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Abstract: In this paper, we propose a parametric accelerated failure time (AFT) hazard-based
regression model with the extended alpha-power exponential (EAPE) baseline distribution. The
proposed model is called the extended alpha-power exponential-AFT (EAPE-AFT) regression model.
We show that the EAPE distribution is closed under the AFT model. The parameters of the proposed
EAPE-AFT model have been estimated by using the method of maximum likelihood estimation. An
extensive simulation study was also conducted to examine the performance of the estimates under
several scenarios based on the shapes of the baseline hazard function. Finally, real-life censored
survival data has been used to illustrate the applicability of the proposed model.
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1. Introduction

Historically, the exponential distribution has been widely applied to model lifetime data due to
its analytical simplicity and the availability of its simple statistical methods such as the existence of
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its closed-form solutions of the cumulative distribution function (CDF) [1]. Notably, the exponential
distribution is the only known continuous distribution characterized by a constant hazard (failure) rate
as well as a memoryless property [2]. Due to the limitations of the hazard rate function (HRF) of the
exponential distribution, its applicability to modeling survival data is somewhat limited, as the available
data exhibit varying hazard shapes. As a result, in recent years, the Weibull, the log-normal, the log-
logistic, and the gamma distributions have become the most popular distributions applied in survival
analysis, particularly for time-to-event data analysis. The popularity of the wide range of applications
has been motivated by the nature of their HRFs which range from monotonic to non-monotonic shapes;
see, e.g., [1, 3, 4].

Lately, researchers have become extremely interested in extending distributions to realize more
flexible distributions that can accommodate different hazard shapes; see e.g., [5–7]. Due to the
availability of various methods of distribution modification, the exponential distribution has been
modified by several researchers to achieve a better fit for real data. Some of these extensions include
the exponentiated exponential [8] as an alternative to the gamma distribution and the generalized
exponential distribution [9], which outperformed the Weibull and gamma distributions. As well as the
odd exponentiated half-logistic exponential distribution [10] whose hazard rate can assume
increasing, decreasing, or bathtub shapes, The exponentiated exponential [11], beta-exponential [12],
generalized gull alpha-power exponential [13], and exponentiated generalized alpha-power
exponential [14], among others.

Furthermore, many researchers have been focused on finding the association between the survival
time or HRF and the covariates for the analysis of uncensored time-to-event data. From this, this
relationship can be quantified and these covariates can be employed in fields such as medicine for
disease management and prevention see [15–18]. These covariates can be classified into either
time-dependence covariates or covariates that do not change with time. Thus, they accommodate
sophisticated lifetime models that are acceptable in various industrial and medical settings. For
instance, in a medical setup, gender and the type of treatment can be classified as time-independent
covariates while calorie intake, age, and the level of dosage are all examples of covariates that may
depend and even change with time [19].

This idea of finding and quantifying the association between the survival time and the covariates
has led to the development of hazard-based regression models, with the main aim of estimating the
regression coefficients for the corresponding covariate components. Moreover, the extended
distributions have actively been used as baseline distributions in the development of hazard-based
regression models to realize more accurate survival predictions. For instance, [20] extended the
Weibull distribution by using the generalized Topp-Leone generator and used it as a baseline
distribution in the formulation of an accelerated failure time (AFT) model. The log-logistic
distribution has been generalized by Muse et al. [7] who developed a hazard-based regression model
with the extended model as the baseline distribution. A multi-parametric hazard-based regression
model called the extended exponential-Weibull AFT model has been proposed in [21]. This model
performed effectively modeled right-censored time-to-event data.

In recent years, a tremendous shift from non-parametric to parametric regression models for survival
analysis has resulted in the provision of attractive and flexible methods for the analysis of time-to-event
data from different disciplines such as population health, medicine, and disease modeling [22]. There
are several parametric regression models among which, the proportional hazard (PH) model and the
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AFT model are the most commonly used in the analysis of censored time-to-event data; see [7, 23].
Others include the proportional odds model and the accelerated hazard model.

The AFT models are a type of statistical model that is used to analyze time-to-event data [24, 25].
These models assume that the time to an event (such as death, failure, or disease onset) follows a
particular probability distribution and that certain factors (such as age, sex, and treatment group) may
influence the rate at which the event occurs [26]. When the distribution of the model’s error component
is well known, the AFT model is said to be parametric; otherwise, it is called a semi-parametric model;
see [27, 28]. The parametric AFT models have different advantages over the semi-parametric AFT
models in survival analysis. Some of the significant advantages are as follows:

(1) Efficiency: Parametric AFT models estimate fewer parameters than semi-parametric models. This
frequently results in more efficient calculations, particularly when the underlying distributional
assumptions are roughly true. Parametric models can provide more accurate estimates of the
survival distribution since are required for estimation [29].

(2) Flexibility: Parametric AFT models provide additional flexibility in the simulation of the structure
of the survival distribution. Researchers can capture a broader range of survival patterns and
perhaps increase model fit by specifying a parametric form for the survival function (SF) (such
as Weibull, exponential, log-normal, etc.) as opposed to semi-parametric models, which assume
fewer distributional features [29].

(3) Interpretability: The parameters of parametric AFT models are frequently interpreted in terms of
the underlying survival timescale. For example, in the Weibull distribution, the shape parameter
controls whether the hazard rises, falls, or stays constant over time. This interpretability is useful
for gaining insight into the elements that determine survival [30].

Furthermore, parametric AFT models, such as those using proportional hazard metrics, allow
variables to accurately predict survival outcomes [28]. Parametric AFT models are used to estimate
the effects of these factors on the event time and to make predictions about future events. They are
commonly used in fields such as biostatistics, reliability engineering, and survival analysis.

The AFT model has been considered to be more applicable and realistic than the PH model.
Additionally, more distributions together with their generalizations have been proven to be closed
under the AFT but not under the PH model [24]. Furthermore, according to [23, 31], the covariates of
the AFT model directly influence the time to event while those of the PH model only affect the HRF.
Also, the constant acceleration assumption made by both the PH and the AFT models is open for
relaxation in the AFT allowing for time dependency related to modeling non-PH sytems [32].

The AFT model is said to be a parametric model if the error component in the model follows a well-
known distribution. The model considers the regression of survival time on one or more covariates;
hence, the model is mainly applied to elucidate the effects of the covariates that either decelerate or
accelerate the survival time; see e.g., [20, 33].

Based on the above discussion, we propose a fully parametric AFT regression model under the
baseline extended alpha-power exponential (EAPE) distribution. The proposed regression model aims
to expand the scope of the exponential distribution in the analysis of time-to-event data and also to
introduce an alternative model that can compete with the most commonly used classical Weibull, log-
logistic, and gamma regression models. The primary motivation for this research was to broaden
the application of the exponential distribution in the analysis of survival data. The proposed AFT
regression model is quite versatile and can be used for a variety of survival analysis applications.
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The proposed EAPE-AFT model is useful in survival analysis because of its adaptability,
interpretability, and efficiency. The model explicitly describes the survival time distribution, allowing
for a broader range of hazard functions and more flexible modeling of covariate effects. This direct
parameterization allows for easy reading of the model’s parameters, resulting in a better
understanding of how covariates influence survival time. Overall, the parametric EAPE-AFT model
developed in this study is a useful and accessible tool for studying survival data, providing insights
that may be used to make decisions in a variety of situations.

The rest of this article is organised as follows: Section 2 gives the formulation of the proposed
model. The maximum likelihood (ML) estimation methodology for the parameters of the proposed
model is described in Section 3. In Section 4, a simulation study to assess the performance of the
estimates is given. Section 5 gives a practical illustration of the model through the use of real data while
a discussion is given in Section 6. Finally, conclusions and recommendations are given in Section 7.

