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Abstract: Internet of Things (IoT) security is an umbrella term for the strategies and tools that protect 

devices connected to the cloud, and the network they use to connect. The IoT connects different objects 

and devices through the internet to communicate with similarly connected machines or devices. An 

IoT botnet is a network of infected or cooperated IoT devices that can be remotely organized by cyber 

attackers for malicious purposes such as spreading malware, stealing data, distributed denial of service 

(DDoS) attacks, and engaging in other types of cybercrimes. The compromised devices can be included 

in any device connected to the internet and communicate data with, e.g., cameras, smart home 

appliances, routers, etc. Millions of devices can include an IoT botnet, making it an attractive tool for 

cyber attackers to launch attacks. Lately, cyberattack detection using deep learning (DL) includes 

training neural networks on different datasets to automatically detect patterns indicative of cyber 

threats, which provides an adaptive and proactive approach to cybersecurity. This study presents an 
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evolutionary algorithm with an ensemble DL-based botnet detection and classification (EAEDL-BDC) 

approach. The goal of the study is to enhance cybersecurity in the cloud-assisted IoT environment via 

a botnet detection process. In the EAEDL-BDC technique, the primary stage of data normalization 

using Z-score normalization is performed. For the feature selection process, the EAEDL-BDC 

technique uses a binary pendulum search algorithm (BPSA). Moreover, a weighted average ensemble 

of three models, such as the modified Elman recurrent neural network (MERNN), gated recurrent unit 

(GRU), and long short-term memory (LSTM), are used. Additionally, the hyperparameter choice of 

the DL approaches occurs utilizing the reptile search algorithm (RSA). The experimental outcome of 

the EAEDL-BDC approach can be examined on the N-BaIoT database. The extensive comparison 

study implied that the EAEDL-BDC technique reaches a superior accuracy value of 99.53% compared 

to other approaches concerning distinct evaluation metrics. 

Keywords: evolutionary algorithm; IoT; ensemble learning; botnet detection; reptile search algorithm 

Mathematics Subject Classification: 11Y40 

 

1. Introduction 

An IoT-based cloud infrastructure is a wide network that contains many IoT-assisted devices and 

applications [1]. An IoT-based cloud structure also contains services and standards vital for 

safeguarding, handling, and linking dissimilar IoT devices and uses. Cloud computing (CC) delivers 

scalability and steady upgrades on hardware and software for huge amounts of industrial uses [2]. 

Furthermore, the cloud allows the consumer to make effective use of network resources and offers a 

variety of safety performances. Of these benefits, it can be obvious that the viewpoint of CC is an 

effective perspective [3]. CC and basic technologies offer numerous possible chances for businesses, 

and it has a huge array of uses, platforms, services, and solutions, with more likely in the future. The 

achievement of some cloud-based performance is greatly dependent on delivering the best experience 

to software developers, cloud managers, and users [4]. There are exact features to the assumption of 

clouds like compliance, complexity, privacy, reliance, control, security, and price. Safety in CC is 

measured as a vital obstacle, and so data and uses can exist at many layers reliant on the preferred 

cloud service method [5]. Furthermore, IoT devices can effortlessly be affected by DDoS and Mirai 

botnet attacks, and both of these attacks are dangerous when compared to other attacks. Besides, the 

occurrence of DDoS attacks can affect the data link layer because it can close all the web pages, which 

is in the present procedure [6]. Attackers who launch the bots to corrupt or damage the method are 

termed a Mirai botnet, performing like a robot and taking control of the entire system. 

Intrusion detection systems (IDS) have resulted in increased attention from researchers toward 

safe IoT devices, along with commenced attacks from challengers [7]. Most of the researchers often 

chose machine learning (ML) models to identify network traffic anomalies produced by recognized 

and recently presented assaults and to caution the suitable system control nodes to block such traffic 

[8]. ML has been considered by computing resources during all its stages. For IDS, extracting features 

from connection packets is an essential action for running, testing, and building the network. 

Composed data models need scaling and cleaning. Constructing a technique needs feature 

classification, and validation. All those actions must be implemented in time order or else slipping 

risky packets invisible is predictable [9]. Combining ML within an embedded system process must 
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regard the computing resources range like CPU design, the graphical processing unit (GPU), network 

connectivity, and the physical memory size [10]. Those kinds of features simulate the operational 

possibility of ML-IDS on IoT devices concerning packet miss rate, forecast output, and computing 

resource application. 

Present methods for DL-based botnet recognition in the IoT-cloud face important challenges, 

including the collection of related features from varied and dynamic IoT data sources, the combination 

of numerous DL methods over ensemble learning to improve recognition accuracy and flexibility, and 

the optimization of hyperparameters to strike a balance between recognition efficacy and 

computational efficiency. These represent the difficulties related to managing varied IoT data streams, 

and are essential for strong feature extractor models personalized to the unique features of the IoT 

devices. Also, the efficiency and scalability of the DL method in handling massive quantities of 

streaming data presents important hurdles, compounded by the dynamic nature of botnet behaviors 

and the developing threat landscape. Hyperparameter tuning requires careful optimization to strike a 

balance between model performance and computational efficiency, a challenge impaired by the dynamic 

nature of IoT atmospheres. Solving these challenges efficiently is vital to understanding the complete 

potential of DL-based botnet recognition methods in the maintenance of IoT-cloud organizations besides 

sophisticated cyber dangers. 

There is a persistent need to develop effective DL-based solutions personalized to the exclusive 

tasks of identifying botnets within IoT-cloud settings. This involves developing models proficient in 

precisely categorizing malicious actions while minimalizing false positives, and familiarizing them 

with the dynamic nature of IoT systems. Furthermore, safeguarding scalability, real-time observing, 

and compatibility with resource-constrained IoT strategies pose additional challenges. Thus, the 

problem consists of inventing strong DL-based botnet recognition devices that determine the details 

of IoT-cloud organizations, eventually improving cybersecurity and safeguarding crucial methods and 

data. 

