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Abstract: Fall detection (FD) for disabled persons in the Internet of Things (IoT) platform contains a 

combination of sensor technologies and data analytics for automatically identifying and responding to 

samples of falls. In this regard, IoT devices like wearable sensors or ambient sensors from the personal 

space role a vital play in always monitoring the user's movements. FD employs deep learning (DL) in 

an IoT platform using sensors, namely accelerometers or depth cameras, to capture data connected to 

human movements. DL approaches are frequently recurrent neural networks (RNNs) or convolutional 

neural networks (CNNs) that have been trained on various databases for recognizing patterns 

connected with falls. The trained methods are then executed on edge devices or cloud environments 

for real-time investigation of incoming sensor data. This method differentiates normal activities and 

potential falls, triggering alerts and reports to caregivers or emergency numbers once a fall is identified. 

We designed an Artificial Rabbit Optimizer with a DL-based FD and classification (ARODL-FDC) 

system from the IoT environment. The ARODL-FDC approach proposes to detect and categorize fall 

events to assist elderly people and disabled people. The ARODL-FDC technique comprises a four-

stage process. Initially, the preprocessing of input data is performed by Gaussian filtering (GF). The 

ARODL-FDC technique applies the residual network (ResNet) model for feature extraction purposes. 
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Besides, the ARO algorithm has been utilized for better hyperparameter choice of the ResNet algorithm. 

At the final stage, the full Elman Neural Network (FENN) model has been utilized for the classification 

and recognition of fall events. The experimental results of the ARODL-FDC technique can be tested 

on the fall dataset. The simulation results inferred that the ARODL-FDC technique reaches promising 

performance over compared models concerning various measures.  

Keywords: fall detection; Internet of Things; deep learning; parameter tuning; fully Elman Neural 

Network 

Mathematics Subject Classification: 11Y40 

 

1. Introduction 

The IoTs have a comparatively modern technology that can be an excellent capability for 

emerging an FD system [1]. IoT also gives robust storage and processing capacity and facilities to 

other layers of edge and cloud computing (CC). Edge and fog computing must be employed for 

identifying falls [2]. Edge devices are processed as well as positioned near other users and devices. 

Alternatively, fog nodes are positioned near local networks and other system architecture [3]. FD 

devices utilize alert systems technology for recognizing and providing emergency assistance. Once the 

user falls, these models can rapidly actuate the sensor. The embedded technology is positioned near 

the neck, on the waist, or wrist depending upon the devices [4]. For superior service costs, most 

medical alert corporations combine the FD ability within their emergency alert system. A few 

companies sell FD devices, which must be worn individually from one’s health alert button. Another 

device’s price is included in the monthly subscription strategy [5]. FD devices, for instance, can support 

identifying anomalies and transfer real-time signals to medical and social service experts on 

irregularities. Acceding to wearable devices, FD techniques are extremely prevalent recently due to 

numerous benefits like non-intrusive, lightweight lower-cost, and energy-saving [6]. 

Over the years, the development of FD and prevention methods must be a widespread research 

domain. Several approaches have been implemented for the expansion of these techniques. Three 

major types of technologies in FD namely IoT, artificial intelligence (AI), and CC-based methods [7]. 

Detection is the function of identifying the existing specific event or object in a particular context while 

recognition is defined as resolving the membership of the event or occurrence in a certain class [8]. 

Recently, DL has been employed extensively in the majority of domains globally. In FD, DL 

approaches have been more efficiently utilized in past years than other techniques like threshold-based 

methods. Machine learning (ML) methods can be also highly popular in this domain [9]. DL and ML 

exist as a subcategory of AI. ML performs under structured data to classify the difficulties. In ML-

based approaches, the feature requires identification, which has been programmed by the supervisor 

[10]. Alternatively, DL-based models commonly execute the essential pattern recognition tasks 

without implementing some explicit feature extraction techniques. 