2. Model formulation

AFT models are typically formulated by using a parametric approach. The basic idea is to model
the logarithm of the event time as a linear function of the predictor variables, with the assumption that
the error term follows a probability distribution. The most commonly used probability distributions in
AFT models are the Weibull and log-normal distributions.

For instance, the Weibull AFT model can be formulated as follows:

log(T ) = Xβ + e,

where T is the event time, X is a matrix of the predictor variables, β is a vector comprising the
coefficients to be estimated, and e is the error term, which follows an extreme value distribution if the
survival times follow a Weibull distribution.

Once the model is formulated, it can be fit to the data by using ML estimation or other methods.
The coefficients estimated from the model can be used to make predictions about future event times
and assess the effects of predictor variables on the event time.

2.1. The EAPE distribution

In this study, we consider the EAPE distribution [34] as a baseline model. The CDF of the EAPE
distribution can be expressed as follows

F(x) =
α1−e−λx

− 1
α − 1

b , α, b, λ > 0, α , 1, (2.1)

where α and b > 0 are shape parameters and λ is a scale parameter. By manipulating these parameters,
one can customize the EAPE distribution to accurately represent diverse patterns and characteristics
observed in lifetime data.

Figure 1 gives a visual display of the HRF shapes for the EAPE model indicating that the EAPE
HRF can take four shapes including constant, unimodal, monotonically increasing, and monotonically
decreasing. The HRF is a crucial term in survival analysis which is a field of statistics that examines
the time until a specific event occurs, such as the death or failure of an item. The shape of the HRF
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might reveal vital information about the survival of the item or population under consideration. In the
case of an unimodal HRF, the hazard rate is initially low, then rises to a peak, and then falls again. This
form is frequently observed in biological systems, such as the aging of living organisms. The inflection
point or mode is the highest point in the HRF and it reflects the moment when the HRF is at its peak.
In practice, this shape facilitates identification of the most susceptible phase for an item or population.
For example, in a medical study, the inflection point may represent the age at which a person is most
likely to encounter a specific health event, such as a heart attack or stroke. Understanding the shape
of the HRF can assist researchers and practitioners in making sound decisions regarding preventative
actions or treatments to reduce the risk of such incidents [35].
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Figure 1. The HRF shapes of EAPE distribution: (a) constant; (b) unimodal; (c) increasing;
(d) decreasing.
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The probability density function (PDF) of the EAPE model reduces to

f (x) =
e−λx

(α − 1)b (log(α))α1−e−λx (
α1−e−λx

− 1
)b−1

. (2.2)

The S of the EAPE distribution is given by

S (x) =
(α − 1)b −

(
α1−e−λx

− 1
)b

(α − 1)b . (2.3)

Hence, the HRF and the cumulative-HRF (CHRF) have the following respective forms

h(x) =
bλe−λx(log(α))α1−e−λx

(α − 1)b −
(
α1−e−λx

− 1
)b (α1−e−λ

x

− 1
)b−1

(2.4)

and

H(x) = −log

 (α − 1)b −
(
α1−e−λx

− 1
)b

(α − 1)b

 . (2.5)

2.2. The AFT model and its assumptions

If the random variable T is the event time, x is a vector of covariates (also known as regressor
variables), β is a vector of regressor coefficients, and ψ(x′β) is a link function for the regressor
variables, then we have the following assumptions:

(i) ψ(0) = 1;
(ii) ψ(x′β) >0;

(iii) ψ(x′β) is a one-to-one monotonic function.

Then, the HRF of the AFT model is described as follows:

h(t) = h0
(
tψ(x′β)

)
ψ(x′β). (2.6)

Using the assumption that
ψ(x′β) = ex′β

the HRF of the AFT model is given by

h(t) = h0

(
t ex′β
)

ex′β. (2.7)

The corresponding SF reduces to
S (t) = S 0

(
t ex′β
)
. (2.8)

Hence, the CHRF can be derived as follows:

H(t) = H0

(
t ex′β
)
. (2.9)

Further, the PDF and CDF of the AFT model are respectively derived as follows:

f (t) = f0

(
t ex′β
)

ex′β (2.10)

and
F(t) = 1 − S (t) = 1 − S 0

(
t ex′β
)
. (2.11)
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2.3. The proposed EAPE-AFT model

Considering the EAPE distribution and the AFT models, the HRF and the SF of the proposed
EAPE-AFT model respectively have the following forms

h(t,Θ,β) =
bλ
(
log(α)

)
ex′βα1−e−λtex′β

(
α1−e−λtex′β

− 1
)b−1

(α − 1)b −
(
α1−e−λtex′β

− 1
)b (2.12)

and

S (t;Θ,β) =
(α − 1)b −

(
α1−e−λtex′β

− 1
)b

(α − 1)b . (2.13)

Clearly, by taking
λex′β = λ∗,

the HRF and SF in Eqs (2.12) and (2.13) can respectively be rewritten as

h(t,Θ,β) =
bλ∗
(
log(α)

)
α1−e−λ

∗t
(
α1−e−λ

∗t
− 1
)b−1

(α − 1)b −
(
α1−e−λ∗t − 1

)b (2.14)

and

S (t;Θ,β) =
(α − 1)b −

(
α1−e−λ

∗t
− 1
)b

(α − 1)b . (2.15)

Equations (2.12) and (2.13) represent the HRF and SF of the EAPE distribution, respectively. This
means that the EAPE distribution is closed under the AFT model.

The corresponding CHRF, PDF, and CDF of the EAPE-AFT model are given, respectively, as
follows:

H(t;Θ,β) = b log(α − 1) − log
[
(α − 1)b −

(
α1−e−λtex′β

− 1
)b]

, (2.16)

f (t,Θ,β) =
bλex′β

(α − 1)b (log(α))α1−eλtex′β
(
α1−e−λtex′β

)b−1
(2.17)

and

F(t,Θ,β) =

α1−e−λtex′β
−1

α − 1


b

. (2.18)

3. The ML estimation

In this section, the parameters of the EAPE-AFT regression model are estimated by using the ML
estimation approach under a right-censoring scheme. The ML method is known to produce unique
and asymptotically efficient estimators [36]. Other properties include asymptotic bias, asymptotic
normality, and consistency.
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Consider the lifetimes, T1,T2, ...,Tn, of n individuals. If the data are subject to right censoring and
the component C j > 0 is the possible censoring time for the j individual, then

t j = min(T j,C j).

Further, let {
σ j = I(T j ≤ C j) = 1, T j ≤ C j,

σ j = 0, otherwise.

Let (t j, σ j and x j) be a set of right-censored sample data with

j = 1, 2, ..., n, x j = (x1, x2, ..., xn)T

be an n× 1 vector of regressor variables for the j individual depending on the value of σ j, and t j be the
censoring time for the j individual. Furthermore, the assumption of non-informative censoring, which
means that the survival time distribution provides no information on the censoring time distribution and
vice versa, is considered. More details on non-informative censoring are explored in [1, 37]. Under
this assumption, σ j and t j are considered to be random variables with a joint probability distribution
function given by

f (t j)σ jS (t j)1−σ j . (3.1)

Therefore, if the event of interest occurs at time t j, the j individual contributes f (t j) to the likelihood
function and S (t j) if censored at time t j. Hence, we obtain the likelihood function by incorporating the
information obtained from the censored observations, as follows:

L(Θ) =
n∏

j=1

( f (t j))σ j
(
S (t j)
)1−σ j

,

where Θ is the baseline vector of parameters. In our case, Θ = (α, λ, b,β).
We have that

f (t) = h(t)S (t);

thus, the likelihood function takes the following form:

L(Θ) =
n∏

j=1

[h(t j)S (t j)]σ j(S (t j))1−σ j =

n∏
j=1

[h(t j)]σ jS (t j).