Therefore, this study presents an evolutionary algorithm with an ensemble DL-based botnet 

detection and classification (EAEDL-BDC) approach. In the EAEDL-BDC algorithm, the primary 

stage of data normalization using Z-score normalization is performed. For the feature selection (FS) 

process, the EAEDL-BDC technique uses a binary pendulum search algorithm (BPSA). Moreover, a 

weighted average ensemble of three models, including the modified Elman recurrent neural network 

(MERNN), gated recurrent unit (GRU), and long short-term memory (LSTM), are used. Furthermore, 

the hyperparameter selection of the DL models takes place using the reptile search algorithm (RSA). 

The experimental value of the EAEDL-BDC approach can be examined on the N-BaIoT dataset. 

The remaining sections of the article are arranged as follows: Section 2 offers a literature review, 

and Section 3 presents the proposed method. Then, Section 4 evaluates the results, and Section 5 

concludes the work. 

2. Related works 

The authors of [11] established the IoT with Cloud-Aided Botnet Detection and Classification 

employing Rat Swarm Optimizer with DL (BDC-RSODL) technique. Mainly, the system data was pre-

processed to generate it well-suited for advanced processes. Also, the RSO technique was developed 

for effectual FS. In addition, the LSTM technique was employed for the detection and identification 

of botnets. Lastly, SCA was implemented for perfecting the parameters connected to the LSTM method. 
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In [12], an intelligent and safe edge-enabled computing (ISEC) technique was developed for 

maintainable towns utilizing Green IoT. The developed technique creates optimum features utilizing 

DL for data routes, which aids in training the sensors to forecast the best routes near edge servers (ES). 

Additionally, the combination of dispersed hashing with a chaining plan benefits safety and results in 

an effective computing method. Prabhu et al. [13] proposed a new DL plan named Modified Learning-

based CAD (MLCAD) which adjusts the features from the conventional safety handle system termed 

IAIS. The projected MLCAD technique classifies the DDoS assaults over the cloud atmosphere by 

analyzing the authentication and authorization reasons of the particular consumer. 

Alrowais et al. [14] presented a Botnet Recognition employing the Chaotic Binary Pelican 

Optimizer Algorithm with DL (BNT-CBPOADL) model. In this technique, the Z-score normalized 

was functional for pre-processed. The convolutional VAE (CVAE) technique has been useful for the 

recognition of botnets. Finally, the arithmetical optimizer algorithm (AOA) has been used for optimum 

hyperparameter tuning. In [15], a united structure for Leveraging the Safety of IoT Application (LSITA) 

with a Remote Patient Monitoring System (RPMS) was developed. It permits cloud-aided 

authentication, safe communications between gatherings involved in IoT use, and an enhanced main 

distribution technique for multiple user data analytics atmosphere. Dissimilar safety systems work 

composed with a unified combination. Aljebreen et al. [16] developed a Political Optimizer Algorithm 

by an HDL Aided Malicious URL Detection and Classification for Cybersecurity (POAHDL-MDC) 

method. This method executes a pre-processing step to convert the information to a well-matched setup, 

and a Fast Text word embedded procedure is involved. For mischievous URL recognition, an HDL 

method incorporates the features of stacked AE (SAE) and BiLSTM. Lastly, POA can be demoralized 

for boosting parameter tuning. 

Wang et al. [17] developed a privacy-enhanced retrieval technology (PERT) for cloud-aided IoT. 

This structure has been intended over a hidden index sustained by ES and a graded retrieval method 

that conserves data confidentiality by hiding the info of data communication among the cloud and ES. 

For the categorized retrieval method, the technique aimed for a data partition plan. The ES stocks 

partial data. In [18], a novel Lightweight Hybrid Encryption (LHE) technique was developed. 

Primarily, the input medical images are encoded over effective substitution box (S-box) elliptic curves 

and a block cipher. An optimum block has been nominated by employing an adaptive COOT optimizer 

approach. Lastly, the encoded medical image information is safely kept in the cloud storage platform. 

Despite the potential of DL in boosting the cybersecurity of cloud-assisted IoT, there is a 

prominent research gap about the addition of vital optimizer models. FS is vital for classifying the 

most related data features that contribute to precise threat recognition, yet its application in DL-based 

cybersecurity for cloud-assisted IoT remains underexplored. Likewise, effectual hyperparameter 

tuning is vital for enhancing the performance of DL techniques in managing various cyber threats 

professionally. Also, the application of EL models, which fuse manifold methods for improved 

predictive robustness and accuracy, remains unexplored in the situation of cloud-assisted IoT 

cybersecurity. Connecting these research gaps is vital for developing more effective and strong defense 

devices against cyberattacks directing cloud-aided IoT infrastructure. The summery of the existing 

work is illustrated in Table 1. 
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Table 1. Summary of existing works. 

Reference No.  Objective Method Dataset Measures 

Alshahrani et al. 

[11]  

To detect and classify IoT-assisted 

botnet activities  

RSO feature selection, 

LSTM classification, 

and SCA-based 

hyperparameter tuning 

Bot-IoT 

database 

Accuracy, 

Precision, Recall, 

F-Score, and 

AUC-Score 

Haseeb et al. [12] 

To establish intellectual and safe 

edge-enabled computing for 

sustainable cities employing Green 

IoT 

ISEC model 
Real-time 

data 

Energy 

consumption, 

throughput, 

delay, and route 

interruption  

Prabhu, Prema, 

and Perumal [13] 

To construct a DL model to detect 

DDoS attacks in the cloud 

atmosphere 

MLCAD 
Standard 

dataset 

Accuracy, 

Precision, Recall, 

F-Score, and 

AUC-Score 

Alrowais et al. 

