical Facilities: If the infection has reached one of the medical facilities, then by finding the
unknown starting time and edge-to-edge transmission delays using EVDRSs, the source of infection
would be uniquely identified. This information is crucial for implementing measures to protect
healthcare workers and patients and prevent further transmission within medical facilities.

By means of the careful monitoring and tracking of infection via these basic EVDRSs, health
authorities and decision-makers can efficiently allocate resources, identify interventions, and make
informed decisions to control the viral disease outbreak in the city.

There are numerous practical uses for circulant networks, particularly in distributed computing and
computer networks. Particularly, circulant networks can be used for task assignments, load balancing,
and data spreading in distributed computing systems. Circulant networks are beneficial for efficient
routing and resource allocation due to their regular nature. Also, circulant networks offer an effective
way to organize the communication architecture in sensor networks, where multiple sensors send data
to a central node (or edge) or among one another.

Moreover, these networks can be utilized in wireless mesh networks, which expand network
coverage by using wireless communication among nodes, or edges. Because of their regular structure,
circulant networks are suitable for distributing computational workloads among multiple nodes (or
edges) in an efficient manner. Moreover, they can be applied in social areas, in which coordination
and a communication mechanism between distant units are needed. For instance, a social network or
Internet of Things system.

5. Conclusions

The present paper has tackled the notion of EVDRSs in circulant networks Cn(1, 2), EVDRSs
being a set of edges in a network that ascertains that each edge has a unique representation in relation
to the elements of an EVDRS. The main goals were to characterize the minimal size of EVDRS for
circulant networks Cn(1, 2) as well as to understand their structural properties. To sum up, the present
study has focused on EVDRSs in circulant networks Cn(1, 2) and has made significant advances in
comprehending their structural features, determining their minimal size, and highlighting their
independence from the parity of n. The results of the above investigations extend the understanding of
graph theory and have practical implications in several fields, such as telecommunications and
distributed computing, which rely on well-built and efficient networks. Our research findings are
important for helping to create more robust and efficient networks, as well as for developing the
theory of graph-based communication systems.

Because the obtained results are specific to circulant networks Cn(1, 2), they may not hold true for
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other network topologies. It could be difficult to convert theoretical results into practical
implementations, especially in complex and dynamic networks. Collaborating with specialists in
related fields such as network engineering, epidemiology, and computer science may be necessary for
fully comprehending the potential impact of the research in several domains. In fact, bridging the gap
between theoretical research and practical applications can be greatly aided by disciplinary
collaboration. Interdisciplinary collaboration can solve the shortcomings of specific disciplines by
combining ideas and techniques from other domains, producing more trustworthy and useful research
results. This could then lead to a greater impact from these discoveries in a variety of domains,
eventually resulting in useful answers and breakthroughs in various disciplines of research.

Open Problem 5.1. Investigate the EVDRSs for the Chordal Ring network CRn(1, 3, 5), ∀ even integers
n ≥ 6.
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