Hence, the log-likelihood function reduces to

ℓ(Θ) =
n∑

j=1

σ j log h(t j) +
n∑

j=1

log S (t j). (3.2)

Therefore, the log-likelihood of the EAPE-AFT regression model becomes

ℓ(Θ) =
n∑

j=1

σ j log
[
h0

(
t je

x′jβ
)

ex′jβ
]
+

n∑
j=1

log
[
S 0

(
t je

x′jβ
)]
.

AIMS Mathematics Volume 9, Issue 6, 15610–15638.



15618

Hence

ℓ(Θ) =
n∑

j=1

σ j log ex′jβ +

n∑
j=1

σ j log b +
n∑

j=1

σ j log λ −
n∑

j=1

σ jλt je
x′jβ

+

n∑
j=1

σ jω j log(α) + (b − 1)
n∑

j=1

σ j log (αω j − 1)

−

n∑
j=1

σ j log
[
(α − 1)b

− (αω j − 1)b
]
+

n∑
j=1

log
[
(α − 1)b

− (αω j − 1)b
]
− n b log(α − 1),

(3.3)

where
ω j = 1 − e−λt je

x′jβ

.

The ML estimates can be obtained directly by optimizing the log-likelihood function or by solving a
system of equations that has been derived by equating the first partial derivatives of the log-likelihood
function with respect to the parameters to zero. In this study, we employed the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method in the optimization of the log-likelihood function given in Eq (3.3)
to obtain the ML estimators of the EAPE-AFT parameters. The BFGS algorithm was independently
introduced by the authors of [38–41]. The BFGS algorithm is one of the most efficient algorithms
for solving unconstrained optimization problems. It is an iterative technique that begins with an initial
guess valueΘ0 and an initial Hessian matrix H0 to provide a solution to a given function. The following
steps are followed such that for k = (0, 1, ...) an approximation point Θk and an mXm matrix Hk are
obtained on the k iteration.

Given parameters: Θ0, H0 > 0 and unconstrained optimization problem ℓ(Θ).

(1) First, the quasi-Newton direction is obtained as follows:

△Θk = −H−1
k ∇ℓ(Θk).

(2) The step length dk is obtained such that it meets certain line search conditions.
(3) The next iteration is obtained as follows:

Θk+1 = Θk + dk△Θk.

(4) An important feature of the algorithm is the choice of Hk. That is, it must be positive definite and
satisfy the quasi-Newton formula given by

Hk+1αk = γk,

where
αk = dk△Θk and γk = ∇ℓ(Θk + αk) − ∇ℓ(Θk).

(5) Finally, the matrices denoted by Hk are updated in accordance with the following BFGS formula

Hk+1 = Hk −
Hkαkα

T
k Hk

αT
k Hkαk

+
γkγ

T
k

αT
k γk

,

where Θ = (α, λ, b,β) is a vector of parameters of the EAPE distribution.
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4. Simulation study

In this section, we show the ability of the proposed model to make inferences by presenting
simulation results. Specifically, we demonstrate how the model can estimate parameters accurately by
using the absolute bias (AB), mean square error (MSE), and relative bias (RB) measures. We check
the ability of the model to recover the baseline HRF shapes. Moreover, we obtain the Akaike
information criteria (AIC) to choose models that accurately describe the underlying HR shape. We
also investigate how the model’s inferential capabilities are affected by different proportions of
censoring.

The AFT regression framework given in Eq (2.6) was assumed for data generation and simulation
design. We generated samples of sizes n = 2000 and n = 5000. The covariate vector,

x = (x1, x2, x3, x4)′,

was considered in the simulation study where x1 and x2 are binary variables derived from a
Bernoulli(0.5) distribution whereas x3 and x4 are continuous variables derived from a standard
Gaussian distribution. The vector corresponds to the following coefficients of the AFT regression

β = (β0,β1,β2,β3,β4)′

whose initial values were chosen to be (−2.5, 0.5,−0.75, 0.5,−0.75).
In simulating lifetime censored data from the AFT framework, we used the technique of the inverse

transform as explained in [19]. Further, because the main aim of the study was to test the robustness
of the proposed model when applied to model different types of time-to-event data, we considered the
inverse transform of the exponentiated Weibull (EW) distribution under the assumption of the presence
of a regression intercept and covariate effects [3, 5, 21, 42]. Also, the assumption of non-informative
censoring has been incorporated for the generation of censored data.

If a random variable T comes from the EW distribution with parameters α, b and λ, the PDF of T
is given by

f (t;α, b, λ) = αbλ(bt)α−1
{
1 − e−(bt)α

}λ−1
e−(bt)α . (4.1)

This distribution accommodates all of the most basic HRF shapes which include constant,
monotonic (increasing and decreasing), and non-monotonic (unimodal and bathtub), and it is also
closed under the AFT regression models. It follows that the CHRF for the EW distribution is defined
as follows:

H0(t;α, b, λ) = − log
(
1 −
{
1 − e−(bt)α

}λ)
. (4.2)

The inverse CHRF is given by

H−1
0 (p;α, b, λ) = −

log
[
(e−p − 1)1/λ

− 1
] 1
α

b
. (4.3)

4.1. Simulated scenarios

This study was conducted for three simulation scenarios based on monotonically increasing,
monotonically decreasing, and unimodal hazard shapes to assess how well the proposed EAPE-AFT
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model performs in comparison with some selected competing distributions, i.e., the log-logistic-AFT
(LL-AFT) and Weibull-AFT (W-AFT). The simulations were also conducted to explore the effects of
the baseline HRF on the inferential properties of the hazard-based regression models.

First scenario: monotonically increasing HRF

In this scenario, we generated lifetime data from the EW distribution with (α = 1.5, b = 1.4, λ = 1.1)
and two censoring percentages, i.e., 14.45% ≈ 15% and 22.15% ≈ 22% which were determined from
the censoring times derived from an exponential distribution by using the rate parameter θ = 0.26 and
θ = 0.15, respectively.

Second scenario: monotonically decreasing HRF

In this scenario, we generated lifetime data from the EW distribution with α = 1.2, b = 1.2, λ =
0.8 and two censoring percentages, i.e., 15% and 22% which were determined from the censoring
times derived from an exponential distribution by using the rate parameter θ = 0.56 and θ = 0.31,
respectively.

Third scenario: unimodal HRF

In this scenario, we generated lifetime data from the EW distribution with α = 0.9, b = 3.5, λ =
1.2 and two censoring percentages, i.e., 14.75% ≈ 15% and 22% which were determined from the
censoring times derived from an exponential distribution using the rate parameter θ = 0.27 and θ =
0.19, respectively.

Using the different parameter combinations, the plots of hazard shapes of the EW distribution were
constructed as reported in Figure 2 for the cases of monotonically increasing, monotonically
decreasing, and unimodal. Figure 3 gives the total time on test (TTT) plots for the lifetime data
generated for each of the three scenarios.
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Figure 2. The EW hazard shapes for the considered simulation scenarios: (a) increasing; (b)
decreasing; (c) unimodal.
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Figure 3. The TTT plots for the generated data for the three scenarios: (a) increasing; (b)
decreasing; (c) unimodal.

4.2. Analysis of simulated data

To evaluate the predictive and analytical capabilities of the proposed model in each scenario, the
EAPE-AFT model is was fit to the lifetime data that were generated based on the EW distribution as
was the case for the W-AFT and LL-AFT models. Additionally, for all the fitted models, the AB, RB,
and MSE were calculated to evaluate the stability of the regression coefficient estimators. Finally, the
AIC was computed for model comparison.

Given that our main objective was to evaluate the accuracy of the estimates (or stability of the
estimators) of the covariate coefficients, rather than analyze the characteristics of the optimization
process, we utilized the parameter values from the generating model to initiate the optimization
procedure in every scenario. We conducted the analysis by using the R programming language, and
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the optimization step was executed by using the “nlminb” function in the R software.

