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Abstract: In the realm of double-controlled metric-type spaces, we investigated obtaining fixed points
using the application of cyclic orbital contractive conditions. Diverging from conventional approaches
utilized in standard metric spaces, our technique took a unique route due to the unique features of
our structure. We demonstrated the significance of our outcomes through exemplary cases, clarifying
the breadth of our results through comprehensive investigations. Significantly, our work not only
improved and broadened earlier findings in the literature, but also offered unique notions that were
discussed in our explanatory notes. Towards the end of our inquiry, we used insights obtained from
previous discoveries to develop a second-order differential equation. This equation was an effective
tool for dealing with the second class of Fredholm integral problems. In conclusion, this investigation
extended our examination of double-controlled metric type spaces by providing new insights on fixed
point theory, expanding on prior debates and building a substantial road towards solving a class of
integral equations.
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1. Introduction

A key idea in mathematics is fixed point theory, which is concerned with investigating the existence
and characteristics of fixed points under particular mappings and transformations. At its heart, fixed
point theory analyzes points that are unchanged after implementing a function, offering information on
the behavior and structure of numerous mathematical systems. This theory has extensive applicability
across different domains. In physics, it helps explain the dynamics of physical systems governed by
nonlinear equations. In computer science, fixed point theory is used in algorithm design, optimization,
and artificial intelligence, notably in constructing iterative approaches for solving equation systems.
Furthermore, in engineering fields, fixed point theory helps with the evaluation and design of control
systems, signal processing, and numerical simulations. Overall, fixed point theory is a strong tool
with many applications, allowing academics to model, analyze, and solve a wide range of complicated
issues from many areas.

After the revolutionary contribution of Stefan Banach [1] to fixed point theory, multiple pioneers
proceeded to advance the field, extending its applications and theoretical foundations. After that,
the seminal work of Stanisaw Saks [2] added to the field’s richness, providing novel insights and
increasing our understanding of fixed point occurrences. Their improvements to the theory of multi-
valued mappings, as well as Saks’ explorations into the topological features of fixed point sets, were
crucial in modeling the environment of fixed point theory. Together with Banach, these forefathers
opened the path for the considerable study and various applications that characterize the current state
of fixed point theory.

In 1989, Bakhtin [3] and in 1993 Czerwik [4] presented the concept of b-metric space. In 2017, T.
Kamran [5] introduced the concept of extended b-metric space. In 2018, Nabil Mlaiki [6], introduced
the concept of controlled metric type spaces and established some fixed point results in these spaces.
In his paper, Mlaiki defines a controlled metric type space as a set equipped with a control function that
measures the distance between two points. This function is required to satisfy certain conditions, which
generalize the properties of a metric space. After that, this work is generalized by T. Abdeljawad [7]
by introducing one more function in the triangular inequality named as double controlled metric type
spaces and discuss the existence and uniqueness of some fixed point results. In 2021, H. Ahmad
et al. [8] explored double-controlled partial metric type spaces and convergence results. These studies
underscored the evolving nature of fixed point theory, extending its reach to cutting-edge applications.

Initially, z-contraction was introduced by D. Wardowski [9] in 2012. The exploration of z-
contractions in fixed point theory has garnered great attention in recent years, offering a versatile and
powerful framework for studying fixed points in metric spaces. This papers lay the foundation for
a deeper understanding of z-contractions in the context of fixed-point theory and their wide-ranging
applications in mathematics and related fields. For further analysis on z-contractions, see [10, 11].

Inspired by the literature, we are driven by the ambition to extend fixed point theorems to F type
cyclic orbital contractions within the framework of double controlled metric type spaces. Unlike
traditional metric spaces, this endeavor necessitates the use of specialized approaches tailored to our
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setting. Through symbolic examples, we not only verify our fundamental results but also showcase
their practical relevance. Furthermore, our contributions expand on previous research, enhancing the
theoretical environment and creating opportunities for broader applications. As a result of our work, we
present a second-order differential equation that provides a powerful solution technique for the second
kind of Fredholm-type integral equations. This endeavor not only broadens our understanding of fixed
point theory, but also reveals promising approaches to solving complicated mathematical problems
with real-world ramifications.

We will implement Definitions 1.1–1.3 in the next section to establish a cyclic orbital contraction
Theorem 1 in the context of double-controlled metric type space.

Definition 1.1. [12] Let T : Θ1 ∪ Θ2 → Θ1 ∪ Θ2 be a cyclic, if T(Θ1) ⊂ Θ2 and T(Θ2) ⊂ Θ1, where
Θ1,Θ2 are subsets of a metric space (X, d) that are nonempty.

