AIMS Mathematics, 9(6): 15246-15262.
DOI: 10.3934/math.2024740
ATMS Mathematics Received: 09 March 2024

Revised: 22 April 2024

Accepted: 23 April 2024
https://www.aimspress.com/journal/Math Published: 28 April 2024

Research article

Efficient spectral collocation method for nonlinear systems of fractional
pantograph delay differential equations

M. A. Zaky'"*, M. Babatin', M. Hammad?, A. Akgiil>* and A. S. Hendy’

1 Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic

University (IMSIU), P.O. Box-65892, Riyadh 11566, Saudi Arabia
Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
Art and Science Faculty, Department of Mathematics, Siirt University, 56100 Siirt, Turkey

Department of Computer Science and Mathematics, Lebanese American University, Beirut,
Lebanon

Department of Computational Mathematics and Computer Science, Institute of Natural Sciences
and Mathematics, Ural Federal University, 19 Mira St., Yekaterinburg 620002, Russia

* Correspondence: Email: mibrahimm@imamu.edu.sa.

Abstract: Caputo-Hadamard-type fractional calculus involves the logarithmic function of an arbitrary
exponent as its convolutional kernel, which causes challenges in numerical approximations. In this
paper, we construct and analyze a spectral collocation approach using mapped Jacobi functions as
basis functions and construct an efficient algorithm to solve systems of fractional pantograph delay
differential equations involving Caputo-Hadamard fractional derivatives. What we study is the error
estimates of the derived method. In addition, we tabulate numerical results to support our theoretical
analysis.

Keywords: mapped Jacobi functions; spectral methods; convergence analysis; pantograph delay
differential equations
Mathematics Subject Classification: 26A33, 33D45, 65M70

1. Introduction

Fractional differential equations have gained growing attention in recent years and many
monographs have appeared [1,2]. The most common definitions of fractional calculus (differentiation
and integration) are for Caputo, Riemann-Liouville, and Grunwald-Letnikov derivatives [3-7].
Compared with these two types of definitions, the Hadamard fractional calculus, which was
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first introduced in 1892 by Hadamard [8], did not receive much attention. The kernel of the
integrand in the definition of the fractional Hadamard derivative contains a logarithmic function
with an arbitrary exponent different from the Riemann-Liouville fractional derivatives. Recently,
the Hadamard derivative and Hadamard-type fractional differential equations have been useful in
practical problems related to mechanics and engineering, such as fracture analysis or both planar and
three-dimensional elasticities [9]. Kilbas discussed Hadamard-type fractional differential equations in
different spaces [10]. Recently, Ma and Li described the properties of Hadamard calculus [11] and
they also proposed the definite conditions for Hadamard-type fractional differential equations.

The Caputo-Hadamard (C-H) fractional derivative is a kind of fractional derivative that is useful in
describing abnormal diffusion processes, especially ultra-slow diffusion. Gohar et al. [12] studied
the existence and uniqueness of the solution to Caputo-Hadamard fractional differential equations
and the corresponding continuation theorem. Wang et al. [13] investigated the stability of the zero
solution of a class of nonlinear Hadamard-type fractional differential systems by utilizing a new
fractional comparison principle. Belbali et al. [14] discussed the existence, uniqueness, and stability
of solutions for a nonlinear fractional differential system consisting of a nonlinear Caputo-Hadamard
fractional initial value problem. Aljoudi et al. [15] studied a coupled system of Caputo-Hadamard-type
sequential fractional differential equations supplemented with nonlocal boundary conditions involving
Hadamard fractional integrals. Dhaniya et al. [16] established the existence, uniqueness, and Hyers-
Ulam stability of the solution to the nonlinear Langevin fractional differential equation that involves
the C-H and Caputo fractional operators, with nonperiodic and nonlocal integral boundary conditions.
Beyenea et al. [17] established sufficient conditions for the existence and uniqueness of solutions
to nonlinear Caputo-Hadamard fractional differential equations involving Hadamard integrals and
unbounded delays. He et al. [18] considered the Hadamard and the Caputo-Hadamard fractional
derivatives and the stability of related systems without and with delay.