4.3. Simulation results

Simulation results for the first scenario are presented in Tables 1–4. Based on these results, it can
be inferred that the proposed EAPE-AFT model performs better than the EW-AFT, the W-AFT, and
the LL-AFT models, as it achieved the lowest AIC. Additionally, the AIC values for the EW-AFT,
EAPE-AFT and W-AFT distributions can be seen as close to each other but they are superior to those
for the LL-AFT model. When the censoring percentage was increased to 22% and the sample size
was increased, the EAPE-AFT model consistently outperformed all of the considered models with the
lowest AIC values. For the covariates, x1, x2, x3, x4, and the intercept, all models indicated low values
of the AB, MSE, and RB. Increasing the sample size from 2000 to 5000, the values of AB, MSE, and
RB decreased indicating consistency of the estimates. Moreover, the AB, MSE, and RB values for the
covariates of the EAPE-AFT, EW-AFT, and W-AFT models dominated those of the LL-AFT model.
However, increasing the censoring percentage resulted in increased estimation error.

In Scenario 2 as presented in Tables 5–8, all competing models could account for the diminishing
HRF shape, but the EAPE-AFT model was found to be the best in terms of the value of the AIC. The
EAPE-AFT, EW-AFT, W-AFT, and LL-AFT had similar AIC.

The results for Scenario 3 are presented in Tables 9–12. These results show that the EAPE-AFT
model outperformed all of the considered models with the lowest AIC values, and that the EW-AFT,
and LL-AFT models had the lowest values for the AIC. On the other hand, the W-AFT model generates
the least accurate estimates in terms of the AB, MSE, and RB.

Table 1. Simulation results for the first scenario with 15% censoring and n = 2000.
Model Parameter True value MLE AB MSE RB
EAPE-AFT α 1.8 2.053 0.253 0.064 0.141
(AIC = 2572.532) λ 1.1 0.089 1.011 1.022 0.919

b 2.2 0.779 1.421 2.018 0.646
β0 -2 -3.041 1.041 1.083 -0.520
β1 0.65 1.104 0.454 0.206 0.698
β2 -0.7 -1.710 1.010 1.021 -1.443
β3 0.65 0.914 0.264 0.070 0.406
β4 -0.7 -1.663 0.963 0.927 -1.375

EW-AFT(True model) α 1.5 1.533 0.033 0.001 0.022
(AIC = 2574.291) λ 1.4 1.522 0.122 0.015 0.087

b 1.1 1.151 0.051 0.003 0.046
β0 -3 -3.037 0.037 0.001 -0.012
β1 0.45 0.449 0.001 0.000 0.002
β2 -0.65 -0.697 0.047 0.002 -0.072
β3 0.45 0.439 0.011 0.000 0.024
β4 -0.65 -0.652 0.002 0.000 -0.003

LL-AFT α 3 3.261 0.261 0.068 0.087
(AIC = 2591.397) b 1.5 1.837 0.337 0.114 0.225

β0 -3.5 -3.394 0.106 0.011 -0.030
β1 0.75 0.912 0.162 0.026 0.216
β2 -0.85 -0.873 0.023 0.001 -0.027
β3 0.75 0.793 0.043 0.002 0.057
β4 -0.85 -0.868 0.018 0.000 -0.021

W-AFT α 2.9 2.833 0.067 0.005 0.023
(AIC = 2576.459) b 1.8 1.900 0.100 0.010 0.056

β0 -1.5 -1.593 0.093 0.009 -0.062
β1 0.35 0.331 0.019 0.000 0.054
β2 -1.05 -1.047 0.003 0.000 -0.003
β3 0.35 0.395 0.045 0.002 0.127
β4 -1.05 -1.069 0.019 0.000 -0.018
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Table 2. Simulation results for the first scenario with 15% censoring and n = 5000.
Model Parameter True value MLE AB MSE RB
EAPE-AFT α 1.8 1.790 0.010 0.000 0.006
(AIC = 2513.041) λ 1.1 1.106 0.006 0.000 0.005

b 2.2 2.279 0.079 0.006 0.036
β0 -2 -2.189 0.189 0.036 -0.094
β1 0.65 0.678 0.028 0.001 0.043
β2 -0.7 -0.622 0.078 0.006 -0.111
β3 0.65 0.639 0.011 0.000 0.017
β4 -0.7 -0.711 0.011 0.000 -0.015

EW-AFT(True model) α 1.5 1.506 0.006 0.000 0.004
(AIC = 2513.31) λ 1.4 1.512 0.112 0.012 0.080

b 1.1 1.108 0.008 0.000 0.007
β0 -3 -3.051 0.051 0.003 -0.017
β1 0.45 0.458 0.008 0.000 0.018
β2 -0.65 -0.671 0.021 0.000 -0.033
β3 0.45 0.429 0.021 0.000 0.046
β4 -0.65 -0.648 0.002 0.000 -0.003

LL-AFT α 3 3.295 0.295 0.087 0.098
(AIC = 2525.861) b 1.5 1.787 0.287 0.082 0.191

β0 -3.5 -4.017 0.517 0.267 -0.148
β1 0.75 1.066 0.316 0.100 0.421
β2 -0.85 -0.692 0.158 0.025 -0.186
β3 0.75 1.246 0.496 0.246 0.661
β4 -0.85 -1.007 0.157 0.025 -0.185

W-AFT α 2.9 2.449 0.451 0.203 0.156
(AIC = 2513.426) b 1.8 1.814 0.014 0.000 0.008

β0 -1.5 -1.605 0.105 0.011 -0.070
β1 0.35 0.408 0.058 0.003 0.166
β2 -1.05 -1.172 0.122 0.015 -0.116
β3 0.35 0.316 0.034 0.001 0.097
β4 -1.05 -1.076 0.026 0.001 -0.024

Table 3. Simulation results for the first scenario with 22% censoring and n = 2000.
Model Parameter True value MLE AB MSE RB
EAPE-AFT α 1.8 1.721 0.079 0.006 0.044
(AIC = 6401.272) λ 1.1 1.130 0.030 0.001 0.027

b 2.2 2.133 0.067 0.004 0.030
β0 -2 -2.233 0.233 0.054 -0.116
β1 0.65 0.694 0.044 0.002 0.068
β2 -0.7 -0.702 0.002 0.000 -0.004
β3 0.65 0.653 0.003 0.000 0.005
β4 -0.7 -0.605 0.095 0.009 -0.136

EW-AFT(True model) α 1.5 1.531 0.031 0.001 0.021
(AIC = 6406.657) λ 1.4 1.294 0.106 0.011 0.076

b 1.1 1.125 0.025 0.001 0.022
β0 -3 -2.705 0.295 0.087 -0.098
β1 0.45 0.468 0.018 0.000 0.039
β2 -0.65 -0.643 0.007 0.000 -0.011
β3 0.45 0.636 0.186 0.035 0.413
β4 -0.65 -0.702 0.052 0.003 -0.080

LL-AFT α 2.9 2.145 0.755 0.570 0.260
(AIC = 6417.564) b 1.8 1.265 0.535 0.286 0.297

β0 -1.5 -1.745 0.245 0.060 -0.163
β1 0.35 0.686 0.336 0.113 0.960
β2 -1.05 -1.012 0.038 0.001 -0.036
β3 0.35 0.644 0.294 0.086 0.840
β4 -1.05 -1.032 0.018 0.000 -0.017

W-AFT α 3 2.851 0.149 0.022 0.050
(AIC = 6407.219) b 1.5 1.208 0.292 0.085 0.195

β0 -3.5 -3.080 0.420 0.176 -0.120
β1 0.75 0.674 0.076 0.006 0.101
β2 -0.85 -1.004 0.154 0.024 -0.181
β3 0.75 0.634 0.116 0.013 0.155
β4 -0.85 -1.018 0.168 0.028 -0.198
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Table 4. Simulation results for the first scenario with 22% censoring and n = 5000.
Model Parameter True value MLE AB MSE RB
EAPE-AFT α 1.8 1.901 0.101 0.010 0.056
(AIC = 6142.081) λ 1.1 1.132 0.032 0.001 0.029

b 2.2 2.503 0.303 0.092 0.138
β0 -2 -2.016 0.016 0.000 -0.008
β1 0.65 0.669 0.019 0.000 0.029
β2 -0.7 -0.732 0.032 0.001 -0.045
β3 0.65 0.708 0.058 0.003 0.089
β4 -0.7 -0.800 0.100 0.010 -0.143