Definition 1.2. [12] Let T : Θ1∪Θ2 → Θ1∪Θ2 know as cyclic contraction, if for all c1 ∈ Θ1, c2 ∈ Θ2,
∃ κ ∈ (0, 1) in such a way that

d(T~1,T~2) ≤ κd(~1, ~2).

Definition 1.3. [13] Suppose T : Θ1∪Θ2 → Θ1∪Θ2 be a cyclic orbital contraction, if for all ~1 ∈ Θ1,
∃ κ ∈ (0, 1) given that

d(T2n~1,T~2) ≤ κd(T2n−1~1, ~2),

where ~2 ∈ Θ1, n ∈ N and Θ1, Θ2 are closed subsets of X.

We will exploit Definition 1.4 to develop the Theorem 2 in the next segment.

Definition 1.4. [9] Assume that T : G → G be a mapping on a metric space (X, d) is known as
F-contraction, whenever there is Ω > 0 in such a way that

Ω + F(d(T~1,T~2)) ≤ F(d(~1, ~2)),

for all ~1, ~2 ∈ X with d(~1, ~2) > 0, in relation to the function F : [0,∞) → R that adhering the
subsequent axioms:

(I) F is sharply increasing;
(II) across every sequence {an}n∈N encompassing non-negative real numbers, limn→∞ an = 0 is true in

both directions limn→∞ F(an) = −∞;
(III) within each sequence {an}n∈N characterized by non-negative real numbers, limn→∞ an = 0, ∃

κ ∈ (0, 1) in such a way that limn→∞(an)κF(an) = 0.
We symbolize F the in adherence to the collection of all functions F pleasing (I)–(III).

Definition 1.5. [7] Let G , ϕ and consider Φ,Ψ : G×G → [1,∞) be functions. LetS : G×G → [0,∞)
pleasing

(1) S(~1, ~2) = 0 if and only if ~1 = ~2,

(2) S(~1, ~2) = S(~2, ~1),
(3) S(~1, ~2) ≤ Φ (~1, ~3)S (~1, ~3) + Ψ (~3, ~2)S (~3, ~2) ,

for all ~1, ~2, ~3 ∈ G, then (G,S) is known as double controlled metric type space.
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Remark 1. Every double controlled metric type space (G,S) is controlled metric type space, an
alternative view of Φ (~1, ~2) = Ψ (~1, ~2) ≥ 1. However, the contrary statement is not accurate (see
Example 1).

Example 1. [7] Let G = [0,∞) and S be defined as

S(~, ς) =


0, iff ~ = ς,
1
~

if ~ ≥ 1 and ς ∈ [0, 1),
1
ς

if ς ≥ 1 and ~ ∈ [0, 1),
1 if not.

Consider Φ,Ψ : G ×G → [1,∞) be functions

Φ(~, ς) =

{
~, if ~, ς ≥ 1,
1, if not,

and

Ψ (~, ς) =

{
1, if ~, ς < 1,
max{~, ς}, if not.

Clearly (G,S) is double controlled metric type space is not necessarily a controlled metric type space
because Φ (~1, ~2) , Ψ (~1, ~2) .

Definitions 1.6–1.8 used to prove the Cauchy sequences in 1,2.

Definition 1.6. [7] A sequence {~n} in (G,S) converges to some ~ in G, whenever under each positive
ε, there may exists a positive Nε in such a way that S (~n, ~) < ε for each n ≥ Nε . It might be articulated
as

lim
n→∞
~n = ~.

Definition 1.7. [7] The sequence {~n} in (G,S) is labeled a Cauchy sequence, whenever given each
ε > 0,S (~n, ~m) < ε for all m, n ≥ Nε where Nε ∈ N.

Definition 1.8. [7] Since (G,S) is known as complete under the circumstance that each Cauchy
sequence converges in G.

2. Main results

In this segment, we elucidate the concept of cyclic orbital contractions within the environment of
double controlled metric type space.