[14] 

The objective of the BNT-

CBPOADL technique is in the 

precise recognition and 

classification of botnet attacks in 

the IoT atmosphere 

CBPOA, CVAE, and 

AOA  

Bot-IoT 

database 

Accuracy, 

Precision, Recall, 

F-Score, and 

AUC-Score 

Ahmed, Kannan, 

and Polamuri [15] 

To improve the security and 

privacy of IoT applications, 

specifically in the context of a 

Remote Patient Monitoring System 

(RPMS) 

LSITA 
Standard 

dataset 

Accuracy, 

Precision, Recall, 

F-Score, and 

AUC-Score 

Aljebreen et al. 

[16] 

To develop a Hybrid Deep 

Learning Assisted Malicious URL 

Detection and Classification for 

Cybersecurity  

SAE-BiLSTM, POA 

memory (Bi-LSTM) 

POA   

Malicious 

URL dataset 

Accuracy, 

Sensitivity, 

Specificity, and 

F-Score 

Wang et al. [17] 
To improve privacy in cloud-

assisted IoT retrieval 
PERT - 

Accuracy, 

Precision, Recall, 

F-Score, and 

AUC-Score 

Padma Vijetha 

Dev, and Venkata 

Prasad [18] 

To improve the security of medical 

images in IoT utilizing a 

Lightweight Hybrid Encryption 

(LHE) approach 

FEC, adaptive COOT 

optimization model  
- 

Accuracy, 

Precision, Recall, 

F-Score, and 

AUC-Score 

3. The proposed model 

In this manuscript, the EAEDL-BDC technique is introduced. The goal of the study is to enhance 

cybersecurity in cloud-assisted IoT platforms via a botnet detection process. The EAEDL-BDC 

technique comprises data normalization using Z-score normalization, BPSA-based FS, ensemble 

learning, and RSA-based parameter tuning. Figure 1 demonstrates the workflow of the EAEDL-BDC 

approach. 
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Figure 1. Workflow of EAEDL-BDC technique. 

3.1. Data normalization 

The primary stage of data normalization using Z-score normalization can be performed in this 

step. Z-score normalization, a.k.a. standardization, is a statistical approach used to center and rescale 

datasets dividing by standard deviation (SD) and subtracting by mean [19]. Z-score normalization 

transforms the data distribution into a uniform distribution with a mean of zero and an SD of one. This 

process is especially suitable in statistical analyses and ML as it ensures that variables with varying 

scales can equally contribute to the analysis, facilitating better model performance and preventing 
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dominance by variables with larger magnitudes. 

3.2. Feature selection  

For the feature selection process, the EAEDL-BDC technique uses the BPSA algorithm. In 2022, 

Ab. Aziz, N.A. and Ab. Aziz, K. introduced PSA, a new population‐based metaheuristic algorithm 

based on the harmonic motion of a simple pendulum to resolve continuous optimization problems [20]. 

The equation of motion is related to the one suggested in SCA. This study incorporates an exponential 

function that enhances the balance between exploitation and exploration. 

The search agent is initialized at random and their location is upgraded by the next expression. 

𝑋𝑖,𝑗
𝑡 = 𝑋𝑖,𝑗

𝑡 + 𝑝𝑒𝑛𝑑𝑖,𝑗
𝑡 ⋅ (𝐵𝑒𝑠𝑡𝑗 − 𝑋𝑖,𝑗

𝑡 )                                      (1) 

Where the location of 𝑖𝑡ℎ solution in the 𝑗𝑡ℎ dimension at the 𝑡𝑡ℎ iteration is expressed as 𝑋𝑖,𝑗
𝑡 , 

𝑝𝑒𝑛𝑑𝑖,𝑗
𝑡  shows the parameter that can be evaluated by Eq (2), and 𝐵𝑒𝑠𝑡𝑗 refers to the location of the 

optimum solution in 𝑗𝑡ℎ dimension at the 𝑡𝑡ℎ iteration: 

𝑝𝑒𝑛𝑑𝑖,𝑗
𝑡 = 2 ⋅ 𝑒(−𝑡/𝑡max) ⋅ 𝑐𝑜𝑠 (2 ⋅ 𝜋 ∙ 𝑟𝑎𝑛𝑑)                           (2) 

In Eq (2), 𝑡 stands for the current iteration, 𝑡𝑚𝑎𝑥 denotes the maximum iteration counts, and rand 

denotes a uniformly distributed random integer between zero and one. The pseudocode of PSA is given 

in Algorithm 1. 

Algorithm 1: Pseudocode of PSA 

Input: The population 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑖}  

Output: The updated population 𝑋′ = {𝑋1
′ , 𝑋2

′ , … , 𝑋𝑖
′} and Best 

Initialize 𝑋 random population  

Assess the objective function of all the individuals from the 𝑋 population  

Recognize the fittest individual from the population (𝐵𝑒𝑠𝑡) 

For iteration (𝑡) do 

For performance (𝑖) do 

For dimensional (𝑗) do 

Upgrade 𝑝𝑒𝑛𝑑𝑖.𝑗
𝑡  using Eq (2) 

Upgrade the location of 𝑋𝑖,𝑗
𝑡  by Eq (1) 

End for 

End for 

Calculate the objective function of all the individuals within the 𝑋 population  

Upgrade 𝐵𝑒𝑠𝑡 

End for 

Return 𝑋′ the upgraded population whereas 𝐵𝑒𝑠𝑡 is an optimum outcome 

PSA is a recent meta-heuristic algorithm intended to resolve continuous optimizer problems. It 

can be essential to convert the solution into the binary domain for resolving the FS. In addition, the 

classical Two‐Step algorithm is used to binarize the continuous metaheuristic. This study presents five 

binarization rules, and eight different transfer functions are used. Equation (4) represents the 
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binarization rule, and Eq (3) represents the transfer function. 

