AIMS Mathematics, 9(6): 15223-15245.
DOI: 10.3934/math.2024739
ATMS Mathematics Received: 15 March 2024

Revised: 07 April 2024

Accepted: 17 April 2024
https://www.aimspress.com/journal/Math Published: 26 April 2024

Research article

Leveraging deep learning and image conversion of executable files for
effective malware detection: A static malware analysis approach

Mesut GUVEN*
TOBB University of Economics and Technology, TR-06560 Ankara, Turkey

* Correspondence: Email: mesuttguven @ gmail.com, mesutguven @etu.edu.tr;
Tel: +905305224189.

Abstract: The escalating sophistication of malware poses a formidable security challenge, as it evades
traditional protective measures. Static analysis, an initial step in malware investigation, involves code
scrutiny without actual execution. One static analysis approach employs the conversion of executable
files into image representations, harnessing the potency of deep learning models. Convolutional neural
networks (CNNs), particularly adept at image classification, have potential for malware detection.
However, their inclination towards structured data requires a preprocessing phase to convert software
into image-like formats. This paper outlines a methodology for malware detection that involves
applying deep learning models to image-converted executable files. Experimental evaluations have
been performed by using CNN models, autoencoder-based models, and pre-trained counterparts, all of
which have exhibited commendable performance. Consequently, employing deep learning for image-
converted executable analysis emerges as a fitting strategy for the static analysis of software. This
research is significant because it utilized the largest dataset to date and encompassed a wide range of
deep learning models, many of which have not previously been tested together.
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1. Introduction

Malware or malicious software, is a persistent threat to computer systems and networks. Malware
is designed to perform harmful actions, such as stealing sensitive data, disrupting system operations,
or gaining unauthorized access to resources. As malware continues to evolve and become more
sophisticated, it is essential to have effective methods to detect and analyze it. Malware analysis
methodology relies on two main approaches, i.e., static analysis and dynamic analysis [1].
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Static malware analysis is useful for detecting known types of malware and identifying code
patterns that may be indicative of malicious behavior. This approach is based on the idea that certain
characteristics of malware are consistent and can be identified without running the code. It uses various
tools and techniques to analyze the code, such as disassemblers, decompilers, and signature-based
detection. Dynamic malware analysis, on the other hand, is useful for detecting previously unknown
malware and understanding how it operates [2, 3]. This approach involves executing the malware
sample in a controlled environment, such as a virtual machine or sandbox, to observe its behavior and
identify its effects on the system. Dynamic analysis involves using various tools and techniques to
monitor the behavior of the malware, such as system call monitoring, memory analysis, and network
traffic analysis. Both static and dynamic malware analysis have their advantages and disadvantages.
One advantage of static analysis is that it is faster and less resource-intensive than dynamic analysis,
making it suitable for large-scale analysis of malware samples. While dynamic analysis can provide
more detailed and comprehensive information about the malware’s behavior, it is more time-consuming
and requires more resources. So, this is an accuracy versus agility problem and effective malware
analysis requires a combination of these approaches, as well as a deep understanding of the malware
landscape and the techniques used by attackers. By using these methods, security professionals can
identify and mitigate malware threats to protect computer systems and networks. In this work, we
focus on the static analysis of the software at the code level and make use of the great potential of deep
learning in image classification tasks.

In this paper, we focus on static malware analysis. To detect malware, we conducted experiments by
applying convolutional neural networks (CNN) and transfer learning models to image-converted forms
of the portable executable data. Image-based malware analysis is structurally different from traditional
malware analysis since CNNs networks accept only two-dimensional data. So, in the image-based
malware analysis, first, executable files are transformed into a two-dimensional image-like format.
Then, the model is fed and trained on these converted inputs. In the previous paragraphs, introductory
information has been provided about malware analysis strategies and deep learning concepts.

Deep learning is a sub-field of machine learning that utilizes artificial neural networks to learn
from and make predictions based on complex data. Deep neural networks are composed of many
layers of interconnected neurons, and, unlike classical feature extraction-based machine learning
models they can automatically extract and learn useful features from the data through a process called
backpropagation. Deep learning has achieved state-of-the-art results in many domains, including
computer vision, natural language processing (NLP), and speech recognition. However, deep learning
also has some limitations. It requires large amounts of data and computational resources to train the
models effectively. So, it is not effective to implement deep neural networks on small data. But,
with the help of knowledge transfer, deep neural networks can be trained on a large dataset of labeled
examples and adjust its parameters to minimize the difference between its predictions and the true
labels. Once trained, the network can be used to make predictions on new, unseen data from a very
different domain. This property is known as transfer learning.