We design an Artificial Rabbit Optimizer with a DL-based FD and classification (ARODL-FDC) 

approach in the IoT environment. The ARODL-FDC technique proposes to detect and categorize fall 

events to assist elderly people and disabled people. The ARODL-FDC technique comprises a four-

stage process. Initially, the preprocessing of input data is performed by Gaussian filtering (GF). The 

ARODL-FDC technique applies the residual network (ResNet) model for feature extraction purposes. 
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Besides, the ARO algorithm has been utilized for better hyperparameter choice of the ResNet algorithm. 

At the final stage, a fully Elman Neural Network (FENN) model can be utilized for the classification 

and recognition of fall events. The experimental results of the ARODL-FDC technique can be tested 

on the fall dataset. 

2. Related works 

Alabdulkreem et al. [11] projected a Chameleon Swarm Algorithm with Improved Fuzzy DL for 

FD (CSA-IDFLFD) method that includes 2 stages of processes. In the primary stage, the method 

contains IDFL architecture for recognition and classification. Then, the parameters can be optimally 

chosen by the CSA method. Vaiyapuri et al. [12] designed an architecture using the optimum DCNN 

(IMEFD-ODCNN) method. Mainly, the input videos taken by the IoT devices were pre-processed. 

Moreover, the SqueezeNet technique was employed for the feature extractor. Besides, the salp swarm 

optimization (SSO) method was deployed for hyperparameter tuning. In [13], a DL-based pre-impact 

FD method is developed. This method presented an automatic feature extraction technique, which 

could remove temporal features in each category of human fall data gathered by employing wearable 

sensors. A deep neural model depends on the ensemble of CNNs and LSTM was trained under removed 

temporal features. Alotaibi et al. [14] designed an innovative Arithmetic Optimizer Algorithm with 

LSTM-AE (AOA-LSTMAE) approach. Primarily, the P-ResNet architecture is used to extract features. 

Additionally, the AOA-LSTMAE technique employs the LSTMAE classification method for 

recognizing various activities. AOA was employed as a hyperparameter optimizer model. Xu et al. [15] 

introduced a wearable device named TTXFD that depends on MPU6050 and could gather tri-axial 

acceleration signals. Further, this analysis also developed a 2 stage FD method, which combines ML 

and threshold-based method (TBM). This model utilizes the TBM phase with lower computational 

complexity for choosing as well as transmitting assumed fall data. The ML phase of the 2-step method 

was applied with a server depending on CNN. 

In [16], a DL Enabled-FD (DL-FD) approach utilizing Gait Analysis was developed. Primarily, 

an architecture was developed for the FD technique. Then, the authors considered the developed DLFD 

approach that implements non-fall and falls RGB video for removing gait features through the 

MediaPipe model, employs the normalization method, and categorizes with the help of the bi-

directional-LSTM (Bi-LSTM) algorithm. In [17], an automatic human FD technique was projected 

employing multi-stream CNNs with combination. This method was dependent upon a multi-level 

image-fusion model. Al Duhayyim [18] suggested an Automated Disabled People FD employing the 

CSO with Mobile Networks (ADPFD-CSOMN) method. This approach integrates the development of 

the MobileNet framework for the feature extractor method. Afterward, the CSO-based parameter 

tuning method was performed in the MobileNet. Aboutalebi et al. [19] present MAGID, a framework 

that augments text-only dialogues with diverse, high-quality images via a diffusion method, integrating 

a feedback loop between image description generation and image quality modules. In [20], a model 

SLR-AROSNN by employing Artificial Rabbits Optimizer and Siamese Neural Network for Sign 

Language Recognition is developed. The MobileNet model is used for feature extraction and the 

Siamese neural network is utilized for classification, improved by the ARO model.  
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3. The proposed model 

In this article, an ARODL-FDC technique is designed in the IoT environment. The ARODL-FDC 

approach aims to detect and classify fall events to assist elderly people and disabled people. The 

ARODL-FDC technique comprises four-stage processes, namely GF-based preprocessing, ResNet-

based feature extraction, ARO-based hyperparameter tuning, and FENN-based classification model. 

Figure 1 depicts the workflow of the ARODL-FDC methodology. 