𝑇(𝑑𝑤
𝑗

) = |
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 (

𝜋

2
𝑑𝑤

𝑗
)|                                            (3) 

𝑋𝑛𝑒𝑤
𝑗

= {1 𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 𝑇(𝑑𝑤
𝑗

)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                          (4) 

Thus, the Binary PSA (B‐PSA) is constructed. First, the solution in the binary domain is initialized, 

and the following steps are performed in all the iterations: (1) perturbing the binary solution with Eqs 

(1) and (2), the equation of movement of PSA. (2) After perturbing each solution, it can leave the 

binary domain and use Eqs (3) and (4), and binarization will be applied. This procedure is reiterated 

until the end of the iterations. Then, perform a feasibility test and solution repair after the binarization 

and solution generation steps. Here, we verify that all the solutions have a minimum of one activated 

feature. A new binary random solution is produced if this condition is not met, and then the feasibility 

test is repeated. This procedure is reiterated until each feasible solution is attained. The pseudocode of 

𝐵‐PSA is demonstrated in Algorithm 3. 

Algorithm 2: Feasibility test and repair solution 

Input: The population 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑖}  

Output: The feasible population 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑖} 

Repeat 

for 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑖) do 

If 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖 has only 0 then 

Produce a new random binary solution 5: 

Else 

Possible result 

End if 

End for 

Until all the results are possible 

Return the 𝑋 possible population  

 

Algorithm 3: Pseudocode of BPSA 

Input: The population 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑖}  

Output: The updated population 𝑋′ = {𝑋1
′ , 𝑋2

′ , … , 𝑋𝑖
′} and Best 

Initialize 𝑋 binary random population  

Implement a possibility test based on Algorithm 2 

Estimate the objective function of all the individuals in 𝑋 population 

Detect the fittest individual from the population (𝐵𝑒𝑠𝑡) 

For iteration (𝑡) do 

For performance (𝑖) do 

For dimensional (𝑗) do 

Upgrade 𝑝𝑒𝑛𝑑𝑖.𝑗
𝑡  by using Eq (2) 

Upgrade the place of 𝑋𝑖,𝑗
𝑡  by utilizing Eq (1) 

End for 

End for 
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Binarization of population 𝑋 

Execute possibility test based on Algorithm 2 

Estimate the objective function of all the individuals within 𝑋 population 

Upgrade Best 

End for 

Return the 𝑋′ upgraded population whereas 𝐵𝑒𝑠𝑡 is an optimum solution  

3.3. Weighted average ensemble 

A weighted AE is an extension of the average ensemble model, which describes the weight of 

every member’s impact to the last estimate [21]. When compared to the lowest performing technique, 

the highest performing method will get large weights. The formula to unite the prediction of the base-

learners can be given as: 

𝑃(𝑡) = 𝑤𝑖𝑝𝑗(𝑡)                                                      (5) 

In Eq (5), 𝑁 represents the overall count of the models, 𝑝𝑖 indicates the probability for 𝑖, and 𝑤𝑖 

represents each model's weight. 

3.3.1. MERNN model 

MERNN has a unique learning strategy and is derived from the backpropagation neural network 

(BPNN) model [22]. This technique has successfully classified a long distance of crucial data. The 

architecture of MERNN multiple different layers to accomplish classification. The layers presented in 

the MERNN model are a recurrent or context, input, output, and hidden layer (HL). Each neuron has 

an activation function, a biased input, and one output. The input layer fetches the information and 

allows the next HL to transfer data to the output layer. This HL is given at the last moment in the Elman 

neural network (ENN). Later, the output of the HL is kept in the recurrent layer. Figure 2 depicts the 

framework of the MERNN technique. 

 

Figure 2. MERNN architecture. 

Consider the hidden neuron counts as 𝑗 = 1,2. . 𝑚, the input counts as 𝑖 = 1,2 … . 𝑛, the network's 

weights as 𝑊𝑖𝑗 ,  𝑊𝑟𝑗, and 𝑊𝑗𝑜, and the recurrent neuron count s as 𝑟 = 1,2. . 𝑚. 
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The output of the HL at 𝑡 is formulated as 

𝑂𝑗(𝑡) = ∑ ∑ (𝑊𝑖𝑗 × 𝑖(𝑡))

𝑚

𝑗=1

𝑛

𝑖=1

+ ∑ ∑ (𝑊𝑟𝑗 × 𝑂𝑗(𝑡 − 1))

𝑚

𝑗=1

𝑚

𝑟=1

+ 𝑏𝑗 , (6) 

In Eq (6), 𝑏 denotes the bias term. 

𝑌𝑗(𝑡) = 𝑔 (𝑂𝑗(𝑡)),                                                 (7) 

In Eq (7), 𝑔 represents the tangent hyperbolic function. 

3.3.2. GRU model 

The GRU is a NN that is adapted depending on the LSTM [23]. The GRU combines forget and 

input gates in the LSTM and exploits them into an update gate. Moreover, it establishes a reset gate. 

The appropriate computational formula of GRU is 

𝑟𝑡 = 𝜎(𝑋𝑡𝑊𝑥𝑟 + ℎ𝑡−1𝑊ℎ𝑟 + 𝐵𝑟)                                         (8) 

𝑧𝑡 = 𝜎(𝑋𝑡𝑊𝑥𝑧 + ℎ𝑡−1𝑊ℎ𝑧 + 𝐵𝑧)                                        (9) 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑋𝑡𝑊𝑥ℎ + 𝑟𝑡 ⊙ ℎ𝑡−1𝑊ℎℎ + 𝐵ℎ)                           (10) 

ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊙ ℎ̃𝑡                                      (11) 

where 𝑋𝑡 signifies the input numbers, 𝑟𝑡 stands for the outcomes of the update gate, 𝑊ℎ𝑟 represents the 

weights among the HL at the preceding moment ℎ𝑡−1 and the reset gate, 𝐵𝑟 is the bias of the reset gate,  