Transfer learning is a machine learning technique that involves leveraging knowledge from one
domain to improve performance in a different but related domain. In transfer learning, a model is first
trained on a source task and then fine-tuned on a target task. The idea behind transfer learning is that
many tasks share common features, and these features can be learned from one task and reused for
another task. This can be especially useful when the target task has limited data available or when the
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model needs to be trained quickly. Transfer learning has been successfully applied to various domains.
It is a powerful technique that can help to improve model performance, reduce training time, and
overcome the data scarcity problem. There are different types of transfer learning, i.e., pre-training,
domain adaptation, multi-task learning, etc. In pre-training, a model is trained on a large, diverse
dataset, typically in an unsupervised manner, to learn general features that can be reused for other tasks.
In domain adaptation, the model is trained on a source domain and then adapted to a target domain that
is different but related. For example, a model trained on images of cats and dogs could be adapted
to recognize images of lions and tigers. And, in multi-task learning, a model is trained on multiple
tasks simultaneously, allowing it to learn features that are useful for all tasks. Several prominent deep
learning models widely employed for transfer learning include VGG16, ResNet, InceptionV3, and
MobileNet. A shared characteristic among these models is their training on extensive image datasets,
notably ImageNet which is recognized as the largest repository of images.

In the pre-processing part, the main task is to convert portable executable data into a proper input
type for CNN and transfer learning models. This process consists of three sub-steps: pixel conversion,
reshaping, and resizing. Pixel conversion is a simple process of assigning a value between 0 and 255 to
every byte, and this value corresponds to the pixel intensity. This step converts the binary into a one-
dimensional stream of pixels. To enable transfer learning and computer vision tasks, the pixel streams
must be reshaped into a two-dimensional format. The width and height of the image are determined
by the file size after conversion. The height of the image is calculated by dividing the total number of
pixels by the width. After reshaping the image, data are resized into a fixed size since transfer learning
models only accept fixed-sized inputs such as 224 by 224 by 3.

1.1. Goals of this work

The primary objectives of this research were to explore, evaluate, and advance the application of
deep learning techniques in the realm of malware detection through the use of static analysis. The
specific goals can be stated as follows:

(1) Investigate image-converted executable analysis: Evaluate the feasibility of converting
executable files into image representations for static analysis.

(2) Assess deep learning models: Evaluate the performance of deep learning models, both tailor-
made and pre-trained, on the task of detecting malware from image-converted executables.

(3) Demonstrate effectiveness and advocate integration: Showcase the effectiveness of deep
learning models in static analysis workflows for detecting sophisticated malware threats. Advocate
for the integration of image-based preprocessing techniques to enhance security measures against
evolving threats.

1.2. Contribution

By addressing these goals, this study was designed to provide a comprehensive understanding of
the potential and limitations of leveraging deep learning for effective malware detection through static
analysis.

Another important contribution of this work is the application of pre-trained models on our
Trapmine dataset, which is the largest set tested in the literature for static malware analysis tasks.
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Using pre-trained models is crucial for a couple of reasons. First, malware training datasets are scarce
and not large enough to train deep learning models. Even though tech industry giants such as Microsoft
have relatively large malware datasets for their own commercial usage, they are still not large enough
to compare with the ImageNet dataset. Second, the main problem with malware datasets is that they
quickly become outdated as attackers frequently modify their tactics. So, transferring knowledge from
a large image dataset to an image-converted malware dataset solves the data scarcity problem and the
zero-day malware representation problem.

2. Related work

In the literature, there are works based on the features extracted from both static and dynamic
approaches. However, we only mention the literature for static features since this work focuses on
static malware analysis. Static features are those that are derived from an examination of the source
code or related information associated with an application. The process of analyzing these features
is known as static analysis, as stated in [4,5]. For example, when examining Android applications,
the primary focus of static analysis is the APK file, which serves as the installation package for the
application. By decompiling APK files, files such as AndroidManifest.xml and small files can be
obtained. These files can then be further analyzed to extract a collection of static features, such as
permissions, API calls, opcodes, and various other components. From this point of view, the literature
review is filtered and divided into three categories of deep learning methods, i.e., NLP, CNNs, and
transfer learning.

NLP is one of the methods used to analyze static features. In a previous study [6], an NLP
model based on the bag-of-words approach is used to detect whether the opcodes belong to malicious
software. In another study [7], ASCII strings were extracted from executable files and used to analyze
malware via the NLP approach. In another study [8], the behavior of executables and processes,
such as file read/write activities, process creation, network connections, or registry modifications were
converted to graph streams, and abnormal patterns were searched. To achieve this detection, behavioral
graph streams were converted into documents, and embedded by using NLP models. Then, an outlier
detection technique was applied to the high-dimensional vector representation of the documents.
the authors claim that it can be used in a real-world scenario alongside a large-scale international
enterprise’s security information and event management systems known as SIEM systems for short,
which generates over 3 TB of logs. In another study [9], to create feature vectors that can capture
the information from both the Android manifests and Dalvik executables files, the NLP method was
applied to document embeddings. These feature vectors were then used to train binary classifiers that
can accurately distinguish between benign and malicious Android applications.