Definition 2.1. Let (G,S) be a double controlled metric type space characterized by two nonempty
subsets Θ1 and Θ2. Then T : Θ1 ∪ Θ2 → Θ1 ∪ Θ2 be a cyclic orbital contraction, if there is ~1 ∈ Θ1,
then ∃ λ ∈ (0, 1) in such a way that

S(T2n~1,T~2) ≤ λS(T2n−1~1, ~2), (2.1)

where ~2 ∈ Θ1 and n ∈ N.
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Theorem 1. Let (G,S) double controlled metric type space endowed with two nonempty subsets Θ1

and Θ2 in such a way that S is a continuous functional. If T : Θ1 ∪ Θ2 → Θ1 ∪ Θ2 linked with cyclic
orbital contraction following that for some ~0 ∈ G, such that

sup
m≥1

lim
i→∞

Φ(~i+1, ~i+2)
Φ(~i, ~i+1)

Ψ(~i, ~m) <
1
λ
, where λ ∈ (0, 1) (2.2)

and ~n = Tn~0, n = 1, 2, . . .. Then Θ1 ∩ Θ2 , φ and T concedes at most one fixed point.

Proof. Let ~0 ∈ Θ1 be any element satisfying Eq (2.1). Now, we generate an iterative sequence {~n}

starting from ~0 as follows:

~1 = T~0, ~2 = T~1 = T(T~0) = T2~0, . . . , ~n = Tn~0, . . .

By using Eq (2.1), we have
S(T2~0,T~0) ≤ λS(T~0, ~0).

Following the above inequality same, we have

S(T3~0,T
2~0) ≤ λS(T2~0,T~0) ≤ λ2S(T~0, ~0).

Continue the same process under any circumstances n ∈ N, so we attain

S(Tn+1~0,T
n~0) ≤ λnS(T~0, ~0),

that is,
S(~n+1, ~n) ≤ λnS(~1, ~0). (2.3)

We need to demonstrate that the sequence {~n} is a Cauchy sequence for all n,m ∈ N with m > n, we
gain

S(~n, ~m) ≤ Φ(~n, ~n+1)S(~n, ~n+1) + Ψ(~n+1, ~m)S(~n+1, ~m)
≤ Φ(~n, ~n+1)S(~n, ~n+1) + Φ(~n+1, ~n+2)Ψ(~n+1, ~m)S(~n+1, ~n+2)
+ Ψ(~n+1, ~m)Ψ(~n+2, ~m)S(~n+2, ~m)
≤ Φ(~n, ~n+1)S(~n, ~n+1) + Φ(~n+1, ~n+2)Ψ(~n+1, ~m)S(~n+1, ~n+2)
+ Φ(~n+2, ~n+3)Ψ(~n+1, ~m)Ψ(~n+2, ~m)S(~n+2, ~n+3)
+ Ψ(~n+1, ~m)Ψ(~n+2, ~m)Ψ(~n+3, ~m)S(~n+3, ~m)

≤ Φ(~n, ~n+1)S(~n, ~n+1) +

m−2∑
i=n+1

 i∏
j=n+1

Ψ(~ j, ~m)

 Φ(~i, ~i+1)S(~i, ~i+1)

+

m−1∏
k=n+1

Ψ(~k, ~m)S(~m−1, ~m)

≤ Φ(~n, ~n+1)λnS(~0, ~1) +

m−2∑
i=n+1

 i∏
j=n+1

Ψ(~ j, ~m)

 Φ(~i, ~i+1)λiS(~0, ~1)

+

m−1∏
k=n+1

Ψ(~k, ~m)λm−1S(~0, ~1)
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≤ Φ(~n, ~n+1)λnS(~0, ~1) +

m−2∑
i=n+1

 i∏
j=n+1

Ψ(~ j, ~m)

 Φ(~i, ~i+1)λiS(~0, ~1)

+

m−1∏
k=n+1

Ψ(~k, ~m)Φ(~m−1, ~m)λm−1S(~0, ~1)

= Φ(~n, ~n+1)λnS(~0, ~1) +

m−1∑
i=n+1

 i∏
j=n+1

Ψ(~ j, ~m)

 Φ(~i, ~i+1)λiS(~0, ~1)

≤ Φ(~n, ~n+1)λnS(~0, ~1) +

m−1∑
i=n+1

 i∏
j=n+1

Ψ(~ j, ~m)

 Φ(~i, ~i+1)λiS(~0, ~1)

≤ Φ(~n, ~n+1)λnS(~0, ~1) +

m−1∑
i=n+1

 i∏
j=0

Ψ(~ j, ~m)

 Φ(~i, ~i+1)λiS(~0, ~1).

Assume that

Cp =

p∑
i=0

 i∏
j=0

Ψ(~ j, ~m)

 Φ(~i, ~i+1)λiS(~0, ~1).