Due to the complex form of C-H fractional operators, one often needs to find a suitable numerical
scheme to approximate it, which greatly improves the efficiency of the actual calculation process.
The studies on numerical methods for nonlinear C-H fractional differential equations are still in their
early stages. Gohar [19] studied finite difference methods for fractional differential equations with
C-H derivatives and investigated the smoothness properties of the solution. Li et al. [20] obtained the
analytical solution to a certain linear fractional partial differential equation with the C-H fractional
derivative by introducing a new modified Laplace transform, and derived a numerical algorithm for
such kinds of equations. Fan et al. [21] proposed three kinds of numerical formulas for approximating
the C-H fractional derivatives, which are called L1 — 2 formula, L2 — 1, formula, and H2N2 formula.

Most numerical methods for solving fractional differential equations are based on local difference
schemes. Compared with the previous works, the main contribution of this paper is to extend the results
in [22, 23] by constructing and analyzing a nonlocal spectral collocation method for the following
system of fractional pantograph delay differential equations:

?HszXI (t) = g](t’ Xl (t)7 .. 7XM(t)’ Xl (qt)7 .. ,XM(qt))’ te 17

gHDfXZ(t) = gZ(I’ Xl(t)v LI 9XM(I)’ Xl(qt)9 .. ’XM(qt))’ re Ia

: (1.1)
EDYX (1) = gu(t, X1 (0), ..., X (D), X1 (q0), ..., Xu(q0)), t €1,

X(1) = Xi0), forqt<Ci=1,2,...,M, €€ (0,0, pe(0,1),q¢0,1),
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where g; : I x RM — R are given continuous functions, I = (¢, ef) , and the C-H derivative "D/ of
order 0 < p < 1 is given by (2.2).

The outline of this paper is as follows: In Section 2, we introduce some necessary definitions and
preliminaries. In Section 3, we construct the spectral collocation scheme. In Section 4, we provide
some auxiliary lemmas. The convergence analysis is discussed in Section 5. The numerical results are
provided in Section 6.

2. Preliminaries

In this section, some relevant properties of the C-H fractional calculus and the logarithmic Jacobi
(log J) approximation are presented.

Definition 2.1. The C-H fractional integral with order p > 0 is defined as [24]
1 ¢ dw
IX@) = =— | ¥ @wXWw)—, z> >0, 2.1
J7X(2) F(p)fg (z, w) (W)W 4 (2.1)

where «(z, w) = log(s).
Definition 2.2. The C-H fractional differential operator of order 0 < p < 1 is given as [1]

1

HDPX(z) = fz K (z, w) X' (w)dw. (2.2)
—pP) Je

I'(1
Definition 2.3. Letp,n > —1,1 := [{,{e], and £ > 0. The log J functions of order p are given by [23]
PE(g) = P (K 0= 1) (.p>—1, £>0,Vzel)

 Tp+p+l) & p\Tp+k+p+n+1) ) (2.3)
_P!F(p+p+n+1)kzz(;(k) Thtprly  K@O-D

where & (z) is the Jacobi polynomial and it is defined as

gy = L@rp+D SN p\T(p+k+p+n+1) (z-1Y
P T T 1rprmpl L\ k Tk+p+ 1) 2 |-
We define the space of logarithmic functions of order s by
PIEQ) = span{1,k(z 0,z 07, ... k(2 0},

where Q = [£, +0), € > 0. Let

XM(@) = 7 k(@ O (1 =K@ OY (2.4)
We denote by Lip’r,j(l ) the weighted L? space with the following inner product and norm:
(X, )y = f X@EW M @dz,  Xllyone = X012, 2.5)
1
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One of the most important properties of the log J polynomials is that they are mutually orthogonal
inL?,.(D)ie.,