Another approach for malware analysis through the use of static features is the use of CNN models.
For example, in a study, an autoencoder model which is a special form of CNN was used to detect
malware [10]. Autoencoder networks are generally designed in a symmetrical form to code and decode
the input image. The network is fed and targeted with the same image. This design property allows
autoencoders to be a good fit for denoising and dimensionality reduction tasks. In this work, greyscale
image representations of malware were used with an autoencoder network in a deep learning model.
The proposed model achieved a 96% classification accuracy for malware from benign software. In
2018, Le and colleagues [11] introduced a method for identifying malware by transforming the entire
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binary file into a grayscale image, followed by training a CNN algorithm to classify the malware. The
effectiveness of this approach was assessed by using 10,568 binary files, which resulted in a 98.8%
accuracy rate. Kim et al. [12] proposed a method for detecting zero-day attacks in malware by using
autoencoders and generative adversarial networks (GANs). GANs have two neural networks that act
as a generator and the discriminator [13]. The discriminator network tries to distinguish real samples
from ones created by the generator. The authors pre-processed the data by representing the code used
for the attack as an image matrix and trained a denoising autoencoder (DAE) to extract relevant features
from the bottleneck layer. The decoder of the DAE was used as the data generator of the GAN, and the
discriminator of the GAN was trained to detect the adversarial examples generated by the decoder. The
proposed model achieved an accuracy of 98% on the task of detecting zero-day attacks on the dataset
from the Microsoft Malware Classification Challenge, outperforming conventional models such as
support vector machines, decision trees, the random forest, K-nearest neighbors (KNN), naive Bayes,
and quadratic discriminant analysis that were tested.

Leveraging transfer learning models is another technique that is used to detect malware. Most of
the works claim that the pre-trained models that have been trained on a vast image dataset, i.e., the
ImageNet, can distinguish the malware from benign software. There are some works on this issue.
For example, in a previous study [14], researchers suggested using a deep transfer learning method to
classify malware images. To extract features, they utilized various CNN models including VVG16,
VVG19, ResNet50, and Google’s InceptionV3. By implementing this approach, they were able to
achieve a classification accuracy of 98.92% for the Malimg dataset and 93.19% for the Microsoft
dataset. In another study [15], a technique for detecting malware was introduced, and it involves
employing a hybrid model utilizing multiple transfer learning models. The feature vector is extracted
by using two deep learning models, namely AlexNet and ResNet-152, which are then employed to
classify the malware variants by using a fully connected neural network. To evaluate the efficacy of
the approach, two publicly available datasets, namely the Malimg and Microsoft BIG 2015 datasets,
were utilized. The proposed technique achieved an accuracy of 97.78% for the Malimg dataset. In a
recent study, the same dataset was used with pre-trained models, particularly, VVG-16 and ResNet-50
models [16]. In this study, two models were used in a sequentially stacked form. The second model
uses the first model’s output as the input target label. The authors claimed that this methodology results
in 100% accuracy.

Malware detection through the use of image-converted representations of software is a hot research
area. For example, in a recent paper, the authors proposed a novel method for Android malware
detection by using unbalanced heterogeneous graph embedding, demonstrating its effectiveness on the
DREBIN dataset with an accuracy of 0.9360 and an F1 score of 0.9360, and thus surpassing existing
state-of-the-art approaches [17].

3. Dataset

To train the model, we used a relatively larger dataset than the publicly available malware datasets.
Our dataset is a subset version of the data used for the design of a commercial XDR product called
Trapmine, which has been used in governmental and non-governmental institutions for years. The
dataset used for to train the models in this work has 10,217 benign and 7,000 malign samples. Some of
the samples were acquired from publicly available sources such as the Google app store [18] and

AIMS Mathematics Volume 9, Issue 6, 15223-15245.



15228

VirusShare [19]. The rest of the samples were taken from firms’ confidential data which consist
of samples that have been analyzed and classified by the Trapmines’ machine learning module. In
addition, to verify the labels, we picked a random selection of software and crosschecked their hash
signatures from VirusTotal [20]. The raw form of the dataset is the assembly code version. In the pre-
processing phase, the binaries are extracted from the raw data and converted into RGB format. Since
this dataset is still being used, we do not provide all of them. But, to give a sense of the data, the test
set will be made publicly available.

The data used for testing purposes constitute a mixture of several datasets, particularly, the Malimg
and MaleVis datasets. The Malimg dataset comprises images from different types of malware [21].
The images were created by transforming the 1D malware binaries into image features. This process
is described in [21]. The second dataset used for the tests is the Malevis dataset [22]. The MaleVis
dataset is publicly available as images of 224 x 224 pixels and 300 x 300 pixels [23]. These two
popular datasets have been widely used for the multiclass classification of malware via a machine
learning method. The Malimg dataset is highly imbalanced in terms of class distribution and the
MaleVis dataset is a well-balanced dataset, but is relatively smaller. Generally, both of the datasets
were mixed to form a single dataset which has all of the classes from the MaleVis dataset and 5 classes
from the Malimg dataset. We also used these two datasets to test the models’ performance.