Then, we obtain

S(~n, ~m) ≤ S(~0, ~1)[λn(S(~0, ~1))Φ(~n, ~n+1) + (Cm−1 −Cn)]. (2.4)

Using ratio test, we have

ai =

 i∏
j=0

Ψ(~ j, ~m)

 Φ(~i, ~i+1)λi(S(~0, ~1)), where
ai+1

ai
<

1
λ
,

taking lim
n,m→∞

, so (2.4) becomes

lim
n,m→∞

S(~n, ~m) = 0.

This implies that {~n} is a Cauchy sequence in a complete (G,S). Therefore, as a consequence, there
exists ρ ∈ Θ1∪Θ2 in such a way that ~n → ρ. Now, it’s worth noting that the sequences {~2n} = {T2n~0}

in Θ1 and {~2n−1} = {T2n−1~0} in Θ2 so the pair converge to ρ. As though the sets Θ1, Θ2 are closed in
G and ρ ∈ Θ1 ∩ Θ2, thus Θ1 ∩ Θ2 , φ. Following this, we establish that T concedes a fixed point ρ.
Utilizing the continuity of S leads to

S(ρ,Tρ) = lim
n→∞
S(T2n~,Tρ) ≤ λ lim

n→∞
S(T2n−1~, ρ) = 0.

Therefore, T concedes ρ as fixed point.
Uniqueness. Presume the existence of % ∈ Θ1 ∩ Θ2, ρ , % in such a way that T% = %. So,

S(ρ, %) = S(Tρ,T%) ≤ λS(ρ, %) < S(ρ, %),

this inequality contradicts the previous assertion. Consequently, ρ = % and T concedes ρ as fixed point
that is unique. �
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Remark 2. Either (G,S) is not in predominantly a controlled metric type space, so Theorem 1 is
different from the Theorem 1 of N. Alamgir [14]. If we take Φ(~1, ~2) = Ψ(~1, ~2) ≥ 1, then theorem
presented above can be simplified as controlled metric type space. For Φ(~1, ~2) ≥ 1, depends on
the inequality of left hand sides then above Theorem shrinks to extended b-metric space [15] and
for Φ(~1, ~2) = s ≥ 1, the preceding theorem condenses to the b-metric space. If s = 1, then
theorem outlined earlier can be shrinks to the main results of fixed points in metric space presented by
Karpagam et al. [13].

Example 2. Let G = R and S : G ×G → [0,∞) is defined as

S(~1, ~2) = (~1 − ~2)2.

Suppose that Φ,Ψ : G ×G → [1,∞), where Φ(~1, ~2) = 3~1 + 4~2 + 5 and Ψ(~1, ~2) = 5~1 + 6~2 + 7.
It is easy to see that (G,S) is a complete double controlled metric type space. Assume Θ1 = [0, 1

4 ],
Θ2 = [ 1

5 , 1] and define a mapping T : Θ1 ∪ Θ2 → Θ1 ∪ Θ2 as:

T~1 =

{ 1
4 , 0 ≤ ~1 ≤

1
5 ,

1
3 (1 − ~1), 1

5 < ~1 ≤ 1.

First, we discuss some cases to indicate that T is a cyclic map:

(a) If ~1 = 0 ∈ Θ1, then T0 = 1
4 ∈ Θ2.

(b) If ~1 = 1
4 ∈ Θ1, then T1

4 = 1
4 ∈ Θ2.

(c) If ~1 = 1
5 ∈ Θ2, then T1

5 = 1
4 ∈ Θ1.

(d) If ~1 = 1 ∈ Θ2, then T1 = 0 ∈ Θ1.

Transparently, T(Θ1) ⊆ Θ2, T(Θ2) ⊆ Θ1 and T is a cyclic map. Now, we fix any ~1 = 0 ∈ Θ1, then we
have

T~1 =
1
4
, T2~1 = T(T~1) =

1
4
, . . . .

Thus, Tn~1 = 1
4 , therefore T2n~1 = 1

4 and T2n−1~1 = 1
4 .

For ~2, we will examine the following scenarios:
Case 1. If ~2 = 0, T0 = 1

4 , then

S(T2n~1,T~2) ≤ λS(T2n−1~1, ~2),

S(
1
4
,

1
4

) ≤ λS(
1
4
, 0),

0 ≤ λ(
1
16

).

Case 2. For ~2 = 1
4 , T1

4 = 1
4

S(T2n~1,T~2) ≤ λS(T2n−1~1, ~2),

S(
1
4
,

1
4

) ≤ λS(
1
4
,

1
4

),

0 ≤ λ(0).