(Z57@, 27 (@) = 0. HjEm,
Hf@'{)’n,[(Z) — A‘,n — r(] +p0+ 1)r(] +n+ 1) (26)
b e =5 2+ ptn+ DTG +p+ 0+ 1)

We define the following first-order differential operator:

d

D! = = z¢'(2), 2.7
log®(2) e €)¢(Z) 72¢'(2) 2.7)
and an induction leads to
k
Dyy$(2) = Dy, - Dyyg - Dy $(2). (2.8)

We also define the non-uniformly weighted log J Sobolev space as

By (D) i=1{¢: Db € LoD, 0 j<i), €N,

with
W $)ge = > (Dhogth, Dlyy®ssaie, llye = (@, D)
k=0 '
|¢|B;,£] :||D{0g¢||/\//7+i>'i+i'f'
For the usual shifted-weighted Jacobi Sobolev space, we define

B, (N :={¢:0¢p €L, (N,0<j<il, i€eN,

where y*" = (—z + 1’77 with z € A = [0, 1] is the classical Jacobi weight function.

Assume that xy < x; < -+ < Xp_; < xp in I are the roots of ;@Z”J’r’f(x). Let z(x) = log 7. Then
zj:=z(xj) =log %, 0< j<M,are zeros of 2" (x), and {x;}", are the corresponding weights.

The log J-Gauss quadrature enjoys the exactness

M
fX(z))(p’”’g(z)dz = Z X(Z)xi» YX(2) € Plzojfjﬂ. (2.9)
I i=0
Hence,
M —_
Z P () P Gxe = 0845 VO < g+ j<2M+ 1. (2.10)

k=0

For any X(¢e*) € C(I), the log J-Gauss interpolation operator IZ ’1"25 :C() — Pi&g is determined
uniquely by
X)) = X@z), 0<q<M. @2.11)
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From the above condition, we have I/ ’ffX =X forall X € P;‘,’Ig . On the other hand, since /2 ’;[’[X € P;(;g,
we can write

M M
- = 1
EX () = ) X0, X = = > X(e) P (xj)x s VX € PRE(D), (2.12)
i=0 i j=0

The L™(I) space is the set of all measurable functions that are essentially bounded. That is,
functions g that are bounded almost everywhere on a set of finite measures. The essential supermom
norm is used to define the norm of this space and is given as

liglle, = ess A;up lg(x)] .
XE

Definition 2.4. Let A(z) = (aij(z)) i be an (m X n) matrix function with z € I. We consider the

non-negative real-valued function "
A@I =D Jai@)], (2.13)

i=1 j=I

1/2
MW:UMWW@’
I

and the norms

(2.14)
IAlle = esssup |A(z)].
zel
Proposition 2.1. It holds for any y/(£e*) € B}, (A),m>1and M +12m=2q =0
(L+M-m) /o am .
1Dy, (¢ — B ) |ypranar < € TM‘f 213 (€ e yoeman, (2.15)

and it takes the form

||Dq (!ﬁ — Iﬁ)/}n’fw)“)(pm,lwqj < CMq_m”a?{l//(f ex)}”)(pﬂn‘,mm, c~1, forfixed m and M > 1. (216)

log
In the case of ¢ = 0, 1, we can write
W = I Wl e < M| (W (€ )| yorman, (2.17)
10 — P ) lgone < cM 0™ (£ &)} llyorman, (2.18)

where ¢ = x(1 ~1og ()" (1og (5))""
Lemma 2.1. [23] For any p, 7 € (—1,—1) and for all y/(x) € B}:5(I), ¢(¢) = 0 for some ¢ € 1, it holds
1l < V200,012 Al (2.19)

/\?ml.f XPJI! .