4. Methodology

In this paper, a framework for detecting malware software is presented. The proposed framework
involves first, converting portable executables (PEs) into RGB image formats, then leveraging deep
learning algorithms to classify the image converted PE samples. So, the methodology in this work can
be divided into two main steps: Image conversion of the PEs and model training.

First, we applied the training data which is relatively large malware data. For the training data, we
used the Trapmine dataset, which has a total of 17,217 PEs. In this step, all samples are converted
into RGB images, and converting 17,217 PEs to RGB images required several hours with Python 3
and the Google Compute Engine (TPU). Out of a total of 17,217 samples, 13,972 PEs were used for
training and validation. In the data partitioning process, we adhered to the 80% to 20% rule, allocating
11,172 images for training and reserving the remaining 2,800 images for validation. Additionally,
3,245 samples were set aside exclusively for testing purposes. Within the training and validation sets,
a balanced distribution was maintained for both classes; for instance, the validation set comprised an
equal number of 1.400 benign and 1.400 malignant samples.

Second, the RGB images were used to train deep learning models. Various deep learning models
were created such as basic CNN models and autoencoder models. Along with these models, some
popular and well-known pre-trained models are also tested. All models were trained and validated on
the Trapmine dataset. Then, the models’ overall performance on new unseen data was evaluated on the
Malevis and Malimg datasets. During the training, for pre-trained models, it required approximately 25
minutes for one epoch with the Python 3, Google Compute Engine (TPU).

4.1. Image conversion of the PEs

In general, there exist multiple methods for transforming binary code into images [24]. In this study,
we utilized a simple and direct approach to visualize the pixel errors (PEs). First, the binary values are
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organized into groups of 8 bits and then converted into their decimal equivalent as shown in Eq (4.1).

BO-1+B1-2+B2-4+B3-84+B4-16+B5-32+ B6-64+ B7-128. 4.1)

Subsequently, each set of 8 bits is assigned sequentially as the red, green, and blue components of
a pixel as shown in Eq (4.2).

Red =B0-1+B1-2+B2-4+B3-8+B4-16+B5-32+ B6-64 + B7-128
Green =B8-1+B9-2+B10-4+B11-8+B12-16+ B13-32+ B14-64 + B15-128 4.2)
Blue =B16-1+B17-2+B18-4+B19-8+ B20-16+ B21-32 + B22 - 64 + B23 - 128.

The process of visualizing PEs as RGB images is depicted in Figure 1.

This process is iterated until all available binary values are taken into account. The dimensions of
the resulting RGB image were determined to be equal in width and height. So, the dimensions of the
RGB image depend on the PEs file size. To create a squared RGB image that has equal width and
height dimensions, all binaries are used except the last vestigial binaries. The vestigial part is skipped
and not taken into account. Figure 2 showcases the converted RGB image representations of files of
varying sizes, encompassing both benign and malicious files.

The dataset had a wide range of file sizes, spanning from 1.5 bytes to 8,150,341.5 bytes,
demonstrating its diversity. As an illustration, an image with a resolution of 224 x 224 pixels
corresponds to a file size of approximately 18,816.0 bytes.

RGB Image Form of
the PE File

|

Grouping 8-bits for [Red] [Blue]
—_— Components
[11000000] [10101010]

Binaries
11000000 10001111 10101010

Figure 1. Visualization process for the PEs.
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Figure 2. RGB image representations of PEs files at varying sizes. The upper row exhibits
RGB images corresponding to benign files, while the lower row displays RGB images
associated with malicious files.

4.2. Models used for malware classification

In this paper, we present a novel framework that has been designed for the analysis of converted
representations of PEs as RGB images, leveraging various deep learning models. Specifically, our
focus was exclusively on CNN-based models and CNN-based pre-trained models. This choice stems
from the widely acknowledged suitability of CNN architecture relative for image classification tasks.

The initial model implemented in our study is a fundamental CNN model, comprising several
sequential layers. Subsequently, we introduced a second model, also based on CNN architecture,
distinguished by a greater depth in layering relative to the preceding model. Our third model adopts the
autoencoder architecture, serving as a feature extractor. Lastly, we employed a collection of renowned
pre-trained models that are widely recognized in the literature, further emphasizing their prevalence.