 

Figure 1. Workflow of ARODL-FDC technique. 
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3.1. GF-based preprocessing  

Initially, the preprocessing of input data is performed by GF. GF has been extremely utilized in 

image pre-processing systems that comprise convolving an image with a Gaussian kernel for reducing 

noise and smoothing out differences from the intensity [21]. This linear filter offers further weight to 

pixels near the kernel center, slowly reducing the effect of pixels far away. Accordingly, GF effectually 

blurs the image while maintaining its entire design. This method has been appreciated for tasks like 

edge recognition, noise reduction, and improving subsequent image processing stages by generating a 

smoother representation of new images. The size of blurring has been organized by the standard 

deviation (SD) of the Gaussian kernel, permitting flexibility in fine-tuning the filter's strength that 

relies on the features of the image and the particular pre-processing objectives.  

3.2. ResNet feature extractor  

For the feature extractor process, the ARODL-FDC technique applies the ResNet model. ResNet 

is measured as an extension of deeper systems which optimum model for training deeper networks 

developed [22]. The typical ResNet network contains 101layers, 50layers, and 152layers. Among them, 

152-layer deep CNN has earned the 2015‐ILSVRC battle. Also, ResNet attained a 28 percent growth 

on a leading image detection sample database termed cOco132. ResNet mostly feats the concept of 

bypass networks in "road network" by employing below mentioned mathematical Eqs (1) and (2): 

𝑔(𝑥𝑖) = 𝑓(𝑥𝑖) + 𝑥𝑖                                                         (1) 

𝑓(𝑥𝑖) = 𝑔(𝑥𝑖) − 𝑥𝑖                                                         (2) 

In Eq (3), 𝑓 denotes the transformed signal, and 𝑥 means the input of the original. An original 

input further to 𝑓(𝑥) through the path of bypass. In Eq (4), 𝑔(𝑥) is employed to execute the residual 

process. ResNet presents shortcut networks to understand links among dissimilar layers; however, 

these gates are parameter-free and data‐independent when equated to highway networks. In the 

network of highways, these layers signify a non‐residual function once the shortcut way is locked. A 

sub-module was collected of dual portions such as non-linear mapping 𝐹(𝑥) and linear direct mapping 

𝑥 → 𝑥. If the direct mapping of 𝑥 → 𝑥 is optimum, then the learning technique effortlessly sets all load 

limits of non-linear mapping 𝐹(𝑥)  to 0 . If no direct mapping, let non-linear mapping 𝑓(𝑥)  learn a 

linear 𝑥 → 𝑥, mapping is problematic. However, in ResNet, residual data constantly passed, and the 

shortcut network never closed.  

ReLU is nothing but a function of activation. The main reason for employing the activation 

function is to stop gradient dispersion, extend the propagation depth of the function, and decrease 

gradient attenuation produced by deep convolutional. A ReLU expression has been mentioned below:  

𝑅(𝑥) = max(𝑂, 𝑥)                                                           (3) 

when > 0, 𝑅(𝑥) = 𝑥, derivative will be one, while 𝑥 ≤ 0, 𝑅(𝑥) = 0, then derivative will be zero. 

3.3. Hyperparameter tuning using ARO 

In this stage, the ARO algorithm has been utilized for the optimum hyperparameter choice of the 

ResNet system. ARO is one of the present and powerful metaheuristic methods that attract stimulation 
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from existence strategies shown by rabbits [23]. The technique matches nuanced performances 

detected in rabbit populaces like their operation of arbitrary hiding as well as diversion hunting plans. 

The core idea of this method solve rounds imitating rabbits' hunting ways where these individuals 

tactically method plant consumption near neighboring holes to beat potential hunters as well as defend 

their surroundings. Differing from the conventional tactic of instant consumption, the ARO technique 

coordinates rabbits to spread their hunt for food to distant locations. This technique uses a populace 

size similar to a rabbit swarm with every rabbit in the population allocated an eating area decorated 

with plant life as well as greeneries in combination with numerous holes. At the time of the hunting 

procedure, rabbits are involved in the accidental examination of other rabbits' holes in the hunt for 

food. This effort includes gathering food as well as disturbing consistent routines by upgrading their 

places in unity with particular rabbits; thus a disturbance level or expectable course of action is 

presented.  