1
Proposition 2.2. [23] Forp,n € (-1, —5],

Il — Iyl < MM 00Y(E €lyorman, V(€ ™) € BY(A), m > 1. (2.20)
Lemma 2.2. [23]
M 1
O(logM), —1<p,n<—1
HW%ngW%M{“g) <P
j=0

2.21
O(M/”%), u = max(p,n), otherwise, ( )

where {h’;’"’[(x)}j”i , are the logarithmic Lagrange interpolation functions that are related to @]’;Z’f(x).
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3. Non-polynomial spectral collocation scheme

To begin with, we rewrite the differential equation (1.1) in the following equivalent compact integral
form:

Z) =2+ — f «(t, ) ' Q(s,Z(s), Z(q 5)) é, te (el 3.1
L'(p) Je S

where
Z(t) = [Xl(t),XZ(t)’ e ’XM(I)]T i

Z = [%i(0.%:(0).....Xn(0)] .
[Xi(g0). Xa(q D), ... Xulg D))", i qt>¢,
Z(q1) = ,
|Xign. Xog ), Xugn)| . if qr<¢,
Q) =[g1.82.----.8um]" -
In the following, we will make some useful transformations, which in turn are the basis for the
numerical solution scheme and its numerical analysis. In order to convert the integral interval (¢, t)

to 1, we consider
k(s, €) = k(t, Ox(r, 1),

N
=s(t,r) = f(—) .
s =s(t,r) 7

or

Hence, the system(3.1) becomes

| @ Oy

Z(t) = Z[ F(p)

f(l — k(r, f))p_1 G(s(t,r), Z(s(t, 1)), Z(q s(t, r)))dTF. (3.2)
I

The non-polynomial spectral collocation scheme for (3.2) is to find X,, 5(?) € Pﬁsg(l ), m=12,....M
such that

() = Z; + —1°“<K<t, )% f A= k(O QU 1), Zy(s(t, 1)), Zn(g st P))dr, (3.3)
1

L(p) "
where
ZN(t) = [Xl,Na XZ,Na oo 7XM,N]T )
and If ’,Z’f the log J-Gauss interpolation operator in the z-direction. For simplicity, we will consider the

trial functions as

N
X,n(f) = me,,-@?*o"’(t), m=1,...,M. (3.4)
Also, we can use the following approximation:
199 (k(t, 0 g (5(t,7), Zu(s(t, 7)), Zi(g 5(t,7)))

N N
= Z Z vm,i,j@?’O’Z(I),@f_l’o’f(r), m=1,...,M.

i=0 j=0

(3.5)
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A straightforward calculation by using (3.5) and (2.6) gives

ri(p)l,‘)ﬁf [(x(r, oy f r (= k(O I g(s(8, 1), Zu(s(1, 7)), Zn(gs(t, r))dr

T szml,QOOf(t)f A=k Oy 2 (dr (3.6)

OJO

0,0,
= Vmio (M), m=1,...,M.
F(p +1) ;

al pan\N . . . .. .
Let {Xf, , X }p=0 be the weights and the nodes of Gauss-type logarithmic Jacobi interpolation. A
direct application of (3.5) and (2.12) yields

N
Vm,i0 =P 2i+1) Z (K(tOOf ) (@005( 005)

p

<% iMz

p=0 (37)
0. =10 00,0 p-10, 0.0 =10 00,6, p—1,0,
g (s (677 0) 2 (s (5577 0)) 2 s (7)) g
Hence, we deduce that
N 1 N
X P21 = X, P00 (1) + mi0 P00 3.8
Z.; PP = X2y o) F(p+1);v,,o 0 (3.8)
We compared the coefficients of (3.8) to get
Vim,0,0
Xno=2¢+ =,
’ r 1
VmiO(p+ : 1 (3.9)
Xmi = = <i<N, =1,....M,
TTe+) ! "

where Z; is the vector of initial values defined in (3.1).
4. Auxiliary lemmas

Here, we derive the rate of convergence of the scheme (3.3) in the L)z(o,o,[—norm. Accordingly, we
introduce some lemmas.
Let 1/ " be the log J-Gauss nodes in , and s} = (x, r ’"’{’;). The mapped log J-Gauss interpolation

operator ,J " ]'\7,[ :C(t,x) — Pﬁg(f , x) is defined by
T (M) = u (M), 0<i<N. (4.1)