4.2.1. Basic CNNs

In this subsection, we provide a detailed analysis of the architecture of our first model. The
model follows a sequential design, which allows for the orderly stacking of various layers to extract
meaningful representations from the input images. The architecture of the model is presented in
Figure 3.
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I conv2d_input | input: | [(None, 224, 224, 3)] |
| InputLayer | output: | [(None, 224, 224, 3)] |
| conv2d [ input: ] (None, 224, 224, 3) ]

| Conv2D | output: | (None, 222, 222, 32) |

| max_pooling2d | input: | (None, 222, 222, 32) |
| MaxPooling2D | output: | (None, 111, 111, 32) |

Basic CNN Model [[conv2a_1 [ input: | (None, 111, 111, 32) |
FIRST PART I Conv2D I output: l (INone, 109, 109, 64) ]
[ max_pooling2d_1 | input: [ (None, 109, 109, 64) |
| MaxPooling2D | output: | (None, 54, 54, 64) I
4
[ conv2a_2 [ inpurt: (None, 54, 54, 64) |

[ ConvzZD I output: (None, 52, 52, 128) ]

| max_pooling2d_2 | input: | (None, 52, 52, 128) I
| MaxPooling2D | outpur: | (None, 26, 26, 128) |

| flatten [ input: I (None, 26, 26, 128) |
| Flatten [ ourput: | (None, 86528) |

| dense | input: | (None, 86528) |
Ba SiC CN N M Od el | Dense | output: | (None, 64) |
SECOND PART

[ dense_1 [ input: ] (None, 64) |
[ Dense [output: ] (None, 1) |

Figure 3. Architecture of the basic CNN.

The initial layer of our model is a convolutional layer (Conv2D) with 32 filters, each of size 3 x 3.
This layer utilizes the rectified linear unit (ReLU) activation function to introduce non-linearity into
the network and enhance its capacity to capture complex patterns in the data. The input shape of the
images is defined by a parameter in the code, and it affords flexibility in its accommodation of different
image dimensions. In this model, we use 224 x 224 pixels as the input image size. All images were
converted to this fixed resolution by using the interpolation property of the TensorFlow.

Following the Conv2D layer, a MaxPooling2D layer with a pool size of 2 x 2 is employed to
downsample the spatial dimensions of the feature maps. This process aids in reducing the model’s
computational complexity while retaining the most salient features. Next, another Conv2D layer
with 64 filters and a 3 x 3 filter size is included to capture higher-level features. Subsequently,
a MaxPooling2D layer is applied once again, reducing the feature map dimensionality. To further
enhance the model’s capacity for abstraction, a third Conv2D layer with 128 filters and a 3 x 3 filter
size is included. This layer captures increasingly complex and abstract representations of the input
images. Another MaxPooling2D layer is then applied, further downsampling the feature maps.

Following the convolutional layers, a flattened layer is introduced to transform the multi-
dimensional feature maps into a one-dimensional vector, which is compatible with the subsequent
fully connected layers. The model continues with two fully connected (Dense) layers. The first
Dense layer consists of 64 units, utilizing the ReLLU activation function to introduce non-linearity
and enable complex feature combinations. The final Dense layer, with a single unit, employs the
sigmoid activation function to produce a binary classification output, indicating the likelihood of the
input image belonging to a specific class.
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4.2.2. CNNs

We also employed another simple CNN model which is presented in Figure 4. This second CNN
model was constructed by adding some extra layers between the first part of the basic CNN model and
the second part of the basic CNN model.

Both models utilize sequential architectures with Conv2D and MaxPooling2D layers to facilitate
feature extraction through three Conv2D layers. However, in the second model, we chose to introduce
additional Conv2D layers with the expectation that this augmentation would enhance accuracy. The
rationale behind incorporating more convolutional layers was to allow the model to capture more
intricate and abstract features from the input images, potentially leading to improved performance.

In addition to the architectural design, the choice of optimizer plays a crucial role in training
the deep learning model effectively. For our CNN models, we employ the Adam optimizer with
a learning rate of 0.0003. The Adam optimizer combines the benefits of both the AdaGrad and
RMSProp algorithms, adapting the learning rate dynamically for each parameter during training. This
adaptive learning rate scheme enhances the model’s convergence speed and stability. The selection of
an appropriate optimizer is critical as it directly impacts the model’s ability to find optimal parameter
values and improve its classification performance.

However, augmenting model complexity introduces certain drawbacks, including increased
computational cost and the risk of overfitting. The additional layers can lead to a significant rise in
training time and memory usage. Contrary to our expectations, the inclusion of these extra layers did
not result in a meaningful accuracy improvement. Instead, it prolonged the training process without
yielding the desired enhancements in model performance.

Basic CNN Model
FIRST PART

conv2d_3 input: (None, 26, 26, 128)
Conv2D output: (None, 24, 24, 64)

dropout input: (None, 24, 24, 64)
Dropout output: (None, 24, 24, 64)

conv2d_4 input: (None, 24, 24, 64)
Conv2D output: (None, 22, 22, 128)

Extra Layers

dropout_ 1 input: (None, 22, 22, 128)
Dropout output: (None, 22, 22, 128)

conv2d_5 input: (None, 22, 22, 128)
Conv2D output: (None, 20, 20, 64)

dropout_2 input: (None, 20, 20, 64)
Dropout output: (None, 20, 20, 64)

Basic CNN Model
SECOND PART

Figure 4. Architecture of the second CNN model.
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In summary, experimenting with a second model allows for the exploration of whether the increased
complexity and additional layers lead to improved performance on the specific image classification task
at hand. The ultimate decision on which model to choose would depend on a comprehensive evaluation
of their respective performances on a validation dataset, as well as consideration of computational
resources and potential overfitting issues which will be addressed in the model performance part.