𝛥(𝑡 + 1) = 𝑧𝑗 → (𝑡) + 𝜌. (𝑧𝑖 → (𝑡) − 𝑧𝑗 → (𝑡)) + 𝑟𝑜𝑢𝑛𝑑(0.5. (0.05 + 𝑔1)). 𝑛1, 𝑖, 𝑗 

= 1,2 … … , 𝑀 𝑎𝑛𝑑 𝑖 ≠ 𝑗                                                (4) 

𝐸 = (𝑒 − 𝑒(
1−𝑡

𝑇
)2

) . sin (2𝜋𝑔2)                                         (5) 

𝑐(𝑘) = {
1 𝑖𝑓 𝑘 == ℎ(𝑢)

0 𝑒𝑙𝑠𝑒
, 𝑘 = 1, … , 𝑑&𝑢 = 1,2, … , 𝑔3. 𝑑                   (6) 

where 𝜌 = 𝐸. 𝑐,  ℎ = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑑),  𝑛1 ∼ 𝑁(0,1)  while  𝑧𝑖(𝑡) , ∆𝑖(𝑡 + 1) , 𝑀, 𝑇,  𝑑 , 𝑟𝑜𝑢𝑛𝑑 , 

𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚 , and 𝐸  denotes the existing candidate position of 𝑖𝑡ℎ  at time 𝑡,  𝑖𝑡ℎ  updated candidate at 

time 𝑡 + 1 , dimension of populations of rabbits, entire iteration sizes, problem size, rounding to 

adjacent integer outcome, arbitrary permutation function extended from 1 to problem size, and running 

length under the foraging, respectively. At this point, 𝑛1 signifies the normal distribution function, and 

𝑔1, 𝑔2,  𝑎𝑛𝑑 𝑔3 refer to the uniform random numbers from the range of 0 and 1. During the exploitation 

method, rabbits use an arbitrary hiding plan to avoid hunters. It can generate a few holes in close 

nearness to their unique place. In all the iterations of ARO, a rabbit reliably makes 𝑏 burrows from all 

the measurements. Afterward, it arbitrarily picks one of these holes to hide in as well as cheat predators. 

The 𝑖𝑡ℎ rabbit with 𝑗𝑡ℎ burrow is accurately expressed as follows: 

𝐵𝑈𝑖𝑗 → (𝑡) = 𝑧𝑖(𝑡) + 𝐻. ℎ. 𝑧𝑖(𝑡), 𝑖 = 1,2 … … , 𝑀 𝑎𝑛𝑑 𝑗 = 1,2 … . . , 𝑑    (7) 

𝐻 =
1−𝑡+𝑇

𝑇
𝑔4                                                  (8) 

ℎ(𝑘) = {
1 𝑖𝑓 𝑘 == 𝑗
0 𝑒𝑙𝑠𝑒

, 𝑘 = 1, … , 𝑑                                          (9) 

where  𝑛2 ∼ 𝑁(0,1), 𝐻, and 𝑑 signify hiding purpose and designed warrens in the region of rabbit, 

correspondingly. Chiefly, a bunny's big region is anywhere holes can be produced. A random hiding 

manner is presented below. 

𝛥𝑗 ∧ (𝑡 + 1) = 𝑧𝑖(𝑡) + 𝜌. (𝑔4. 𝐵𝑈𝑖𝑟(𝑡) − 𝑧𝑖(𝑡)), 𝑖 = 1,2, … … 𝑀               (10) 

ℎ𝑟(𝑘) = {
1 𝑖𝑓 𝑘 == [𝑔5. 𝑑], 𝑘 = 1, … , 𝑑
0 𝑒𝑙𝑠𝑒

                                   (11) 

𝐵𝑈𝑖𝑟(𝑡) = 𝑧𝑖(𝑡) + 𝐻. ℎ𝑟 . 𝑧𝑖(𝑡)                                            (12) 
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where 𝐵𝑈𝑖𝑟(𝑡) signifies the chosen hole by the rabbit via hiding mode, 𝑔4, and 𝑔5 refer to random 

amounts inside the interval [0,1]. 𝑖𝑡ℎ𝑟𝑎𝑏𝑏𝑖𝑡’s location upgraded after detour hunting mode or random 

hiding procedure as below. 