Hence,

LU () = u () = u (s 27) = I u(s(x, ), 4.2)

and

TN u(s) = Iy u (s ) (4.3)

k(r )=~ K(s [)

AIMS Mathematics Volume 9, Issue 6, 15246-15262.
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Moreover, the following results can be easily derived:

f = (k(x, )Y T2 X (5)ds = (k(x, O f r (L= &, O T X (s (x, ) dr
4

1

N
= (ke OF D X (s, 7 00)

j=0
N

= (k@ O Y X (5700
Jj=0

Similarly,

X B B - ) N B -
ff 57 ke, )Y (T2 X)) ds = (k(x, 0F ) X3 (710 0

=0
Then, forany 1 < s < N + 1, we have

fx s (k(x, ) '(I - xff;\,l’o’f) X (s)‘2 ds
l
= (k(x, )Y’ f = 0 |(2 - 22500 X (st )| e
1
<cN72" (k(x, O))Y f rH (= k(r O (k(r, 0)™ Dty X (s(x, M dr
1
log,s

=cN~" fx s~ (k(x, )P (k(s, O)" |Dm X(S)|2 ds,
¢

where 7 is the identity operator.

Lemma 4.1. The following estimate holds for the error function ey(x) = Z(x) — Zy(x):

3
lewllyoor < > [Zl] oo »
=1

where

—_
=

Z(x) - I3 Z(x),

9% f RGe )T = I70") Q(s,Z(s), Z(g 5))ds,
4

[x]

2

[x]

s=I00 f R(x,s) I73""(QUs, Z(5), Z(gs)) — Q(s. Zu(s), Zu(qs)))ds,
4

and R(x, s) = (R;j) with R;; = S 6 L5 5= M.

()
Proof.

0,0,0 0,0,¢
lewtlynoe < |Z = Z5Z| ooe + 1FNZ = Zo| o

It is clear from (3.1) that

I Z(x) = Z, + ri(p)fgj’f fg T ke ) Q (5. Z(5). Z(qs)) ds.

AIMS Mathematics Volume 9, Issue 6, 15246—
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and

Zn(x) =Z; + l;(p)j?‘:?‘;g fx s~ (k(x, 5))P! XEFS’TNI’O’KQ (s, Zn(s), Zn(gs)) ds. (4.10)
¢

Subtracting (4.9) from (4.11) yields
IOV Z(x) - Zn()
1 < —
SR f S Cx 9)Y T (QUs. Z(5). Z(g 8)) = T2 " Q (5. Z (5). Zn(gs))) ds,
¢

which has the form:

TN Z(x) = Zy(x)

1 x ~,
:F—('D)Igfv’ff; s~ (k(x, $))P! (I - XI’:,NLO’K> Q(s,Z(5),Z(gs))ds 4.12)

1 ¥ o
+ r—(p)fig%f ff 57k, )Y T (Q (s, Z(5), Z(gs)) — Q (5, Zu(s), Zu(gs))) ds.

(4.11)

5. Convergence analysis

5.1. Convergence analysis in Lioyo'[-norm

Theorem 5.1. Let Z(x) be the solutions of the systems (3.1) and (3.3), respectively. Then we have the
following estimate:

1Z = Zullynoe < N7 (IDfagZIPone + D5 Q (6, Z(x). Z(q ) IR (5.1)
where l <m<N+1land N > 1.