4.2.3. Autoencoder network model

Autoencoders are a type of neural network that is used in unsupervised learning schemes for image
reconstruction tasks. The main objective of an autoencoder is to learn a compact representation of the
input data, thus capturing its most salient features in a lower-dimensional encoding. This encoding is
then used to reconstruct the original input data. In the context of malware detection, autoencoders can
be utilized to reconstruct image representations of malware samples, allowing for the identification of
anomalies or deviations from normal behavior. Other possible applications of autoencoders are data
compression and denoising tasks. To employ the autoencoders for a two-class classification task, the
general outline presented in Figure 5 is followed.

Using Autoencoder for Two-Class Classification

INPUT IMAGE
(224,224,3) l

@@

ENCODER OUTPUT (28, 28, 128)

AUTOENCODER
(224,224,3)

DECODER INPUT (28, 28, 128)

CLASSIFIER
(binary output)

Output

Figure 5. Architecture of the autoencoder-based model.

To effectively utilize an autoencoder model for a two-class classification task, we employed a two-
step approach:

Step 1: Pretraining the autoencoder The first step involves training the autoencoder on the input
data, which in this case are images. The primary objective during pretraining is to learn a compressed
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representation of the input data. the autoencoder consists of two main components: The encoder and
the decoder.

The encoder is responsible for encoding the input data into a lower-dimensional representation,
typically referred to as the latent space. The encoder achieves this by employing a series of
convolutional and pooling layers, which effectively reduce the spatial dimensions of the data while
simultaneously increasing the number of channels, also known as features.

The latent space serves as a bottleneck layer that represents the compressed feature representation
of the input data. It captures the most essential features of the original data, allowing the model to
capture significant patterns and structures.

On the other hand, the decoder is designed to reconstruct the input data from the learned compressed
representation in the latent space. It utilizes a series of convolutional and upsampling layers, effectively
reversing the process performed by the encoder. The goal of the decoder is to produce a reconstruction
that is as close as possible to the original input data.

Step 2: Building a classifier on top of the encoder Once the autoencoder has been trained, the
next step involves using the encoder part as a feature extractor. By discarding the decoder part, the
encoder output now serves as a compact and informative feature representation of the input data.

With the encoder output, a classification layer is included on top to perform the two-class
classification task. This classification layer typically consists of one or more fully connected layers,
often incorporating appropriate activation functions, such as a ReLU, to introduce non-linearity in the
learning process.

The output layer of the classification module consists of a single neuron and employs a sigmoid
activation function. This setup is ideal for binary classification tasks, as the output neuron’s activation
value falls within the range [0, 1], allowing the model to predict the likelihood of each sample
belonging to one of the two classes.

General architecture of the implemented autoencoder model: The model based on autoencoder
architecture, as depicted in Figure 5, comprises two distinct components: An autoencoder and a
classifier. Initially, the autoencoder model undergoes training on the dataset. Subsequently, the output
generated by the autoencoder serves as the input for the classifier. This methodology can be succinctly
encapsulated as the integration of two individual models, namely the autoencoder and the classifier.
The holistic architecture is summarized as follows.

As stated above, all autoencoder models are comprised of distinct components, i.e., the input layer,
encoder layers, llatent space, and decoder layers. To extract the latent features via an autoencoder
model, we built a symmetrical autoencoder model where the encoding and decoding networks mirror
each other. Details of the first part of the implemented autoencoder model are presented in Figure 6.
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Figure 6. Architecture of the autoencoder part of the autoencoder-based model. The blue
rectangles are used to represent input and output. The red rectangles are used to display the
latent space.

The encoder takes as input an image of size 224 x 224 pixels with three color channels, and it
employs three convolutional layers, each followed by a max-pooling layer. The activation function
used throughout the encoder is the ReLU, which introduces non-linearity and helps , and it capture
complex patterns. The last pooling layer’s output serves as the encoded representation, which is the
bottleneck of the autoencoder.

The decoder architecture mirrors the encoder’s structure, using upsampling instead of max-pooling
to enlarge the spatial dimensions back to the original image size. The decoder starts with an upsampling
layer, followed by a convolutional layer with ReLU activation. Subsequently, two more upsampling
layers are used, along with corresponding convolutional layers. The final layer of the decoder uses a
convolutional filter with a sigmoid activation function to produce the reconstructed image.