EW-AFT(True model) α 1.5 1.525 0.025 0.001 0.016
(AIC = 6145.041) λ 1.4 1.402 0.002 0.000 0.001

b 1.1 1.109 0.009 0.000 0.008
β0 -3 -2.962 0.038 0.001 -0.013
β1 0.45 0.460 0.010 0.000 0.021
β2 -0.65 -0.683 0.033 0.001 -0.051
β3 0.45 0.469 0.019 0.000 0.043
β4 -0.65 -0.699 0.049 0.002 -0.075

LL-AFT α 2.9 2.164 0.736 0.542 0.254
(AIC = 6156.652) b 1.8 1.727 0.073 0.005 0.041

β0 -1.5 -1.764 0.264 0.070 -0.176
β1 0.35 0.367 0.017 0.000 0.048
β2 -1.05 -1.011 0.039 0.002 -0.037
β3 0.35 0.370 0.020 0.000 0.058
β4 -1.05 -1.099 0.049 0.002 -0.047

W-AFT α 3 2.853 0.147 0.022 0.049
(AIC = 6144.867) b 1.5 1.515 0.015 0.000 0.010

β0 -3.5 -3.106 0.394 0.155 -0.113
β1 0.75 0.648 0.102 0.010 0.136
β2 -0.85 -0.899 0.049 0.002 -0.057
β3 0.75 0.776 0.026 0.001 0.035
β4 -0.85 -0.973 0.123 0.015 -0.145

Table 5. Simulation results for the second scenario with 15% censoring and n = 2000.
Model Parameter True value MLE AB MSE RB
EAPE-AFT α 1.3 1.409 0.109 0.012 0.084
(AIC = 4709.928) λ 1.1 1.100 0.000 0.000 0.000

b 0.72 0.735 0.015 0.000 0.021
β0 -2 -2.897 0.897 0.805 -0.449
β1 0.65 0.775 0.125 0.016 0.192
β2 -0.7 -0.632 0.068 0.005 -0.097
β3 0.65 0.689 0.039 0.002 0.060
β4 -0.7 -0.653 0.047 0.002 -0.067

EW-AFT(True model) α 1.5 1.500 0.000 0.000 0.000
(AIC = 4710.583) λ 1.1 1.173 0.073 0.005 0.067

b 0.85 0.853 0.003 0.000 0.004
β0 -3 -2.709 0.291 0.085 -0.097
β1 0.45 0.431 0.019 0.000 0.042
β2 -0.65 -0.630 0.020 0.000 -0.030
β3 0.45 0.429 0.021 0.000 0.047
β4 -0.65 -0.653 0.003 0.000 -0.005

LL-AFT α 1.3 1.913 0.613 0.376 0.472
(AIC = 4712.974) b 1.5 1.599 0.099 0.010 0.066

β0 -3.5 -4.162 0.662 0.438 -0.189
β1 0.75 1.119 0.369 0.136 0.492
β2 -0.85 -0.632 0.218 0.048 -0.256
β3 0.75 0.874 0.124 0.015 0.165
β4 -0.85 -0.854 0.004 0.000 -0.004

W-AFT α 1.3 1.202 0.098 0.522 0.075
(AIC = 4710.68) b 1.8 1.760 0.040 0.105 0.022

β0 -1.5 -1.222 0.278 0.522 -0.185
β1 0.35 0.321 0.029 0.548 0.083
β2 -1.05 -1.057 0.007 0.274 -0.007
β3 0.35 0.382 0.032 0.225 0.093
β4 -1.05 -1.051 0.001 0.208 -0.001
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Table 6. Simulation results for the second scenario with 15% censoring and n = 5000.
Model Parameter True value MLE AB MSE RB
EAPE-AFT α 1.3 1.310 0.010 0.000 0.008
(AIC = 3974.238) λ 1.1 1.112 0.012 0.000 0.011

b 0.72 0.753 0.033 0.001 0.046
β0 -2 -2.209 0.209 0.044 -0.105
β1 0.65 0.600 0.050 0.003 0.077
β2 -0.7 -0.757 0.057 0.003 -0.082
β3 0.65 0.640 0.010 0.000 0.015
β4 -0.7 -0.755 0.055 0.003 -0.079

EW-AFT(True model) α 1.5 1.517 0.017 0.000 0.011
(AIC = 3974.291) λ 1.1 1.133 0.033 0.001 0.030

b 0.85 0.851 0.001 0.000 0.001
β0 -3 -3.084 0.084 0.007 -0.028
β1 0.45 0.449 0.001 0.000 0.003
β2 -0.65 -0.662 0.012 0.000 -0.019
β3 0.45 0.452 0.002 0.000 0.005
β4 -0.65 -0.658 0.008 0.000 -0.012

LL-AFT α 1.3 1.394 0.094 0.009 0.072
(AIC = 3978.462) b 1.5 1.573 0.073 0.005 0.049

β0 -3.5 -3.389 0.111 0.012 -0.032
β1 0.75 0.740 0.010 0.000 0.013
β2 -0.85 -0.866 0.016 0.000 -0.018
β3 0.75 0.690 0.060 0.004 0.080
β4 -0.85 -0.863 0.013 0.000 -0.015

W-AFT α 1.3 1.381 0.081 0.007 0.063
(AIC = 3975.069) b 1.8 1.953 0.153 0.023 0.085

β0 -1.5 -1.340 0.160 0.026 -0.107
β1 0.35 0.388 0.038 0.001 0.109
β2 -1.05 -1.652 0.602 0.362 -0.573
β3 0.35 0.215 0.135 0.018 0.386
β4 -1.05 -1.065 0.015 0.000 -0.014

Table 7. Simulation results for the second scenario with 22% censoring and n = 2000.
Model Parameter True value MLE AB MSE RB
EAPE-AFT α 1.3 1.306 0.006 0.000 0.005
(AIC = 11701.29) λ 1.1 1.115 0.015 0.000 0.013

b 0.72 0.757 0.037 0.001 0.052
β0 -2 -2.090 0.090 0.008 -0.045
β1 0.65 0.642 0.008 0.000 0.012
β2 -0.7 -0.753 0.053 0.003 -0.075
β3 0.65 0.648 0.002 0.000 0.003
β4 -0.7 -0.745 0.045 0.002 -0.064
α 1.5 1.532 0.032 0.001 0.021

EW-AFT(True model) λ 1.1 1.109 0.009 0.000 0.008
(AIC = 11714.72) b 0.85 0.821 0.029 0.001 0.034

β0 -3 -3.068 0.068 0.005 -0.023
β1 0.45 0.410 0.040 0.002 0.089
β2 -0.65 -0.653 0.003 0.000 -0.005
β3 0.45 0.483 0.033 0.001 0.073
β4 -0.65 -0.652 0.002 0.000 -0.003
α 1.3 1.265 0.035 0.001 0.027
b 1.5 1.638 0.138 0.019 0.092

LL-AFT β0 -3.5 -3.484 0.016 0.000 -0.005
(AIC = 11715.66) β1 0.75 0.805 0.055 0.003 0.073

β2 -0.85 -0.830 0.020 0.000 -0.023
β3 0.75 0.823 0.073 0.005 0.097
β4 -0.85 -0.846 0.004 0.000 -0.005
α 1.3 1.318 0.018 0.000 0.014
b 1.8 1.836 0.036 0.001 0.020
β0 -1.5 -1.498 0.002 0.000 -0.001