𝑊𝑥𝑟 defines the weights among 𝑋𝑡 and the reset gate, 𝑧𝑡 stands for the result of the update gate, 𝑊𝑥ℎ 

stands for the weights among 𝑋𝑡 and ℎ𝑡, 𝑊ℎℎ signifies the weights among ℎ𝑡−1 and ℎ𝑡, 𝑊𝑥𝑧 signifies 

the weights among 𝑋𝑡 and the update gate, 𝑊ℎ𝑧 defines the weights among ℎ𝑡−1 and the update gate, 

ℎ𝑡 indicates the existing HL, 𝐵ℎ refers to the bias of ℎ𝑡, 𝐵𝑧 illustrates the bias of the update gate, ℎ𝑡 

defines the candidate layer attained by the compound function of 𝑋𝑡  and ℎ𝑡−1 , 𝜎(⋅)  signifies the 

Sigmoid function, and ⊙ stands for the point multiplication operation. 

3.3.3. LSTM model 

By comparison with conventional RNNs, the advance of LSTM models has included 3 control 

parts ("cells"), namely the output gate, input gate, and forget gate [24]. The functions of the gates will 

be explained as given below: 

Forget gate: This gate resolves anything from prior data that can be disregarded. The existing 

stage’s HL ℎ𝑡−1  and input 𝑥𝑡 at the previous component are incorporated into a new vector. Increasing 

the weight parameter 𝑊𝑓 of the gate, every component value of the resultant vector 𝑓𝑡 is scaled from 

0  to 1 over the unit-wise sigmoidal function 𝔞.  A 0′  module permits the related data in 𝐶𝑡−1  to be 

removed, where a 1′ represents consistent data that can be allowed to be accepted. The output 𝑓𝑡 of the 

gate is generated according to Eq (12). 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ ⌈ℎ𝑡−1, 𝑥𝑡⌉ + 𝑏𝑓)                                         (12) 



15806 

AIMS Mathematics Volume 9, Issue 6, 15796–15818. 

Input gate: It evaluates how many of the input 𝑥𝑡 of the network will be kept in the cell state 𝐶𝑡. 

The achievement of the input gate’s operation needs support among 2 parallel layers. The tangent state 

outputs candidate data 𝐶𝑡 for collection, but the sigmoidal layer works as 𝑓𝑡 as well as chooses which 

candidate data could be preferred by the decision vector 𝑖𝑡 outputs. Next, the unit-wise increase of 

candidate data by the decision vector 𝐶𝑡 × 𝑖𝑡 can be carried out along with the last upgrade data, which 

will be comprised of the unit state to be calculated. The function of 2 layers can be represented as Eqs 

(13) and (14). 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ ⌈ℎ𝑡−1, 𝑥𝑡⌉ + 𝑏𝑖)                                                 (13) 

𝐶𝑡 = tan(𝑊𝑐 ⋅ ⌈ℎ𝑡−1, 𝑥𝑡⌉ + 𝑏𝑐)                                                (14) 

Consequently, the cell layer 𝐶𝑡 of the present chain can be incorporated into the previously saved 

data 𝑜𝑓 𝐶𝑡−1, and upgrading data is preferred in 𝐶𝑡 (Eq (15)). 

𝐶𝑡 = 𝐶𝑡−1 × 𝑓𝑡 + 𝐶𝑡 × 𝑖𝑡                                                      (15) 

Output gate: It selects HL ℎ𝑡 from the present chain to outcome by multiplication of the decision 

vector 0𝑡 via the candidate data elected at 𝐶𝑡, as denoted in Eqs (16) and (17). 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ ⌈ℎ𝑡−1, 𝑥𝑡⌉ + 𝑏𝑜)                                                  (16) 

ℎ𝑡 = tan(𝐶𝑡) × 𝑜𝑡                                                            (17) 

3.4. Hyperparameter tuning using RSA 

Eventually, the hyperparameter selection of the DL models takes place using RSA. Similar to 

other metaheuristic optimization algorithms, RSA exploits local and global search to effectively locate 

potential areas in the search range [25]. The original RSA is nature-inspired, mathematically modeling 

the hunting strategy of crocodiles. It can efficiently address complex challenges since it can be a 

gradient‐free population‐based technique. Based on the stochastic technique, a population of agents 

can be created in the initialization process. Then, the population is estimated and the optimum 

performance is considered near‐optimum: 

𝑃 = [

𝑥1′1 … 𝑥1′𝑛

⋮ ⋱ ⋮
𝑥𝑁′1 … 𝑥𝑁′𝑛

]                                                      (18) 

In Eq (18), 𝑁 denotes 𝑃 size, 𝑛 is the dimension problem, and 𝜒 is a promising solution. The set 

population is generated according to Eq (19): 

𝑥𝑖,𝑗 = 𝑟𝑎𝑛𝑑 ⋅ (𝐵𝑙𝑜𝑤𝑒𝑟 − 𝐵𝑢𝑝𝑝𝑒𝑟) + 𝐵𝑙𝑜𝑤𝑒𝑟 , 𝑗 = 1,2, … , 𝑛              (19) 

In Eq (19), 𝐵𝑙𝑜𝑤𝑒𝑟 and 𝐵𝑢𝑝𝑝𝑒𝑟 are the lower and upper boundaries of the search range, and 𝑟𝑎𝑛𝑑 

denotes a random number. 