The autoencoder is trained by using the mean squared error loss function, which measures the
difference between the input image and its reconstructed output. The Adam optimizer is employed
to update the model’s weights during training. The training process is monitored by using early
stopping to prevent overfitting, as well as by interrupting the training if there is no improvement in
validation loss for a certain number of epochs. To achieve optimal performance, hyperparameter tuning
is also performed by using a grid search approach. The hyperparameters considered for tuning are the
encoding dimensions and the optimizer used during training. The encoding dimension, which were set
as 28, 28, and 128 in this case determines the number of nodes in the bottleneck layer, ultimately
affecting the level of compression and information retention in the encoded representation. After
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training the autoencoder, the decoder segment is omitted and the encoder output is used as a latent
representation of the original input image as represented in Figure 7.

| ENCODER OUTPUT |
| conv2d 32 [ input: 3 (None, 28, 28, 128) |
| Conv2D | ouwput: (None, 28, 28, 256) |
y
[ max_pooling2d 3 | input: | (None, 28, 28, 256) |
| MaxPooling2D ] output: | (None, 14, 11, 256) |
y
| conv2d 4 [ input: (None, 14, 14, 256) ]
| ConvaD | ourpur: | (None, 14, 14, 512) |
[ max _pooling2d 4 | input: | (None, 14, 14, 512) |
MaxPooling2l> | output: | (None, 7, 7. 512) |
[ Aatten [ input: | (None, 7, 7, 512) |
| Flatten | output: ] (None, 25088) ]
[ dense [ input: l (None, 25088) |
| Dense | output: | (None, 128) |
[ dropout | input: | (Nome. 128) |
| Dropout | output: | (None, 128) |
[ @dense 1 | inpuc: | (None, 128) |
| Dense | outpur: | (None, 64y |
[ @ropout_1 | ir : [ (None. 64y |
| Dropou t [ oupui: | (None, 64 |

Figure 7. Architecture of the classifier part of the autoencoder-based model.

In the classifier module, encoder output is augmented by introducing additional convolutional
layers, comprising 256 and 512 filters that are intended to mitigate overfitting concerns. This
extended encoder output becomes the foundation for the ensuing classifier architecture, and it is aimed
at enhancing classification performance. The classifier’s architecture commences with a flattened
representation of the augmented encoder output, followed by two densely connected layers. The initial
layer, housing 128 units and employing the ReL.U activation function is accompanied by a dropout
layer (0.5) to enhance regularization. Subsequently, a second densely connected layer of 64 units, with
ReLU activation and a dropout layer (0.5), has been introduced to enhance model robustness.

The pinnacle of the classifier’s design lies in its singular-neuron output layer, which adopts
the sigmoid activation function to achieve binary output. This architecture aptly suits the binary
classification task’s nature, as it consists of two classes. By synergizing the encoder’s informative
representations with the classifier’s capabilities, the integrated model significantly enhances binary
classification accuracy and efficiency.

The classifier is compiled by using the Adam optimizer and binary cross-entropy loss function.
To facilitate training, model checkpointing and early stopping mechanisms were incorporated.
The training regimen spans 500 epochs, incorporating validation on the dataset provided. This
comprehensive strategy integrates the encoder’s acquired feature representations with the novel
classifier, leading to improved binary classification outcomes while fostering interpretability
and generalization.
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4.2.4. Pre-trained models

Transfer learning is a powerful technique in machine learning and deep learning, where knowledge
gained from solving one problem is applied to a different but related problem. Instead of training a
model from scratch, transfer learning allows us to leverage pre-trained models that have been trained
on large-scale datasets for general tasks, such as image recognition [25].

In the context of our malware detection task, transfer learning becomes especially relevant due to
several reasons. First, malware images, particularly those converted from PEs, can be complex and
highly intricate, making it challenging to build effective models from scratch with limited data. Using
pre-trained models, we can benefit from the knowledge and feature representations learned on massive
image datasets, which helps to capture essential patterns and features in the malware images.

Second, pre-trained models, such as VGG16 [26], ResNet50 [27], InceptionV3 [28], and
MobileNet [29], have been trained on diverse and extensive image datasets like ImageNet, allowing
them to learn general features that are useful for various image-related tasks. This general knowledge
can be transferred to our specific malware detection problem, reducing the need for extensive training
data and accelerating the model’s convergence. Moreover, the performance of transfer learning models
can often surpass that of models trained from scratch, especially when dealing with limited data. The
pre-trained models have already learned to recognize common features in images, making them more
robust and less prone to overfitting [30].

By employing transfer learning with state-of-the-art pre-trained models, we can enhance the
efficiency and accuracy of our malware detection system. The pre-trained models serve as strong
feature extractors, allowing us to focus on building custom classifiers that can effectively distinguish
malware from benign software.

In summary, transfer learning is a valuable tool for our malware detection task, as it allows us to
capitalize on the knowledge gained from general image recognition tasks and efficiently build effective
models even with limited malware image data [31].