Proof. Using Proposition 2.1, we get

I1Z oo = ||Z - IQ;%"Z”XW < CNIDjZI e < N ||OTZ(C &) - (5.2)
Using the log J-Gauss integration formula, gives
Eallyooc = {795/ f RCx, 8) (7 - T *) Q (s, Z(s), Z(gs)) ds
l 00
M X _
=20 f Ru(x,9) (7 =250 81 (. 2(5), Z(q ) ds
k=1 ¢ 0.0
[ M x 1172
- f ot [Z o f Ru(x, ) (I = I ") 81 (5. Z(5). Z(q )) ds] dx
[ 1 k=1 ¢ ]
[~ M 000 29172
J —~
= > (Z Ri(x}%, 5) (I - xq,o,ffi,;‘”) 8 (5, Z(s), Z(q 9)) ds
| /=0 =1 vt !
[~ M 00 2y 1/2
J -
<| Do ( f R, 5) (I—xg,o,ffg;o"’) g (5, 2(5), Z(q 8)) ds 2(1)2} .
| j=0 k=1 \V¢{ k=1
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Using Cauchy-Schwarz inequality leads to the following estimate:

(N M 00 (000 5 1/2
J 7 p—
Eallaoe < C| Y > 0% f Rue(x2, 5) ds f Ru(x3%, 5) (I—Xq,wf@?;v"‘”)gk (s, Z(5), Z(q 9))| ds
[7=0 k=1 4 ! 13 ’ J >
[N M (000 | , 12
<C ZZ X0 (2, 0)) f (kO 9) ‘(I—xwfﬁ ;v"”) o (5,2(5), Z(g 5))| ds
L j=0 k=1 4 /
N 12y o0 1 , 2
D J — —_—
<C Z X(},O,[ ( «( x(;,O,t” f)y] ( f 1 (K(x?oz S))ﬂ ’( T e Ils);v] ,O,f) gk (5, Z(5), Z(q 5)) dS]
=0 k=1 V¢ ’ (5.3)
N 1/2 (000 5 12
j —1 —
< C| DTS (ka0 f))p] [ f T (k(20, ))’ '(I—xq.o,fffjj;’O’f)Q(s, 2(5).2(¢5) ds)
J=0 t ’
00,0 1/2

<cN™

N X
Z)((;’O’[ (K()C?'O'[, f))p fg ’ (K(XO 0.8 s))p+m : (k(s, O)" |Dlog sQ (5, Z(s), Z(qs))'z ds
=0

< eN"IDjpgQ (2 Z(@ DI o

An estimate for the term ||Es||,00. can be obtained by using the log J-Gauss integration formula,
to give

X 2
131600 =HR<x, TN f[ T QUs Z(5), Z(g ) - QUs, Zw(5), Z(g $))ds

0,0,
X

2

~m (ZIW [ (x(x,s»P-‘J{jj;’“(gk<s,Z<s),Z<qs)>—gk(s,zms),zN(qs)))ds) dx

2

1000 M

" Zx?'“’fx[ f T W)Y o T O (g (5. 2(9). 200 ) = g1 (5. Zu(9), zN<qs>>)ds] :
=0 ¢ k=1

Using the Cauchy-Schwarz inequality, we get

- 112
”:43” 00,6
00,0

F2 B Z)(OM‘[ s k(x, $))P 7V ds

200¢

xfj 57! (K(x,s))p_l[

M 2

D ooy (8 (5.2(5).2(q 8)) = 8 (5. Zn(5). Zn(q )

k=1
K00

RN o 1
< X (log —) f s (k(x, $))P”
() Z; %%,

%
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and using the logarithmic Jacobi-Gauss quadrature formula (4.4), we obtain

123100 <

N
ZPXOM(K(XOW 5))

1
“Tp+1)
<2 “”[Zt P ) 27 ) (7)) 5
1

1/2
- g (S(x?,O,t’, ,,Z—I,O,L’)’ZN (S(x?,(),(, rg—l,o,t’)) Zn (qs( 00,6 rp—loe)))‘)z] .