W-AFT β1 0.35 0.401 0.051 0.003 0.145
(AIC = 11717.28) β2 -1.05 -1.463 0.413 0.171 -0.393

β3 0.35 0.378 0.028 0.001 0.081
β4 -1.05 -0.163 0.887 0.786 -0.844
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Table 8. Simulation results for the second scenario with 22% censoring and n = 5000.
Model Parameter True value MLE AB MSE RB
EAPE-AFT α 1.3 1.320 0.020 0.000 0.015
(AIC = 9495.63) λ 1.1 1.107 0.007 0.000 0.007

b 0.72 0.756 0.036 0.001 0.050
β0 -2 -2.066 0.066 0.004 -0.033
β1 0.65 0.595 0.055 0.003 0.084
β2 -0.7 -0.744 0.044 0.002 -0.062
β3 0.65 0.594 0.056 0.003 0.086
β4 -0.7 -0.837 0.137 0.019 -0.196

EW-AFT(True model) α 1.5 1.547 0.047 0.002 0.031
(AIC = 9504.849) λ 1.1 1.103 0.003 0.000 0.003

b 0.85 0.865 0.015 0.000 0.018
β0 -3 -3.052 0.052 0.003 -0.017
β1 0.45 0.440 0.010 0.000 0.022
β2 -0.65 -0.749 0.099 0.010 -0.152
β3 0.45 0.439 0.011 0.000 0.025
β4 -0.65 -0.649 0.001 0.000 -0.002

LL-AFT α 1.3 1.371 0.071 0.005 0.054
(AIC = 9506.04) b 1.5 1.611 0.111 0.012 0.074

β0 -3.5 -3.939 0.439 0.193 -0.125
β1 0.75 0.899 0.149 0.022 0.199
β2 -0.85 -1.048 0.198 0.039 -0.233
β3 0.75 0.706 0.044 0.002 0.059
β4 -0.85 -1.005 0.155 0.024 -0.182

W-AFT α 1.3 1.385 0.085 0.007 0.065
(AIC = 9518.466) b 1.8 1.940 0.140 0.020 0.078

β0 -1.5 -1.605 0.105 0.011 -0.070
β1 0.35 0.300 0.050 0.003 0.143
β2 -1.05 -1.047 0.003 0.000 -0.002
β3 0.35 0.341 0.009 0.000 0.026
β4 -1.05 -1.048 0.002 0.000 -0.002

Table 9. Simulation results for the third scenario with 15% censoring and n = 2000.
Model Parameter True value MLE AB MSE RB
EAPE-AFT α 2.9 2.983 0.083 0.007 0.029
(AIC = 2572.532) λ 1.5 1.379 0.121 0.015 0.080

b 0.2 0.457 0.257 0.066 1.283
β0 -2 -2.077 0.077 0.006 -0.038
β1 0.65 0.716 0.066 0.004 0.101
β2 -0.7 -0.755 0.055 0.003 -0.079
β3 0.65 0.671 0.021 0.000 0.032
β4 -0.7 -0.656 0.044 0.002 -0.062

EW-AFT(True model) α 1.9 1.859 0.041 0.002 0.022
(AIC = 2574.291) λ 2.5 2.511 0.011 0.000 0.004

b 2.2 2.101 0.099 0.010 0.045
β0 -3 -3.056 0.056 0.003 -0.019
β1 0.45 0.470 0.020 0.000 0.044
β2 -0.65 -0.661 0.011 0.000 -0.016
β3 0.45 0.466 0.016 0.000 0.036
β4 -0.65 -0.783 0.133 0.018 -0.204

LL-AFT α 1.9 1.731 0.169 0.029 0.089
(AIC = 2589.642) b 3.8 3.728 0.072 0.005 0.019

β0 -1.5 -1.331 0.169 0.029 -0.113
β1 0.35 0.271 0.079 0.006 0.226
β2 -1.05 -1.065 0.015 0.000 -0.014
β3 0.35 0.366 0.016 0.000 0.047
β4 -1.05 -1.095 0.045 0.002 -0.043

W-AFT α 3.9 3.468 0.432 0.187 0.111
(AIC = 2591.397) b 0.5 0.411 0.089 0.008 0.178

β0 -3.5 -2.928 0.572 0.327 -0.163
β1 0.75 0.697 0.053 0.003 0.071
β2 -0.85 -1.057 0.207 0.043 -0.244
β3 0.75 0.662 0.088 0.008 0.117
β4 -0.85 -1.078 0.228 0.052 -0.268
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Table 10. Simulation results for the third scenario with 15% censoring and n = 5000.
Model Parameter True value MLE AB MSE RB
EAPE-AFT α 2.9 2.813 0.087 0.008 0.030
(AIC = 1871.013) λ 1.5 1.611 0.111 0.012 0.074

b 0.2 0.083 0.117 0.014 0.584
β0 -2 -2.039 0.039 0.001 -0.019
β1 0.65 0.702 0.052 0.003 0.081
β2 -0.7 -1.053 0.353 0.125 -0.505
β3 0.65 0.764 0.114 0.013 0.175
β4 -0.7 -1.054 0.354 0.125 -0.506

EW-AFT(True model) α 1.9 1.923 0.023 0.001 0.012
(AIC = 1873.013) λ 2.5 2.689 0.189 0.036 0.075

b 2.2 2.264 0.064 0.004 0.029
β0 -3 -3.172 0.172 0.030 -0.057
β1 0.45 0.370 0.080 0.006 0.178
β2 -0.65 -0.605 0.045 0.002 -0.069
β3 0.45 0.558 0.108 0.012 0.239
β4 -0.65 -0.649 0.001 0.000 -0.002

LL-AFT α 1.9 1.770 0.130 0.017 0.068
(AIC = 1884.112) b 3.8 4.286 0.486 0.236 0.128

β0 -1.5 -1.370 0.130 0.017 -0.087
β1 0.35 0.704 0.354 0.125 1.011
β2 -1.05 -1.054 0.004 0.000 -0.004
β3 0.35 0.764 0.414 0.171 1.183
β4 -1.05 -1.054 0.004 0.000 -0.004

W-AFT α 3.9 3.476 0.424 0.180 0.109
(AIC = 1896.38) b 0.5 0.501 0.001 0.000 0.002

β0 -3.5 -4.995 1.495 2.235 -0.427
β1 0.75 0.682 0.068 0.005 0.091
β2 -0.85 -1.031 0.181 0.033 -0.213
β3 0.75 0.733 0.017 0.000 0.023
β4 -0.85 -1.027 0.177 0.031 -0.208

Table 11. Simulation results for the third scenario with 22% censoring and n = 2000.
Model Parameter True value MLE AB MSE RB
EAPE-AFT α 2.9 2.088102 0.812 0.659 0.280
(AIC = 6401.272) λ 1.5 1.257451 0.243 0.059 0.162

b 0.2 0.40004 0.200 0.040 1.000
β0 -2 -1.8396 0.160 0.026 -0.080
β1 0.65 0.693149 0.043 0.002 0.066
β2 -0.7 -0.67023 0.030 0.001 -0.043
β3 0.65 0.652168 0.002 0.000 0.003
β4 -0.7 -0.7452 0.045 0.002 -0.065

EW-AFT(True model) α 1.9 1.877667 0.022 0.000 0.012
(AIC = 6404.219) λ 2.5 2.393933 0.106 0.011 0.042

b 2.2 1.124529 1.075 1.157 0.489
β0 -3 -3.39882 0.399 0.159 -0.133
β1 0.45 0.467593 0.018 0.000 0.039
β2 -0.65 -0.50064 0.149 0.022 -0.230
β3 0.45 0.535904 0.086 0.007 0.191
β4 -0.65 -0.80204 0.152 0.023 -0.234