Case 3. When 0 < ~2 <
1
4 , we will take subcases:
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Subcase A. If 0 < ~2 ≤
1
5 , T~2 = 1

4 , then we have

S(T2n~1,T~2) ≤ λS(T2n−1~1, ~2),

S(
1
3
,

1
3

) ≤ λS(
1
3
, ~2),

0 ≤ λ(
1
3
− ~2)2.

Subcase B. For 1
5 < ~2 ≤

1
4 , T~2 = 1

2 (1 − ~2), then

S(T2n~1,T~2) ≤ λS(T2n−1~1, ~2),

S(
1
4
,

1
3

(1 − ~2))2 ≤ λS(
1
4
, ~2),

1
9

(~2 −
1
4

)2 ≤ λ(~2 −
1
4

)2.

If we choose λ = 1
2 ∈ (0, 1), then all the cases and their subcases are satisfied. Hence, all the conditions

of Theorem 1 are satisfied, and 1
4 is the unique fixed point of the cyclic mapping T.

Definition 2.2. Let (G,S) consist of two nonempty subsets Θ1 and Θ2. Then T : Θ1 ∪ Θ2 → Θ1 ∪ Θ2

be a cyclic orbital F-contraction, where F ∈ F , if for some ~1 ∈ Θ1, ∃ Ω > 0 in such a way that for all
~1, ~2 ∈G with S(T~1,T~2) > 0, then

Ω + F(λS(T2n~1,T~2)) ≤ F(S(T2n−1~1, ~2)), (2.5)

where λ > 1, ~2 ∈ Θ1 and n ∈ N.

Theorem 2. Let (G,S) double controlled metric type space having two nonempty subsets Θ1 and Θ2.
Suppose T : Θ1 ∪ Θ2 → Θ1 ∪ Θ2 represents F-contraction that is cyclic orbital and continuous. Then
for some ~0 ∈ G, such that

sup
m≥1

lim
i→∞

Φ(~i+1, ~i+2)
Φ(~i, ~i+1)

Ψ(~i, ~m) <
1
λ
, (2.6)

where ~n = Tn~0. Then Θ1 ∩ Θ2 is not empty and T concedes a fixed point.

Proof. Assume a random element ~0 ∈ Θ1 fulfilling Eq (2.5) for all n ∈ N. Consequently, we obtain

F(λnS(Tn+1~,Tn~)) ≤ F(S(T~, ~)) − nΩ. (2.7)

Taking n → ∞ in Eq (2.7), we gain limn→∞ F(S(~n, ~n+1)) = −∞. Implementing the prerequisite (II)
of the Definition 1.4, we gain

lim
n→∞

λnS(~n, ~n+1) = 0.

Additionally, from the constraint (III), ∃ l ∈ (0, 1) in a manner that

lim
n→∞

(λnS(~n, ~n+1))l
F(λnS(~n, ~n+1)) = 0.

Derived from Eq (2.7), for all n ∈ N, the subsequent valid:[
limn→∞(λnS(~n, ~n+1))lF(S(~n, ~n+1))
− limn→∞(λnS(~n, ~n+1))lF(S(T~, ~))

]
≤ lim

n→∞
−(λnS(~n, ~n+1))lnΩ ≤ 0. (2.8)
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Taking n→ ∞ in (2.8), we acquire

lim
n→∞

n(λnS(~n, ~n+1))l = 0. (2.9)

Utilizing (2.9), ∃ n1 ∈ N in such way that nS(~n, ~n+1)l ≤ 1 throughout n ≥ n1. So, for each n ≥ n1, we
achieve

S(~n, ~n+1) ≤
1

n
1
l

. (2.10)

We need to demonstrate that the sequence {~n} is a Cauchy sequence across all n,m ∈ N with m > n,
we gain

S(Tn~,Tm~) = S(~n, ~m)
≤ Φ(~n, ~n+1)S(~n, ~n+1) + Ψ(~n+1, ~m)S(~n+1, ~m)
≤ Φ(~n, ~n+1)S(~n, ~n+1) + Φ(~n+1, ~n+2)Ψ(~n+1, ~m)S(~n+1, ~n+2)
+ Ψ(~n+1, ~m)Ψ(~n+2, ~m)S(~n+2, ~m)
≤ Φ(~n, ~n+1)S(~n, ~n+1) + Φ(~n+1, ~n+2)Ψ(~n+1, ~m)S(~n+1, ~n+2)
+ Φ(~n+2, ~n+3)Ψ(~n+1, ~m)Ψ(~n+2, ~m)S(~n+2, ~n+3)
+ Ψ(~n+1, ~m)Ψ(~n+2, ~m)Ψ(~n+3, ~m)S(~n+3, ~m)