𝑧𝑖(𝑡 + 1) = {
⇀ 𝑧𝑠(𝑡) 𝑓(⇀ 𝑧𝑠(𝑡)) ≤ 𝑓(⇀ 𝛥𝑠(𝑡 + 1))

⇀ 𝛥𝑠(𝑡 + 1) 𝑓(⇀ 𝑧𝑠(𝑡))}𝑓(⇀ 𝛥𝑠(𝑡 + 1))
                 (13) 

If 𝑠𝑡ℎ rabbit’𝑠 candidate fitness is superior to the position'𝑠 existing fitness, the bunny leaves its 

present place and remains in the candidate place defined by either Eqs (4) or (10). The rabbit’s energy 

decreases with iteration development that aids in the changeover from explorative to exploitative 

method expressed as mentioned below: 

𝐸𝐴(𝑡) = 4 (1 −
𝑡

𝑇
) ln (

1

𝛼
)                                                (14) 

where 𝛼  means the random number. When 𝐸𝐴(𝑡) > 1 , the technique searches worldwide for 

exploration performance; while 𝐸𝐴(𝑡) ≤ 1, the algorithm searches nearby for exploitation solutions. 

The ARO system improves a fitness function (FF) to accomplish a larger classifier solution. It 

explains a positive integer to signify the best efficiency of the candidate outcomes. During this case, 

the decrease of the classify errors has assumed that FF is formulated as:  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) =
𝑁𝑜.𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 
∗ 100              (15) 

3.4. FENN-based classification model 

Finally, the FENN model has been deployed for the classification and recognition of fall events. 

In typical ENN, there is single feedback among the hidden layer (HL) and context layer at time 𝑡 [24]. 

This feedback is unable to employ spatial, temporal, and long‐term data of input as well as output 

variables. Therefore, to enhance the performance of ENN, a FENN structure was generated in this 

effort, which links among dual consecutive time points for HL and output, input to output, as well as 

output layers to HL. Figure 2 demonstrates the infrastructure of ENN. 

 

Figure 2. ENN structure. 
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A measured technique of FENN is expressed as: 

𝑦(𝑡) = 𝑓(𝑤2𝑥(𝑡) + 𝑤3𝑢(𝑡 − 1) + 𝑦𝑐2(𝑡) + 𝑏2)                               (16) 

𝑥(𝑡) = 𝑔(𝑥𝑐(𝑡) + 𝑤1𝑢(𝑡 − 1) + 𝑦𝑐1(𝑡) + 𝑏1)                                 (17) 

𝑥𝑐(𝑡) = 𝑤4𝑥𝑐(𝑡 − 1) + 𝑤5𝑥(𝑡 − 1)                                           (18) 

𝑦𝑐1(𝑡) = 𝑤6𝑦𝑐1(𝑡 − 1) + 𝑤7𝑦(𝑡 − 1)                                         (19) 

𝑦𝑐2(𝑡) = 𝑤8𝑦𝑐2(𝑡 − 1) + 𝑤9𝑦(𝑡 − 1)                                         (20) 

where 𝑤2 denotes connection weights among HL to the output layer, 𝑤3 signifies the input layer 

to HL, and 𝑤1 refers input layer to HL. 𝑦𝑐1(𝑡) signifies the outcome context layer 1, 𝑦𝑐2(𝑡) denotes 

outcome context state 2 and 𝑥𝑐(𝑡) signifies context state for HL at 𝑡. 𝑏2 and 𝑏1 represent bias for the 

output layer and HL. 𝑤4, 𝑤6 , and 𝑤8 signify recurrent connection weights amid 𝑡 and 𝑡 − 1 of 𝑥𝑐 , 𝑦𝑐1 

and 𝑦𝑐2 , separately. 𝑤5,  𝑤7  , and 𝑤9  specify connection weights of 𝑥(𝑡 − 1)  to 𝑥𝑐(𝑡),  𝑦(𝑡 − 1)  to 

𝑦𝑐1(𝑡) and 𝑦(𝑡 − 1) to 𝑦𝑐2(𝑡).𝑢(𝑡 − 1) means the vector of the input layer at 𝑡 − 1 and 𝑦(𝑡) and 𝑥(𝑡) 

symbolize the vector of HL and output layer at t ,  correspondingly. 𝑓  and 𝑔  denote the activation 

function of HL and the output layer that is preferred as hyperbolic tangent and softmax sigmoid, 

respectively. 