LL-AFT α 1.9 1.645 0.255 0.065 0.134
(AIC = 6407.494) b 3.8 0.265 3.535 12.496 0.930

β0 -1.5 -1.245 0.255 0.065 -0.170
β1 0.35 0.686 0.336 0.113 0.960
β2 -1.05 -1.012 0.038 0.001 -0.036
β3 0.35 0.644 0.294 0.086 0.840
β4 -1.05 -1.032 0.018 0.000 -0.017

W-AFT α 3.9 3.408 0.492 0.242 0.126
(AIC = 6417.564) b 0.5 0.6208 0.121 0.015 0.242

β0 -3.5 -3.775 0.275 0.076 -0.079
β1 0.75 0.674 0.076 0.006 0.101
β2 -0.85 -1.004 0.154 0.024 -0.181
β3 0.75 0.634 0.116 0.013 0.155
β4 -0.85 -1.018 0.168 0.028 -0.198
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Table 12. Simulation results for the third scenario with 22% censoring and n = 5000.
Model Parameter True value MLE AB MSE RB
EAPE-AFT α 2.9 2.801 0.099 0.010 0.034
(AIC = 4543.506) λ 1.5 1.556 0.056 0.003 0.038

b 0.2 0.204 0.004 0.000 0.019
β0 -2 -2.090 0.090 0.008 -0.045
β1 0.65 0.670 0.020 0.000 0.030
β2 -0.7 -0.790 0.090 0.008 -0.129
β3 0.65 0.709 0.059 0.003 0.090
β4 -0.7 -0.800 0.100 0.010 -0.143

EW-AFT(True model) α 1.9 1.867 0.033 0.001 0.018
(AIC = 4545.103) λ 2.5 2.462 0.038 0.001 0.015

b 2.2 2.189 0.011 0.000 0.005
β0 -3 -3.334 0.334 0.112 -0.111
β1 0.45 0.460 0.010 0.000 0.021
β2 -0.65 -0.600 0.050 0.002 -0.076
β3 0.45 0.392 0.058 0.003 0.128
β4 -0.65 -0.687 0.037 0.001 -0.057

LL-AFT α 1.9 1.664 0.236 0.056 0.124
(AIC = 4547.09) b 3.8 3.827 0.027 0.001 0.007

β0 -1.5 -1.640 0.140 0.020 -0.093
β1 0.35 0.367 0.017 0.000 0.048
β2 -1.05 -1.011 0.039 0.002 -0.037
β3 0.35 0.270 0.080 0.006 0.227
β4 -1.05 -0.994 0.056 0.003 -0.053

W-AFT α 3.9 3.431 0.469 0.220 0.120
(AIC = 4567.423) b 0.5 0.145 0.355 0.126 0.710

β0 -3.5 -3.801 0.301 0.091 -0.086
β1 0.75 0.648 0.102 0.010 0.136
β2 -0.85 -0.988 0.138 0.019 -0.162
β3 0.75 0.676 0.074 0.005 0.099
β4 -0.85 -0.973 0.123 0.015 -0.145

In conclusion, the study has revealed that both sample size and censoring percentage impact the
performance of the considered models. When the censoring and sample size were increased, the EAPE-
AFT model consistently outperformed the EW-AFT, W-AFT and LL-AFT models.

5. Survival analysis

In survival analysis, the right censored data are the most common type of censored data available.
The time to event in these analyses is commonly taken to be the time between survival and death. In
this section, we focus on the use of multi-parametric (more than one covariate) hazard-based
regression models. Hence, the EAPE-AFT regression model has been adopted to analyze real-world
right-censored survival data. The main goal of this part of the study was to compare the EAPE-AFT
model with its sub-models which include the alpha-power exponential AFT (APE-AFT),
exponentiated exponential AFT (EE-AFT), and exponential AFT (E-AFT) distributions.

5.1. Data description

Breast cancer is a disease characterized by the abnormal growth of cells in breast tissue, affecting
both men and women and constituting the most common type of cancer among women worldwide.
According to the World Health Organization, it is responsible for over two million new cases and
more than 600,000 deaths annually across the globe. This study utilized data previously analyzed by
the authors of [43] on breast cancer patients from the Rotterdam tumor bank which contained records
of 2982 primary breast cancer patients, and which formed the original data set. A full description of
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the data can be found in [43].
The following covariates were taken into account for the illustrations of this study. We considered

the following for each patient:

(1) t: days to death or last follow-up; death: used for censoring.
(2) x1: hormon (hormonal treatment).
(3) x2: meno (menopausal status).
(4) x3: age (age at surgery).

We begin with the exploration of the data and Table 13 gives the summary statistics for the data. In
the sample of the study, approximately 57.383% of the data was censored, indicating that the exact
observational lifetimes for those individuals are not known. The explanatory variable “age” represents
the age of patients at the time of surgery and it was recorded as a continuous variable. The average
age in the breast cancer patients’ data set from the Rotterdam bank was 44.507 years, with a standard
deviation of 29.620.

Table 13. Summary statistics for breast cancer data.
Covariates Percentage observations Mean (standard deviation)
Days until death or the last follow-up - - 1.346(0.628)
Death 0 1710(57.383%)

1 1272(42.617%)
Age at surgery (years) - - 44.507(29.620)
Meno 0 1312(44.027%)

1 1670(55.973%)
Hormon 0 2643(88.691%)

1 339(11.309%)

The variable “meno” describes the status of menopause referring to the classification of women
based on their hormonal status as related to menopause. It is a categorical variable with two levels:

Premenopausal (0): This level indicates that women in the data set are still in their reproductive
phase and have not yet experienced menopause.

Postmenopausal (1): This level indicates that women in the data set have gone through menopause,
which is the permanent cessation of menstruation. Postmenopausal women can no longer conceive
naturally as their ovaries have stopped releasing eggs. The data set consisted of 1312(44.027%)
premenopausal patients and 1670(55.973%) postmenopausal patients. The variable “hormon”
indicates whether the patients received hormonal treatment.

It is a categorical variable with two levels:
No (0): This level signifies that individuals in the data set have not undergone hormonal treatment.
Yes (1): This level indicates that individuals in the data set have received hormonal treatment. They

have undergone medical intervention involving hormonal therapy or medication aimed at altering or
regulating their hormone levels. There were 339 (11.309%) patients who received hormonal treatment.

The Cox PH plot is given in Figure 4, where panel (a) illustrates that the survival probabilities
deviate from linearity at later time points, indicating an increasing HRF.
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Figure 4. The Cox PH plot (a) and the Kaplan-Meier (b) for the breast cancer data.

The shape of the HRF is affirmed by the shape of the Kaplan-Meier plot in Figure 4. This plot shows
a steep initial decrease in survival probability followed by a more steady decline over time reflecting
an increasing HRF [31].

As depicted by the histogram and the non-parametric kernel density estimation results in Figure 5.
The distribution of the data was asymmetrical and positively skewed, which is a common characteristic
of survival data.

Furthermore, to identify extreme observations, we constructed box plots and violin plots as in
Figure 5 which revealed the presence of some extreme observations.
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Figure 5. (a) Boxplot, (b) histogram, (c) kernel density, and (c) violin plots for breast cancer
data.

5.2. The Cox PH model

To investigate the association between survival time and the factors believed to influence it, we
simulated a Cox PH model. The Cox PH model was used to estimate the parameters. Table 14 presents
the results of the regression analysis for the Cox PH model, displaying the regression coefficients,
standard errors (SEs), and p-values. Notably, all covariates except the menopausal status yielded a
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significant impact on the days to the death for breast cancer patients at a 5% level of significance.