≤ Φ(~n, ~n+1)S(~n, ~n+1) +

m−2∑
i=n+1

 i∏
j=n+1

Ψ(~ j, ~m)

 Φ(~i, ~i+1)S(~i, ~i+1)

+

m−1∏
k=n+1

Ψ(~k, ~m)S(~m−1, ~m)

≤ Φ(~n, ~n+1)S(~n, ~n+1) +

m−2∑
i=n+1

 i∏
j=n+1

Ψ(~ j, ~m)

 Φ(~i, ~i+1)S(~i, ~i+1)

+

m−1∏
k=n+1

Ψ(~k, ~m)S(~i, ~m)

≤ Φ(~n, ~n+1)S(~n, ~n+1) +

m−2∑
i=n+1

 i∏
j=n+1

Ψ(~ j, ~m)

 Φ(~i, ~i+1)S(~i, ~i+1)

+

m−1∏
k=n+1

Ψ(~k, ~m)Φ(~m−1, ~m)S(~m−1, ~m)

= Φ(~n, ~n+1)S(~n, ~n+1) +

m−1∑
i=n+1

 i∏
j=n+1

Ψ(~ j, ~m)

 Φ(~i, ~i+1)S(~i, ~i+1)

≤ Φ(~n, ~n+1)S(~n, ~n+1) +

m−1∑
i=n+1

 i∏
j=n+1

Ψ(~ j, ~m)

 Φ(~i, ~i+1)S(~i, ~i+1)

≤ Φ(~n, ~n+1)S(~n, ~n+1) +

m−1∑
i=n+1

 i∏
j=0

Ψ(~ j, ~m)

 Φ(~i, ~i+1)S(~i, ~i+1)
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≤ Φ(~n, ~n+1)
1

n
1
l

+

m−1∑
i=n+1

 i∏
j=0

Ψ(~ j, ~m)

 Φ(~i, ~i+1)
1

i
1
l

.

Assume that

Cp =

p∑
i=0

 i∏
j=0

Ψ(~ j, ~m)

 Φ(~i, ~i+1)
1

i
1
l

.

Therefore, for m > n, we have

S(~n, ~m) ≤ Φ(~n, ~n+1)
1

n
1
l

+ S m−1 − S n. (2.11)

Using ratio test, we have

ai =

 i∏
j=0

Ψ(~ j, ~m)

 Φ(~i, ~i+1)
1

i
1
l

, where
ai+1

ai
<

1
λ
,

taking lim
n,m→∞

, so (2.11) becomes

lim
n,m→∞

S(~n, ~m) = 0.

This implies that {~n} is Cauchy sequence in complete (G,S). Therefore, as a consequence there exists
ρ ∈ Θ1 ∪Θ2 in such a way that ~n → ρ. Currently, it is worth noting that the sequences {~2n} = {T2n~0}

in Θ1 and {~2n−1} = {T2n−1~0} in Θ2 so both converge to ρ. In light of that sets Θ1 and Θ2 are closed in
G and ρ ∈ Θ1 ∩ Θ2, which assures that Θ1 ∩ Θ2 , φ. Following this, we demonstrate that T concedes
ρ as a fixed point. Let ρ , Tρ, then

S(ρ,Tρ) ≤ Φ(ρ,T2n~0)S(ρ,T2n~0) + Ψ(T2n~0,Tρ)S(T2n~0,Tρ). (2.12)

Since T2n−1~0 → ρ as n → ∞, and utilizing the continuity of T, we achieve limn→∞ S(T2n~0,Tρ) = 0.
Thus, from (2.12), we gain S(ρ,Tρ) = 0 as n→ ∞ and T contains a fixed point that is ρ . �

Example 3. Let G = { 1
3n : n ∈ N} ∪ {0} and S : G ×G → [0,∞) is defined as

S(~1, ~2) = (~1 − ~2)2.

Suppose that Φ,Ψ : G ×G → [1,∞), where Φ(~1, ~2) = 3~1 + 4~2 + 5 and Ψ(~1, ~2) = 5~1 + 6~2 + 7. It
is easy to see that (G,S) is a complete double controlled metric type space. Assume that Θ1 = { 1

32n−1 :
n ∈ N} ∪ {0} and Θ2 = { 1

32n : n ∈ N} ∪ {0}. Define a mapping T : Θ1 ∪ Θ2 → Θ1 ∪ Θ2 as

T~1 =

{ 1
3n+1 , ~1 ∈ {

1
3n : n ∈ N},

0, ~1 = 0.