4. Performance validation  

The experimental validation of the ARODL-FDC methodology has been examined under two 

databases. The multiple cameras fall (MCF) database [25] includes 192 instances with 2 classes as 

represented in Table 1. 

Table 1. Details of MCF database. 

Multiple cameras fall Dataset 

Class No. of Samples 

fall event 96 

no-fall event 96 

Total Samples 192 

Figure 3 displays the classifier performances of the ARODL-FDC system under the MCF 

database. Figure 3a and 3b represents the confusion matrices accomplished by the ARODL-FDC 

technique with 70:30 of the training phase (TRPH)/testing phase (TSPH). The result signified that the 

ARODL-FDC methodology can be precisely identified and categorized with two class labels. Next, 

Fig. 3c displays the PR analysis of the ARODL-FDC algorithm. The simulation value describes how 

the ARODL-FDC technique gets higher PR effectiveness in every class. Besides, Figure 3d shows the 

ROC outcome of the ARODL-FDC system. This outcome revealed that the ARODL-FDC method 

provides efficient outcomes with greater ROC values with diverse class labels. 

The FD outcomes of the ARODL-FDC system are reported on 70:30 of TRPH/TSPH in Table 2 

and Figure 4. The accomplished outcome displayed the ARODL-FDC method gains fall and no-fall 

events. According to 70% of TRPH, the ARODL-FDC system offers an average 𝑎𝑐𝑐𝑢𝑦 of 99.23%, 

𝑝𝑟𝑒𝑐𝑛 of 99.29%, 𝑠𝑒𝑛𝑠𝑦 of 99.23%, 𝑠𝑝𝑒𝑐𝑦 of 99.23%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.25%. Moreover, with 30% of 
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TSPH, the ARODL-FDC algorithm provides an average 𝑎𝑐𝑐𝑢𝑦 of 98.39%, 𝑝𝑟𝑒𝑐𝑛 of 98.21%, 𝑠𝑒𝑛𝑠𝑦 

of 98.39%, 𝑠𝑝𝑒𝑐𝑦 of 98.39%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.27%, respectively. 

 

Figure 3. MCF database (a-b) confusion matrices (c-d) PR and ROC curves. 

Table 2. FD outcome of the ARODL-FDC system under the MCF dataset. 

Classes  𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 

TRPH (70%) 

fall event 100.00 98.57 100.00 98.46 99.28 

no-fall event 98.46 100.00 98.46 100.00 99.22 

Average 99.23 99.29 99.23 99.23 99.25 

TSPH (30%) 

fall event 100.00 96.43 100.00 96.77 98.18 

no-fall event 96.77 100.00 96.77 100.00 98.36 

Average 98.39 98.21 98.39 98.39 98.27 
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Figure 4. Average outcomes of the ARODL-FDC model on the MCF dataset. 

The 𝑎𝑐𝑐𝑢𝑦  curves for TR and validation (VL) displayed in Figure 5 for the ARODL-FDC 

algorithm under the MCF dataset give valued insights into its performance with numerous epochs. 

Particularly, it has a constant improvement in both TR and TS 𝑎𝑐𝑐𝑢𝑦 to raising epochs, exhibiting the 

model's ability to learn and identify patterns in data of both TR and TS. The upward trend in TS 𝑎𝑐𝑐𝑢𝑦 

highlights the model's flexibility to the TR dataset and its capacity to generate accurate predictions on 

unnoticed data, emphasizing better-generalized proficiencies. 