Table 14. Results of the regression analysis for the Cox PH model.
Covariatecc Coefficientc SE p-value
Age 0.0146 0.0037 < 0.0001
Meno 0.0989 0.0967 0.3064
Hormon 0.2840 0.0870 0.0011

Schoenfeld residuals are useful for assessing the PH assumption in the Cox model. In this study,
we applied the global test, which is a statistical test that is used to evaluate the overall PH assumption
in a Cox PH model. It assesses whether there is a significant departure from proportionality across all
covariates in the model. Table 15 provides evidence that the PH models do not adequately fit the breast
cancer data. Additionally, Figure 6 clearly demonstrates the rejection of the assumption of PH for all
covariates included. In other words, the PH models do not adequately capture the patterns observed in
the breast cancer patient data set.

Table 15. Chi-squared result and p-value for Schoenfeld residual test at 5% level of
significance.

Covariate Chi square p-value
Age 12.5480 0.0004
Meno 4.4860 0.0342
Hormon 0.4580 0.4986
GLOBAL 14.0560 0.0028
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Figure 6. The conventional Schoenfeld residuals for breast cancer patient data, taking the
test p-value for the meno, hormon, and age covariates into account.

5.3. Analysis of AFT model

Table 16 gives the values of the ML estimates and their corresponding Ses for the parameters of all
considered regression models. Note that all of the coefficients were significant except for β̂2. This is
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consistent with the results for the Cox PH model which indicated that the covariate hormon does not
influence the remaining days to the death for breast cancer patients.

Table 16. The ML estimations and their corresponding SEs for AFT regression models.
MODEL α̂ λ̂ b̂ β̂1 β̂2 β̂3

EAPE-AFT 1.024 0.089 1.486 0.122 0.074 1.197
(0.718) (0.004) (0.040) (0.037) (0.074) (0.067)

APE-AFT 5.248 0.099 - 0.165 0.065 0.259
(0.974) (0.007) - (0.039) (0.077) (0.068)

EE-AFT 1.444 0.083 - 0.145 0.085 0.250
(0.051) (0.005) - (0.038) (0.076) (0.069)

E-AFT 0.054 - - 0.180 0.100 0.253
(0.003) - - (0.048) (0.096) (0.087)

Moreover, Table 17 provides the p-values and confidence intervals for each parameter, as they
are measures that aid in determining the statistical significance of a parameter, and, together with
information criterion measures, they were used for model comparison. The measures include the
Akaike information criterion (AIC), the consistent Akaike’s information criterion (CAIC), and the
Bayesian information criterion (BIC). A p-value less than the level of significance indicates that the
parameter is statistically significant and has a considerable influence on the outcome. The confidence
interval defines a range within which we can be confident that the parameter’s true value lies. If
this interval excludes 0, it indicates that the parameter is statistically significant. The results given in
Table 17 confirm that at 5% level of significance, all parameters were significant except for β2 for all
for the considered models.

Table 17. Z-values, 95% confidence interval (CI) and information measures for the EAPE-
AFT model and other AFT models.
Model Estimates z-value p-value 95%CI AIC CAIC BIC
EAPE-AFT α̂ 3.674 0.004 (0.326 ,1.722)

λ̂ 26.221 0.000 (0.070 ,0.107)
b̂ 31.302 0.000 (1.324, 1.647) 9549.884 9591.886 9585.886
β̂1 4.241 0.002 (0.046 ,0.197)
β̂2 1.260 0.342 (-0.079 , 0.228)
β̂3 3.673 0.004 (0.061 , 0.332)

APE-AFT α̂ 5.390 0.000 (3.340 , 7.156)
λ̂ 13.518 0.000 (0.085 , 0.113)
β̂1 4.217 0.000 (0.088 , 0.242) 9601.634 9636.636 9631.636
β̂2 0.837 0.403 (-0.087 , 0.217)
β̂3 3.786 0.000 (0.125 , 0.393)

EE-AFT α̂ 28.392 0.000 (1.344 , 1.544)
λ̂ 16.449 0.000 (0.073 , 0.093)
β̂1 3.781 0.000 (0.070 , 0.220) 9552.995 9597.997 9592.997
β̂2 1.106 0.269 (-0.065 , 0.235)
β̂3 3.625 0.000 (0.115 , 0.385)

E-AFT α̂ 16.212 0.000 (0.047 , 0.061)
β̂1 3.749 0.000 (0.086 , 0.274)
β̂3 2.918 0.004 (0.083 , 0.423)
β̂2 1.035 0.301 (-0.089 , 0.289) 9644.280 9672.281 9668.281

The Kaplan-Meier survival curve is depicted in Figure 7, and it demonstrates a statistically
significant differentiation in survival durations between the menopausal status group and the
hormonal treatment, as evidenced by a p-value below 0.0001. Additionally, the Kaplan-Meier plot
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confirms the violation of the Cox PH assumption when considering the covariate hormon; it also
affirms that under the AFT model, the covariate meno does not influence the outcome variable.

+++++++++++++++++++++


++++++
++++++++

+++
+++ + +++

+
+

+++++++++
+

++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++

+++++++++ +

p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

Strata + +hormon=0 hormon=1

(a)

+
+++++++++


+++++

+++++
++++ + ++

++++++++++++++


+
++++

++ +
p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

Strata + +meno=0 meno=1

(b)

Figure 7. Kaplan Meier curve (a) for covariate hormon (b) for covariate meno

In the analysis of the proposed model, we have compared the fit of the EAPE-AFT model with the
APE-AFT, EE-AFT, and E-AFT sub-models whose PDFs are respectively given by

fAPE−AFT (t, α, λ,β) =
λex′β

(α − 1)
(log(α))e−λtex′β

(
α1−e−λtex′β

)
, (5.1)

fEE−AFT (t, b, λ,β) = bλex′βe−λtex′β
(
1 − e−λtex′β

)b−1
, (5.2)

fE−AFT (t, b, λ,β) =λex′βe−λtex′β
. (5.3)

To compare the fit of our model with its sub-models, three information criteria have been utilized.
These include the AIC, CAIC, and BIC. The values of the information criteria are provided in Table 17
which shows that the EAPE-AFT model outperformed all AFT regression models. Additionally, the
HRFs for all considered competing AFT models were fit to the data and are displayed in Figure 8.
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Figure 8. Estimated HRFs for the considered distributions.
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6. Discussion

The main goal of this study was to develop a more adaptable model than the Cox model to improve
the ability of the exponential distribution to model real-life data. An extensive Monte Carlo simulation
was utilized to evaluate the estimators of the EAPE-AFT parameters. Finally, the proposed model was
validated on breast cancer data and the choice of the AFT model was justified by the simulation results
confirming a direct relationship between covariates and time to event, which improved interpretability.

Regarding the three hazard rate shapes, i.e., the increasing, decreasing, and unimodal shapes, the
simulation results revealed that the extended EAPE-AFT model outperformed other existing AFT
models, i.e., the W-AFT and LL-AFT models, in terms of ability to different HRFs. The values of the
performance metrics such as the AB, RB, and MSE indicate the usefulness of the proposed
EAPE-AFT model.

While the proposed model facilitates modeling and the interpretation of survival data, it is limited to
data that exhibit bathtub hazard shapes. Additionally, the model is unable to handle crossing survival
curves.

7. Conclusions and recommendation

In this paper, we have proposed a new survival regression model for analyzing and modeling
censored survival data, called the EAPE-AFT model. The new model outperformed other existing
AFT models. We have developed methods for estimating the EAPE-AFT parameters by using the ML
estimation technique. We have conducted simulation studies to compare the performance of the
proposed model with that of other models, such as the W-AFT and the LL-AFT models. Based on our
study, we have found out that the new AFT model provides a more accurate fit for various shapes of
hazard rates and different levels of censoring. We have also applied the model to breast cancer
patients data and found that it provides a better fit than its sub-models. In conclusion, the EAPE-AFT
regression model has the potential to be a useful tool for analyzing various forms of survival data, as it
can be applied to several widely known AFT models as special cases.

Future research should investigate residual analysis methodologies, diagnostic criteria for model fit,
and model extension to improve the handling of diverse censoring processes.
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