Clearly T(Θ1) ⊆ Θ2, T(Θ2) ⊆ Θ1 and T is a cyclic map. Following that, pick any ~1 = 1
32n−1 ∈ Θ1, then

we gain

T~1 =
1

32n , T
2~1 = T(T~1) =

1
32n+1 , . . .
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Thus, T2n~1 = 1
32n+2n−1 = 1

34n−1 and T2n−1~1 = 1
34n−2 . For ~2, we will consider the following scenarios:

Case 1. If ~2 ∈ Θ1/{0, 1}, let

~2 =
1

32m−1 , (m > n ≥ 1),

since T~2 = 1
32m , then we gain

S(T2n~1,T~2) = S

(
1

34n−1 ,
1

32m

)
=

(
1

34n−1 −
1

32m

)2

=

(
32m − 34n−1

34n+2m−1

)2

,

and

S(T2n−1~1, ~2) = S

(
1

34n−2 ,
1

32m−1

)
=

(
1

34n−2 −
1

32m−1

)2

=

(
32m−1 − 34n−2

34n+2m−3

)2

.

Now, F(t) = ln t be a function from F : [0,∞)→ R , for each t ∈ [0,∞) and Ω > 0.

F(2d(T2n~1, ~2)) − F(S(T2n−1~1, ~2)) = ln 2 + 2
(
ln

32m − 34n−1

34n+2m−1 )2 − ln
32m−1 − 34n−2

34n+2m−3

)
= ln 2 + 2 ln

(
32m − 34n−1

34n+2m−1 )2 ×
34n+2m−3

32m−1 − 34n−2

)
= ln 2 + 2 ln

(
32m − 34n−1

32m−1 − 34n−2 × 3−2
)

= ln 2 + 2 ln
(
32m − 34n−1

32m+1 − 34n

)
= ln 2 + 2 ln

(
32m − 34n−1

3(32m−1 − 34n−1)

)
= ln 2 + 2 ln

1
3

< −
1
4
.

Case 2. For ~2 = 0 and T0 = 0, then

S(T2n~1,T~2) = S

(
1

34n−1 , 0
)

=

(
1

34n−1

)2

,

and

S(T2n−1~1, ~2) = S

(
1

34n−2 , 0
)

=

(
1

34n−2

)2

.

Thus, we have

F(2S(T2n~1, ~2)) − F(S(T2n−1~1, ~2))

= ln 2 + 2
(
ln

1
34n−1 − ln

1
34n−2

)
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= ln 2 + 2
(

1
34n−1 × ln

34n−2

1

)
= ln 2 + ln

(
3−1

)
= ln 2 + ln

1
3

< −
1
4
.

Thus, for Ω = 1
4 and T is cyclic orbital F-contraction. For this reason, all the requirements of

Theorem 2 are fulfilled, and T concedes 0 as a fixed point.

Remark 3. Since (G,S) is not usually a controlled metric type space, so Theorem 2 contrasts from the
Theorem 1 of N. Alamgir [14]. If we take Φ(~1, ~2) = Ψ(~1, ~2) ≥ 1, then the above theorem simplifies
to controlled metric type space. For Φ(~1, ~2) ≥ 1, depends on the inequality of left hand sides then
the preceding theorem condenses to extended b-metric space [15] and for Φ(~1, ~2) = s ≥ 1, the above
theorem shrinks to the b-metric space. If s = 1, the above theorem simplifies the main results of fixed
points in metric space presented by Karpagam et al. [13].

3. Application of second order differential equation into Fredholm integral equation

In this section, we implemented cyclic orbital contraction in a double controlled metric type space
structure, we gained the solution for a second-order differential equation linked with a Fredholm
integral equation. This technique, motivated by the strategy described in K. H. Hussain’s [16],
supported the proficiency of existence and uniqueness results for our problem domain. Let a set of
all real valued continuous function G = C[[0, 1],R] on [[0, 1],R] and S : G ×G → R is defined as

S(~1, ~2) = sup
t∈[0,1]

|~1(t) − ~2(t)|2 .