The algorithm can make progress with optimization once the population is established. The 

strategy used is largely based on the number of residual iterations. Two behaviors are distinctly 
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simulated for the exploration mechanism, namely the crocodile high walking and belly walking: 

𝑥𝑖,𝑗 = {
𝐵𝑗(𝑡) ⋅ − (𝜂𝑖,𝑗(𝑡)) ⋅ 𝛽 − 𝑅𝑖,𝑗(𝑡). 𝑟𝑎𝑛𝑑, 𝑡 ≤

𝑇

4

𝐵𝑗(𝑡) ⋅ 𝑥𝑟1,𝑗 ⋅ 𝐸𝑋(𝑡). 𝑟𝑎𝑛𝑑, 𝑡 ≤ 2
𝑇

4
 𝑎𝑛𝑑 𝑡 >

𝑇

4

               (20) 

In Eq (20), 𝐵𝑗(𝑡) stands for the 𝑗𝑡ℎ component of the better candidate, 𝑟𝑎𝑛𝑑 denotes a random 

number from [0,1], 𝑡 and 𝑇 are the existing and maximum iterations, and 𝛽 denotes the sensitivity. 𝑅 

and 𝐸𝑆 are specialized values described as follows: 

𝜂𝑖,𝑗 = 𝐵𝑗(𝑡) − 𝑃𝐷𝑖,𝑗                                                           (21) 

𝑅𝑖,𝑗 =
𝐵𝑗(𝑡)−𝑥𝑟2′𝑗

𝐵𝑗(𝑡)+𝜖
                                                          (22) 

𝐸𝑆(𝑡) = 2 ⋅ 𝑟3 ⋅ (1 −
1

𝑇
)                                                   (23) 

Here, the 𝜂 parameter denotes the hunter operator. The role of 𝑅 is to decrease the searching range, 

𝐸𝑆 represents the evolutionary sense, 𝑟2 and 𝑟3 are random integers, and 𝑃𝐷 defines the percentage 

deviation among the existing and optimum solutions. Also, a smaller value can be added by 𝜖 to avoid 

a mathematical error. 

Similarly, exploitation exploits 2 different hunting approaches: hunting coordination and 

cooperation.  

𝑥𝑖,𝑗 = {
𝐵𝑗(𝑡) ⋅ 𝑃𝐷𝑖,𝑗(𝑡). 𝑟𝑎𝑛𝑑, 𝑡 ≤ 3

𝑇

4
 𝑎𝑛𝑑 𝑡 > 2

𝑇

4

𝐵𝑗(𝑡) ⋅ 𝜂𝑖,𝑗 ⋅ 𝜖 − 𝑅𝑖,𝑗 . 𝑟𝑎𝑛𝑑 𝑡 ≤ 𝑇 𝑎𝑛𝑑 𝑡 > 3
𝑇

4

                  (24) 

The RSA method produces a fitness function (FF) to acquire a better solution of the classifier. 

This specifies a positive integer to label the best outcomes of the candidate outcome. In this study, the 

decreasing classifier error rate is defined as FF:  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) =
𝑁𝑜.𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 
∗ 100                 (25) 

4. Performance validation  

This section observes the performance of the EAEDL-BDC algorithm on the N-BaIoT Database 

[26]. The database encompasses 17,001 instances with 3 class labels, as defined in Table 2. 

Table 2. Details on database. 

Classes No. of Instances 

Benign 5000 

Mirai 7001 

Gafgyt 5000 

Total Instances 17001 
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Figure 3 illustrates the confusion matrices produced by the EAEDL-BDC system on 80:20 and 

70:30 of TRPH/TSPH. The experimental outcome specifies the efficient recognition of the benign, 

Mirai, and Gafavt classes. 

 

Figure 3. Confusion matrices of (a-b) 70:30 of TRPH/TSPH and (c-d) 80:20 of TRPH/TSPH. 

An overall detection result of the EAEDL-BDC technique is 80% of TRPH and 20% of TSPH, as 

shown in Table 3. Figure 4 demonstrates an overall detection result of the EAEDL-BDC technique 

with 80% of TRPH. These obtained outcomes specify that the EAEDL-BDC system properly identifies 

benign, Mirai, and Gafavt classes. The EAEDL-BDC technique recognizes the benign class with 

𝑎𝑐𝑐𝑢𝑦  of 99.26%, 𝑝𝑟𝑒𝑐𝑛  of 98.55%, 𝑟𝑒𝑐𝑎𝑙  of 98.92%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 98.73%, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒  of 99.16%. 

Additionally, the EAEDL-BDC system identifies the Mirai class with 𝑎𝑐𝑐𝑢𝑦  of 99.39%, 𝑝𝑟𝑒𝑐𝑛  of 

99.26%, 𝑟𝑒𝑐𝑎𝑙 of 99.25%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.25%, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 99.37%. The EAEDL-BDC algorithm 
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recognizes the Gafavt class with 𝑎𝑐𝑐𝑢𝑦  of 99.29%, 𝑝𝑟𝑒𝑐𝑛  of 98.98%, 𝑟𝑒𝑐𝑎𝑙  of 98.64%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 

98.81%, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 99.11%. 

Table 3. Detection outcome of EAEDL-BDC system at 80:20 of TRPH/TSPH. 

Classes  𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 𝑨𝑼𝑪𝑺𝒄𝒐𝒓𝒆 

TRPH (80%) 

Benign 99.26 98.55 98.92 98.73 99.16 

Mirai 99.39 99.26 99.25 99.25 99.37 

Gafavt 99.29 98.98 98.64 98.81 99.11 

Average 99.31 98.93 98.94 98.93 99.21 

TSPH (20%) 

Benign 99.32 98.73 99.02 98.88 99.24 

Mirai 99.35 99.51 98.95 99.23 99.30 

Gafavt 99.38 98.64 99.16 98.90 99.31 

Average 99.35 98.96 99.04 99.00 99.28 

 

Figure 4. Average analysis of EAEDL-BDC system at 80% of TRPH. 

Figure 5 displays an overall detection analysis of the EAEDL-BDC system with 20% of TSPH. 