 

Figure 5. 𝐴𝑐𝑐𝑢𝑦 curve of the ARODL-FDC model under the MCF dataset. 
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Figure 6 represents a wide-ranging overview of the TR and TS loss values for the ARODL-FDC 

method under the MCF dataset through diverse epochs. This TR loss reliably decreases as the model 

increases their weights for diminishing classification errors at two datasets. The loss curves represent 

the model's alignment with the dataset of TR, highlighting its ability to competently capture forms in 

both datasets. Moreover, this can be a continuous enhancement of parameters in the ARODL-FDC 

methodology, which targets decreasing discrepancies among predictions and actual TR labels. 

 

Figure 6. Loss curve of the ARODL-FDC algorithm under MCF database. 

In Table 3 and Figure 7, the comparison outcome of the ARODL-FDC algorithm with the MCF 

database is given [12]. The achieved outcome represented that the 2D-ConvNN model obtained the 

least 𝑎𝑐𝑐𝑢𝑦  of 95.68%. Furthermore, the ResNet50, ResNet101, VGG16, and Depthwise models 

accomplish closer 𝑎𝑐𝑐𝑢𝑦 values. Although the IMEFDOD-CNN model gets near-optimal performance, 

the ARODL-FDC technique exhibits superior outcomes with a maximum 𝑎𝑐𝑐𝑢𝑦 of 99.23%. 

Table 3. 𝐴𝑐𝑐𝑢𝑦 analysis of the ARODL-FDC model with other techniques on the MCF database. 

Multiple cameras fall Dataset 

Methods Accuracy (%) 

VGG16  98.16 

Depthwise 97.95 

2D-ConvNN 95.68 

ResNet50  96.26 

ResNet101  96.67 

IMEFDOD-CNN 99.03 

ARODL-FDC 99.23 
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Figure 7. 𝐴𝑐𝑐𝑢𝑦 outcome of the ARODL-FDC model with other techniques under the MCF dataset. 

The UR FD (URFD) dataset [26] comprises 314 instances with 2 classes as demonstrated in Table 4. 

Table 4. Details of the URFD dataset. 

UR FD (URFD) Database 

Class No. of Samples 

fall event 74 

no-fall event 240 

Total Samples 314 

Figure 8 represents the classifier performances of the ARODL-FDC system at the URFD dataset. 

Figure 8a and 8b displays the confusion matrices attained by the ARODL-FDC system in 70:30 of 

TRPH/TSPH. This simulation value shows that the ARODL-FDC algorithm can be correctly 

recognized and categorized into two classes. Moreover, Figure 8c represents the PR analysis of the 

ARODL-FDC system. The outcome described the ARODL-FDC technique to attain great PR 

effectiveness with every class label. Then, Figure 8d shows the ROC analysis of the ARODL-FDC 

technique. This result revealed the ARODL-FDC system offers effective outcomes with increased 

ROC outcomes with different classes. 
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Figure 8. URFD database (a-b) confusion matrices and (c-d) PR and ROC curves. 

The FD analysis of the ARODL-FDC approach is defined in Table 5 and Figure 9. The achieved 

outcome revealed the ARODL-FDC method acquires fall and no-fall events. Based on 70% of TRPH, 

the ARODL-FDC algorithm gives an average 𝑎𝑐𝑐𝑢𝑦 of 99.54%, 𝑝𝑟𝑒𝑐𝑛 of 99.71%, 𝑠𝑒𝑛𝑠𝑦 of 98.91%, 

𝑠𝑝𝑒𝑐𝑦  of 98.91%, and 𝐹𝑠𝑐𝑜𝑟𝑒  of 99.31%. Also, for 30% of TSPH, the ARODL-FDC methodology 

offers an average 𝑎𝑐𝑐𝑢𝑦 of 98.95%, 𝑝𝑟𝑒𝑐𝑛 of 98.28%, 𝑠𝑒𝑛𝑠𝑦 of 99.25%, 𝑠𝑝𝑒𝑐𝑦 of 99.25%, and 𝐹𝑠𝑐𝑜𝑟𝑒 

of 98.75% correspondingly. 

Table 5. FD analysis of the ARODL-FDC system under the URFD dataset. 