Let Φ,Ψ : G ×G → [1,∞) defined as

Φ(~1, ~2) = 3~1(t) + 4~2(t) + 5,
Ψ(~1, ~2) = 5~1(t) + 6~2(t) + 7,

for all ~1, ~2 ∈ G and t ∈ [a, b]. Obviously (G,S) is complete double controlled metric type space.
Now, we will assume second order differential equation as{

~′′(~) = f (t, ~(t)),
~(0) = ~0, ~(1) = ~1,

(3.1)

for all t ∈ [0, 1] and f : [0, 1] × R, is a continuous function. The problem defined in (3.1) is equivalent
to second kind Fredholm integral equation

~(t) = L(t) + γ

∫ 1

0
Ġ(t, s)~(s)ds, (3.2)
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where t ∈ [0, 1] and L(t) = u0 + t(u1 − u0). In (3.2), Ġ(t, s) is Green’s function that is

Ġ(t, s) =

{
s(1 − s), 0 ≤ s ≤ t,
t(1 − s), t ≤ s ≤ 1,

and if ~ ∈ G is a fixed point of T then ~ is a solution of (3.1).

Theorem 3. Let T : Θ1 ∪ Θ2 → Θ1 ∪ Θ2 be a continuous nonlinear integral operator defined by

~(t) = L(t) + γ

∫ 1

0
Ġ(t, s)~(s)ds,

for all t ∈ [0, 1]. Assume that following conditions holds

(1) sup
m≥1

lim
i→∞

Φ(Ti+1~0,T
i+1~1)Ψ(Ti~0,T

m~0)
Φ(Ti~0,Ti+1~0) < 1

κ
.

(2) For any ~, ς ∈ G and γ > 0, we have

sup
t∈[0,1]

(
t3

6
−

t2

2
+

t
2

) =
1

2γ
.

Then second order differential Eq (3.1) have solution in G.

Proof. Let Θ1 = Θ2 = G = C[[0, 1],R], clearly Θ1 and Θ2 are closed subsets of G. Since T(Θ1) ⊂ Θ2

and T(Θ2) ⊂ Θ1, which shows that T is cyclic map on Θ1 ∪ Θ2. For any ~0 ∈ G, we define a sequence
{~n} in G, by ~n+1 = T~n = Tn+1~0, n ≥ 1 then we obtain

~n+1(t) = T~n(t) = L(t) + γ

∫ 1

0
Ġ(t, s)~n(s)ds,

for ~1, ~2 ∈ G, we have

|T(T~1(t) − T~2(t)| =

∣∣∣∣∣∣L(t) + γ

∫ 1

0
Ġ(t, s)T~1(s)ds − L(~) + γ

∫ 1

0
Ġ(t, s)~2(s)ds

∣∣∣∣∣∣
≤ γ

∫ 1

0
Ġ(t, s) |Tx1(s) − ~2(s)| ds

≤ γ sup
t∈[0,1]

|T~1(t) − ~2(t)|
∫ 1

0
Ġ(t, s)ds

≤ γ sup
~∈[0,1]

(
t3

6
−

t2

2
+

t
2

) sup
t∈[0,1]

|T~1(t) − ~2(t)| ,

which implies that

sup
t∈[0,1]

∣∣∣T2~1(t) − T~2(t)
∣∣∣2 ≤ 1

4
sup

t∈[0,1]
|T~1(t) − ~2(t)|2 .

Taking λ = 1
4 ∈ (0, 1), we can write

S(T2~1,T~2) ≤ λS(T~1, ~2).

Thus all the conditions of Theorem 1 are satisfied. Hence, T has a fixed point and Fredholm integral
Eq (3.2) has a solution. �
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4. Conclusions

In this research, we explored the realm of double-controlled metric-type spaces to examine the
attainment of fixed points via the application of cyclic orbital contractive conditions. Moving
from typical techniques spotted in standard metric spaces, our strategy takes a distinctive path,
utilizing the unique characteristics of our structure. We have highlighted the significance of our
findings by presenting illustrative situations and detailed examinations, revealing the breadth of our
discoveries. Significantly, our research not only improves and broadens the scope of previous findings
in the literature, but it also introduces unique concepts that are explained in our explanatory notes.
Furthermore, using insights from prior studies, we created a second-order differential equation that is
a valuable tool for solving the second class of Fredholm integral problems. In conclusion, our research
adds to the growth of learning in double-controlled metric-type spaces by providing new insights
into fixed point theory, enhancing previous discussions, and building a significant path approaching
the completion of a class of integral equation. For future practical implementations of fixed point
results, the optimization approach [17] and the complex standard Eigenvalue Problem [18] may be of
interest. Furthermore, this theory is applicable to spacecraft reorientation [19] as well as hyperbolic
and parabolic PDEs [20].
Open Problems. Can we obtained fixed point results using these type of orbital contraction mappings
in the double controlled quasi-metric type spaces and in double controlled partial metric type spaces?
In graphically controlled metric type space? In graphically double controlled metric type space? Is
there interest to find serious applications to integral equations and dynamical systems?
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