These outcomes inferred that the EAEDL-BDC methodology properly recognizes benign, mirai, and 

Gafavt classes. The EAEDL-BDC method identifies the benign class with 𝑎𝑐𝑐𝑢𝑦 of 99.32%, 𝑝𝑟𝑒𝑐𝑛 of 

98.73%, 𝑟𝑒𝑐𝑎𝑙 of 99.02%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.88%, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 99.24%. In addition, the EAEDL-BDC 

algorithm identifies the Mirai class with 𝑎𝑐𝑐𝑢𝑦 of 99.35%, 𝑝𝑟𝑒𝑐𝑛 of 99.51%, 𝑟𝑒𝑐𝑎𝑙 of 98.95%, 𝐹𝑠𝑐𝑜𝑟𝑒 

of 99.23%, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 99.30%. Last, the EAEDL-BDC algorithm detects the Gafavt class with 

𝑎𝑛 𝑎𝑐𝑐𝑢𝑦 of 99.38%, 𝑝𝑟𝑒𝑐𝑛 of 98.64%, 𝑟𝑒𝑐𝑎𝑙 of 99.16%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.90%, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 99.31%. 
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Figure 5. Average analysis of EAEDL-BDC method at 20% of TSPH. 

In Table 4, a detailed detection investigation of the EAEDL-BDC algorithm can be provided with 

70% of TRPH and 30% of TSPH. 

Figure 6 exhibits an overall detection outcome of the EAEDL-BDC system with 70% of TRPH. 

These results specify that the EAEDL-BDC technique suitably recognizes benign, Mirai, and Gafavt 

classes. The EAEDL-BDC method recognizes the benign class with 𝑎𝑐𝑐𝑢𝑦  of 99.32%, 𝑝𝑟𝑒𝑐𝑛  of 

98.66%, 𝑟𝑒𝑐𝑎𝑙 of 99.03%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.84%, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 99.23%. Moreover, the EAEDL-BDC 

system finds the Mirai class with 𝑎𝑐𝑐𝑢𝑦  of 99.36%, 𝑝𝑟𝑒𝑐𝑛  of 99.29%, 𝑟𝑒𝑐𝑎𝑙  of 99.17%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 

99.23%, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 99.33%. Also, the EAEDL-BDC algorithm recognizes the Gafavt class with 

𝑎𝑐𝑐𝑢𝑦  of 99.55%, 𝑝𝑟𝑒𝑐𝑛  of 99.33%, 𝑟𝑒𝑐𝑎𝑙  of 99.13%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 99.23%, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒  of 99.43% 

respectively. 

Table 4. Detection analysis of the EAEDL-BDC model under 70:30 of TRPH/TSPH. 

Classes  𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 𝑨𝑼𝑪𝑺𝒄𝒐𝒓𝒆 

70% of TRPH  

Benign 99.32 98.66 99.03 98.84 99.23 

Mirai 99.36 99.29 99.17 99.23 99.33 

Gafavt 99.55 99.33 99.13 99.23 99.43 

Average 99.41 99.09 99.11 99.10 99.33 

30% of TSPH  

Benign 99.55 99.08 99.40 99.24 99.51 

Mirai 99.55 99.27 99.61 99.44 99.56 

Gafavt 99.49 99.54 98.77 99.16 99.29 

Average 99.53 99.30 99.26 99.28 99.45 
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Figure 6. Average of EAEDL-BDC technique at 70% of TRPH. 

Figure 7 shows an overall detection outcome of the EAEDL-BDC method with 30% of TSPH. 

The achieved outcome represents that the EAEDL-BDC technique accurately recognizes benign, Mirai, 

and Gafavt classes. The EAEDL-BDC system recognizes the benign class with 𝑎𝑛 𝑎𝑐𝑐𝑢𝑦 of 99.55%, 

𝑝𝑟𝑒𝑐𝑛 of 99.08%, 𝑟𝑒𝑐𝑎𝑙 of 99.40%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.24%, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 99.51%. Next, the EAEDL-

BDC algorithm finds the Mirai class with 𝑎𝑐𝑐𝑢𝑦  of 99.55%, 𝑝𝑟𝑒𝑐𝑛  of 99.27%, 𝑟𝑒𝑐𝑎𝑙  of 99.61%, 

𝐹𝑠𝑐𝑜𝑟𝑒  of 99.44%, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒  of 99.56%. Lastly, the EAEDL-BDC methodology recognizes the 

Gafavt class with 𝑎𝑐𝑐𝑢𝑦  of 99.49%, 𝑝𝑟𝑒𝑐𝑛  of 99.54%, 𝑟𝑒𝑐𝑎𝑙  of 98.77%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 99.160%, and 

𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 99.29% respectively. 

 

Figure 7. Average of EAEDL-BDC system at 30% of TSPH. 
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The 𝑎𝑐𝑐𝑢𝑦 curves for training (TR) and validation (VL) illustrated in Figure 8 for the EAEDL-

BDC system under 70:30 of TRPH/TSPH offer valued insights into its effectiveness in several epochs. 

Mainly, it can be a consistent upgrade in both TR and TS 𝑎𝑐𝑐𝑢𝑦 with increased epochs, specifying the 

proficiency of the model in learning and recognizing patterns with both data of TR and TS. The 

increasing trend in TS 𝑎𝑐𝑐𝑢𝑦 underscores the adaptability model to the TR dataset and the ability to 

produce exact predictions on unnoticed data, emphasizing the capabilities of robust generalization. 

 

Figure 8. 𝐴𝑐𝑐𝑢𝑦 curve of EAEDL-BDC technique at 70:30 of TRPH/TSPH. 

Figure 9 displays a wide-ranging overview of the TR and TS loss values for the EAEDL-BDC 

technique under 70:30 of TRPH/TSPH through several epochs. The TR loss consistently minimizes as 

the model refines weights for decreasing classification errors under both datasets. The loss curves show 

the alignment of the model with the TR data, underscoring its ability to capture patterns efficiently. 

Significant is the continuing refinement of parameters in the EAEDL-BDC algorithm, aimed at 

reducing discrepancies among forecasts and actual TR labels. 