Using the Lipschitz condition, we obtain

N N (M 211/2
= 00( 0,0, 2p 1,0,¢ 00[ —1,0,¢ ) 0,0, —1,0,6
[Eallone < g ;;px (k307 0) ;(sz i (s (10 710)) = 2 (s (54,7 ))I] ]
(5.6)
using (4.5), we get
L N 00 e 2 g2
J — .
151,000 TorD Zp)(_‘}‘)"’ (k0 0 f s (k9 9)Y [Z w02 (X,-(s)—XN,,»(s))') ds
7=0 4 -1
L N 1/2
E < 0,0,6 0,0, f 5.7
1Bl <FTs jz(;p)( (k2 0f (5.7)

i=1

00 " 2 )12
X omja)z(v (f ' (K(.XOO[ s))p_1 [Z qu.ffg;vl’o‘[ (Xi(s) - X,',N(s))'] ds] .
<J< ¢ A J ’

For any x?’w el. Let f(p) = (K(x(;’o’[, [))p. We note that f(p) is a convex function of p. Hence, by
Jensen’s inequality for all p € (0, 1),

) =1 =p)f(0) +pf(l).
The above inequality yields

N

p D (0 < D [1 -4 (04, 0)
j=0 :0 (5 8)

<p 1—p+pfs‘1(logg)dx Sp(l—g)s
1

AIMS Mathematics Volume 9, Issue 6, 15246-15262.
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Hence, by using the above inequality, the triangle inequality, (4.6) and (4.5), we deduce that

0,0,¢

— L i a(d
”-:43“,\(0,01 < mgg&g[{\/ [j; (K(xOOf s))l) [Z

i=1

L 00,0 M 2 1/2
/ 00,6 A\P! =010,
< —\/il“(p D X (glgj(v [[]; (K(x ) (; woelsy Xi(s) — X,-(s)’) ds]

XQ,O .0

M 2 1/2
[ s et pl[Zle XN,(s)I] ds]

¢

N
xg,o,zf?’_]vl’o’f (Xi(s) - XN,i(S))'] ds]

1

M 1/2
< cN‘morg%[ff‘ (k(s, O)" [Z long(S)|) ds]

i=1

1/2
L X?,O{’ ) M 2
Vi) Xm[f (ke ) [Z [Xi(5) —XN,i<s>|] ds]

L
2 2
Z” m,m,l + —”eN”Xm,m,['

< CN_'"HDlog [ o, \/QF(p D

(5.9)

Hence, a combination of (5.2), (5.3), (5.9) and the Lipschitz constant L < I'(p + 1) leads to the desired
result. ]

6. Numerical results

In order to illustrate the significance of our key findings, we provide two numerical examples in
this section.

Example 6.1. We consider the following initial value problem:
{IDIX(0) = g(x), X(1)=0, 1€(l,e), pe(0,1]. 6.1)

Table 1 shows a comparison of the maximum absolute errors that are obtained from the method that
we have presented and those given in [22] and [21]. The numerical results depict that, by using the
method proposed in this paper, higher accuracy is achieved.

Table 1. A comparison between the maximum absolute errors of presented method and
methods in [22] and [21] with p = 0.5 for Example 6.1.

N Error Error [22] N [21] Error [21]

9 5.3874 x 107° 9.1283 x 107° 20 1.2500 x 1073
10 2.7917 x 107° 2.2831 x 107° 40 2.8647 x 10~
11 1.5313x 10~ 7.1562 x 1077 80 6.6144 x 1073
12 8.8111 x 10710 2.6679 x 1077 160 1.5345 x 1073
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To investigate numerically the stability of the spectral collocation scheme, we consider the initial
value problem (6.1) and the following problems, whose right-hand side, the initial value, and the order
of the differential operator suffer perturbations.

IDPY () = g(x) + &, Y(1) =0, t€(1,e), p=0.5. (6.2)
CHDI™r Y (f) = g(x), Y(1) =0, t € (1,e), p=0.5, &, € (-0.5,0.5). (6.3)
CADPY(f) = g(x), Y(1) = &y,, t € (1,e), p=0.5. (6.4)

The maximum absolute errors |Xy — Yy|, where Xy is the numerical solution of problem (6.1) and Yy
is the numerical solution of the perturbed problems (6.2), (6.3), and (6.4), are displayed in Tables 2, 3,
and 4, respectively. We observe that |[Xy — Yyllew = O(g,), [IXy — Yyllo = O(gp), and [| Xy — Yyllo =
O(gy, ), respectively, independently of N.