Classes  𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝒔𝒄𝒐𝒓𝒆 

TRPH (70%) 

fall event 99.54 100.00 97.83 100.00 98.90 

no-fall event 99.54 99.43 100.00 97.83 99.71 

Average 99.54 99.71 98.91 98.91 99.31 

TSPH (30%) 

fall event 98.95 96.55 100.00 98.51 98.25 

no-fall event 98.95 100.00 98.51 100.00 99.25 

Average 98.95 98.28 99.25 99.25 98.75 
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Figure 9. Average outcomes of the ARODL-FDC model with URFD dataset. 

The 𝑎𝑐𝑐𝑢𝑦 curves for TR and VL exhibited in Figure 10 for the ARODL-FDC algorithm at the 

URFD dataset provide respected insights into its effectiveness with different epochs. In particular, this 

can be a reliable improvement in both TR and TS 𝑎𝑐𝑐𝑢𝑦 to raising epochs, showing the model’s ability 

to recognize and learn patterns in both data of TR and TS. The upward trends in TS 𝑎𝑐𝑐𝑢𝑦 highlight 

the model’s adaptableness to the TR dataset as well as its capabilities to create exact predictions on 

unobserved data, emphasizing optimum generalization proficiencies. 

 

Figure 10. 𝐴𝑐𝑐𝑢𝑦 curve of the ARODL-FDC algorithm on URFD database. 
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Figure 11 offers a wide-ranging overview of the TR and TS loss values to the ARODL-FDC 

system under the URFD dataset in numerous epochs. The TR loss is consistently reduced as the model 

enriches its weights to minimize classification errors with these datasets. These loss curves noticeably 

represent the model’s alignment with the dataset of TR, underscoring proficiencies in capturing 

patterns effectively in these databases. The constant modification of parameters in the ARODL-FDC 

system is intended to minimize discrepancies between predictions and actual TR labels. 

 

Figure 11. Loss curve of the ARODL-FDC approach with URFD database. 

In Table 6 and Figure 12, the comparative outcome of the ARODL-FDC technique on the URFD 

database can be described. The accomplished outcome displayed that the 2D-ConvNN technique gets 

a minimum 𝑎𝑐𝑐𝑢𝑦  of 95.18%. Then, the ResNet50, ResNet101, VGG16, and Depthwise systems 

achieve nearer 𝑎𝑐𝑐𝑢𝑦  values. However, the IMEFDOD-CNN algorithm achieves nearby optimum 

performance, and the ARODL-FDC technique exhibits superior outcomes with a higher 𝑎𝑐𝑐𝑢𝑦  of 

99.54%, respectively. 

Table 6. 𝐴𝑐𝑐𝑢𝑦 analysis of the ARODL-FDC model with other techniques under the URFD dataset. 

UR FD (URFD) Dataset 

Methods Accuracy (%) 

VGG16 97.76 

Depthwise  98.15 

2D-ConvNN 95.18 

ResNet50 95.55 

ResNet101 96.36 

IMEFDOD-CNN 99.21 

ARODL-FDC 99.54 
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Figure 12. 𝐴𝑐𝑐𝑢𝑦 analysis of the ARODL-FDC model with other techniques on the URFD dataset. 

Thus, the ARODL-FDC technique can be applied for enhanced FD processes in the IoT environment. 

5. Conclusions 

In this study, an ARODL-FDC technique is designed in the IoT environment. The ARODL-FDC 

approach proposes to detect and categorize fall events to assist elderly people and disabled people. The 

ARODL-FDC technique comprises four-stage processes, namely GF-based preprocessing, ResNet-

based feature extractor, ARO-based hyperparameter tuning, and FENN-based classification model. 

Initially, the preprocessing of input data is performed by GF. The ARODL-FDC technique applies the 

ResNet approach for feature extractor purposes. In addition, the ARO algorithm has been employed 

for better hyperparameter choice of the ResNet algorithm. Eventually, the FENN model can be utilized 

for the classification and recognition of fall events. The experimental results of the ARODL-FDC 

technique can be tested on the fall dataset. The simulation results inferred that the ARODL-FDC 

technique reaches promising performance over compared models concerning various aspects. The 

ARODL-FDC technique portrays efficiency but may be restricted in complex environments. Future 

studies may be focus on improvising its adaptiveness in multi-person scenarios and incorporating 

further sensor modalities for enhanced accuracy.  
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