 

Figure 9. Loss curve of EAEDL-BDC algorithm at 70:30 of TRPH/TSPH. 
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In regard to the PR curve exhibited in Figure 10, the findings affirm that the EAEDL-BDC 

technique with 70:30 of TRPH/TSPH reliably accomplishes increased PR values in each class. These 

performances underline the methodologies’ active capability to discriminate amongst distinct class 

labels, highlighting its ability in accurately detecting classes. 

 

Figure 10. PR curve of EAEDL-BDC algorithm at 70:30 of TRPH/TSPH. 

Likewise, in Figure 11, we illustrate ROC outcomes made by the EAEDL-BDC system at 70:30 

of TRPH/TSPH, suggesting its abilities in unique amongst class labels. These curves provide 

appreciated perceptions of how the trade-off between FPR and TPR varied by diverse classification 

thresholds and epochs. These outcomes underscore the model's exact classification effectiveness on 

diverse class labels, underscoring its efficiency in overcoming several classification challenges. 

 

Figure 11. ROC curve of EAEDL-BDC technique at 70:30 of TRPH/TSPH. 
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In Table 5, a comparison analysis of the EAEDL-BDC method is provided in terms of distinct 

measures [27]. In Figure 12, a comparative 𝑎𝑐𝑐𝑢𝑦 investigation of the EAEDL-BDC approach is provided. 

The outcome demonstrates that the EAEDL-BDC methodology has better results. Based on 𝑎𝑐𝑐𝑢𝑦, the 

EAEDL-BDC technique exhibits an increased 𝑎𝑐𝑐𝑢𝑦  of 99.53%, whereas the HMMLB-BND, BND-

BMOML, DNN-LSTM, LSTM, CNN-RNN, LSTM-CNN, and DNN techniques obtain decreased 𝑎𝑐𝑐𝑢𝑦 

values of 99.44%, 99.05%, 98.85%, 96.90%, 96.20%, 98.61%, and 98.53%, respectively. 

An extensive comparative 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, and 𝐹𝑠𝑐𝑜𝑟𝑒 analysis of the EAEDL-BDC system can be 

provided in Figure 13. These achieved outcomes indicate that the EAEDL-BDC technique acquires 

enhanced performance. According to 𝑝𝑟𝑒𝑐𝑛, the EAEDL-BDC method exhibits boosted 𝑝𝑟𝑒𝑐𝑛 of 99.3% 

while the HMMLB-BND, BND-BMOML, DNN-LSTM, LSTM, CNN-RNN, LSTM-CNN, and DNN 

algorithms get reduced 𝑝𝑟𝑒𝑐𝑛  values of 99.14%, 98.68%, 98.11%, 95.71%, 93.74%, 96.75%, and 

96.75%. Additionally, with 𝑟𝑒𝑐𝑎𝑙, the EAEDL-BDC method exhibits raised 𝑟𝑒𝑐𝑎𝑙 of 99.26%, but the 

HMMLB-BND, BND-BMOML, DNN-LSTM, LSTM, CNN-RNN, LSTM-CNN, and DNN methods 

get reduced 𝑟𝑒𝑐𝑎𝑙  values of 99.13%, 98.67%, 98%, 94.36%, 97.36%, 97.43%, and 96.17%, 

correspondingly. Lastly, based on 𝑡ℎ𝑒 𝐹𝑠𝑐𝑜𝑟𝑒 , the EAEDL-BDC system offers an improved 𝐹𝑠𝑐𝑜𝑟𝑒  of 

99.28%, while the HMMLB-BND, BND-BMOML, DNN-LSTM, LSTM, CNN-RNN, LSTM-CNN, 

and DNN techniques get diminished 𝐹𝑠𝑐𝑜𝑟𝑒  values of 99.14%, 98.71%, 97.87%, 94.96%, 93.82%, 

95.91%, and 94.52%, correspondingly. 

Table 5. Comparison analysis of the EAEDL-BDC model with other algorithms. 

Methods 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 

EAEDL-BDC 99.53 99.3 99.26 99.28 

HMMLB-BND 99.44 99.14 99.13 99.14 

BND-BMOML 99.05 98.68 98.67 98.71 

DNN-LSTM 98.85 98.11 98.00 97.87 

LSTM  96.90 95.71 94.36 94.96 

CNN-RNN 96.20 93.74 97.36 93.82 

LSTM-CNN 98.61 96.75 97.43 95.91 

DNN Algorithm 98.53 96.75 96.17 94.52 

 

Figure 12. 𝐴𝑐𝑐𝑢𝑦 outcome of EAEDL-BDC technique with other approaches.  
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Figure 13. Comparative outcome of EAEDL-BDC technique with other approaches.  

These experimental outcomes show that the EAEDL-BDC system gains excellent performance 

compared to other systems. 

5. Conclusions 

In this study, the EAEDL-BDC technique is presented. The goal of the study is to enhance 

cybersecurity in the cloud-assisted IoT environment via a botnet detection process. The EAEDL-BDC 

technique comprises data normalization using Z-score normalization, BPSA-based FS, ensemble 

learning, and RSA-based parameter tuning. For the FS process, the EAEDL-BDC technique uses 

BPSA. Moreover, a weighted average ensemble of three models, such as MERNN, GRU, and LSTM, 

can be employed. Furthermore, the hyperparameter choice of the DL approaches takes place using 

RSA. The simulation value of the EAEDL-BDC algorithm can be examined on the N-BaIoT database. 

The extensive comparison study demonstrated that the EAEDL-BDC technique researched a superior 

accuracy value of 99.53%, along with other approaches concerning distinct evaluation metrics. The 

EAEDL-BDC model may face threats in real-time scalability due to the computational complexity of 

ensemble DL methods. Future research may concentrate on optimizing the model for edge computing 

atmospheres and exploring dynamic adaptation mechanisms for evolving cyber threats in the cloud-

based IoT context.  
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