Table 2. Maximum of the absolute errors, | Xy — Yy|, where Xy is the numerical solution of
problem (6.1) and Yy is the numerical solution of the perturbed problem (6.2) with several
values of &,.

N g, =0.1 g, = 0.01 &g = 0.001
5 1130 X 10~ 1131 x 1072 1.131x 1072
10 1.127 x 107! 1.127 x 1072 1.127 x 1073
15 1.128 x 107! 1.128 x 1072 1.128 x 1073

Table 3. Maximum of the absolute errors, |Xy — Yy|, where Xy is the numerical solution of
problem (6.1) and Yy is the numerical solution of the perturbed problem (6.3) with several
values of g,.

N g, =0.1 g, =0.01 g, =0.001

5 1.192 x 107! 1.249 x 1072 1.255x 1073
10 1.192 x 107! 1.249 x 1072 1.255 x 1073
15 1.192 x 107" 1.249 x 1072 1.255x 1073

Table 4. Maximum of the absolute errors, | Xy — Yy|, where Xy is the numerical solution of
problem (6.1) and Yy is the numerical solution of the perturbed problem (6.4) with several
values of gy,.

N ey, = 0.1 &y, = 0.01 &y, = 0.001
5 1.000 x 10~ 1.000 x 10~ 1.000 x 1073
10 1.000 x 107! 1.000 x 1072 1.000 x 1073
15 1.000 x 107! 1.000 x 102 1.000 x 1073

Example 6.2. We consider the following coupled system:

TDYX () = X5(q) + g1(H),  p € (0,1),

6.5
CHDPX, (1) = X(gf) + g2, p € (O, D). (6.5)
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For this problem, the exact solution is given as
X,() = (log )’ + 2 (log 1)’ ,

X>(f) = — (log )" + 2 (log7)’ .

We employ the proposed method to solve this problem with various N and p values. In Table 5,
we list the errors for different values of N and p. The numerical results show the convergence of the
scheme, which confirms our error analysis.

Table 5. The errors with the fractional orders p = 0.2, 0.4, 0.6, 0.8, and ¢ = 3/4 for
Example 6.2.

The errors for X;

N p=02 p=04 p=0.6 p=0.8

5 6.8 %1078 4.6x 1077 1.3x 107 2.1x107°
10 6.7 x 10710 6.0x 107 2.4%x1078 5.0x1078
15 3.9x 107! 4.2 %1071 1.9x107° 49x107°
20 5.0x 1072 6.0 x 107! 3.1x 10710 8.8 x 10710
25 99x 1071 1.3x 107! 7.5x 107! 2.3x1071°
30 26x1071 7.2x 1071 23x 1071 7.6x 1071

The errors for X,

N p=02 p=04 p=0.6 p =028

5 5.7%x 1078 43x1077 1.3x107° 2.1x107°
10 53x1071° 53x107° 2.2%x1078 49x1078
15 3.0x 107! 3.6x 10710 1.8x 107 4.7x%107°
20 3.8x 10712 52x 1071 2.9x%x 10710 8.4 x 10710
25 7.6x 1071 1.1 x 101 7.0 x 1071 2.2x 10710
30 2.0x 1071 3.21 x 10712 2.1x 107! 7.2x 107!

7. Conclusions

We provided a collocation spectral scheme for nonlinear systems of fractional pantograph delay
differential equations. We constructed a mapped Jacobi spectral collocation scheme, described its
effective implementation, and derived its convergence analysis. In addition, we provided a numerical
example to support our theoretical analysis. The numerical results demonstrate the accuracy and
effectiveness of the proposed scheme. We also conclude that the described technique produces
very accurate results, even when employing a small number of base functions. Preserving some
important mathematical properties and physical structures, such as existence, positivity preservation,
the maximum principle, long-time behavior, and singular solutions, may be considered in future
work [25,26].
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