5. Results

The proposed model was is deployed on an Intel Core 17-8700K CPU, 3.70 GHz machine and
Windows 10 Pro operating system with 17.1 GB RAM and 2 GB NVIDIA GPU. We employed
the proposed methodology on the Jupyter Notebook in Python by using several libraries such as
Tensorflow, Keras, and Sci-kit learn. The performance of the models was evaluated in terms of
accuracy, precision, and sensitivity (recall).

5.1. Results on the Trapmine test dataset

In the initial phase of the experimental procedures, the models underwent training and testing
exclusively on the Trapmine dataset. This dataset comprises a total of 17,217 images, with 10,217
belonging to the benign class and the remaining allocated to the malicious class. To establish a well-
balanced training set, a random selection process was employed, resulting in the acquisition of 11,172
images. Among these, 5,586 images were assigned to the benign class, and an equal number were
assigned to the malicious class. Subsequently, 2,800 images were chosen from the remaining pool for
validation, and they were evenly distributed with 1,400 images in each class.
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Following the training phase, wherein malicious images were depleted, additional instances were
drawn from the Malevis and Malimg datasets to supplement the deficiency. Subsequently, for the
creation of an independent test set, 3,231 residual benign images from the Trapmine dataset, which
were not employed during the training phase, were applied with 3,231 randomly selected images from
the blended dataset. The blended dataset is a composite amalgamation of the Malevis and Malimg
datasets. The resulting accuracy and other pertinent metrics for the models evaluated on the test dataset
are detailed in Table 1.

Table 1. Performance metrics of different models on Trapmine dataset.

Accuracy (%) Specificity (%) Sensitivity (%)

CNN model 1 79.94 78.07 80.46
CNN model 2 80.05 77.45 81.34
Autoencoder 90.56 85.87 90.77
VGG16 91.25 88.67 90.68
ResNet50 91.11 87.50 90.61
InceptionV3 90.41 85.79 90.68
MobileNet 86.94 85.45 89.11

These observations underscore the distinctive strengths inherent to each model, elucidating their
unique roles in evaluating efficacy for malware detection. For instance, the fundamental CNN model
excelled in the recognition of general malware patterns, presenting a robust defense mechanism,
particularly against commonplace threats, and it achieved an 80% accuracy rate. Additionally, pre-
trained models incorporating a diverse array of CNN layers demonstrated commendable performance.
This discovery accentuates the inherent robustness of the CNN infrastructure, which is predominantly
employed for image classification tasks.

The success of the CNN infrastructure, as evidenced by both of the CNN models and the pre-trained
models, is noteworthy. Beyond the achievements of the CNN infrastructure, the autoencoder model
has emerged as a pivotal asset, contributing significantly to feature extraction and the learning process.
This contribution resulted in an accuracy rate of 90%. These nuanced findings collectively underscore
the multifaceted strengths of each model, thereby enhancing our understanding of their respective
contributions to malware detection.

Among the models evaluated on the Trapmine dataset, VGG16 demonstrated the highest accuracy
(91.25%) and specificity (88.67%), showcasing its overall effectiveness in classifying both benign
and malicious software. However, the autoencoder model exhibited the best sensitivity (90.77%),
excelling in accurately detecting malicious instances. This indicates that while VGG16 is strong in
overall performance, autoencoder is particularly adept at identifying true positive cases among malware
samples. Hence, the choice between these models may depend on the specific emphasis on overall
accuracy versus sensitivity in a malware detection system.

5.2. Results on the MaleVis and Malimg test dataset

The results presented in Table 1 show how the trained models performed on a completely unknown
test dataset. But, we also want to present how these models will perform on public datasets, particularly,
the Malimg and MaleVis datasets. These two datasets consist of malicious files from various variants.
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The MaleVis dataset consists of 14.226 RGB images in total from 25 different classes: 9100 samples
for training and 5126 samples for validation. Comprehensive results obtained for a combination of
datasets including Trapmine, MaleVis, and Malimg are outlined in Table 2.

Table 2. Performance metrics of different models on MaleVis and Malimg test datasets.
Accuracy (%) Specificity (%) Sensitivity (%)

CNN model 1 88,15 87,61 88,70
CNN model 2 87,76 90,25 85,27
Autoencoder 89,10 87,49 90,71
VGG16 90,65 96,24 85,06
ResNet50 81,84 89,21 74,48
InceptionV3 90,36 97,74 83,49
MobileNet 90,65 97,05 84,26

Regarding the training data, all classes had equal numbers of samples but the class distributions in
the validation data were not uniform. On the other hand, the Malimg dataset is highly imbalanced in
terms of class distribution, and it only consists of malicious samples from 25 different families. Both
of these two datasets were used to test the multiclass classification success of the models.

In our scenario, since we wanted to develop a two-class classification model, we needed to create an
unseen malicious test set. In the training phase, we used 70% percent of the benign images, and there
were no malicious images. But, we had plenty of malicious images from the MaleVis and Malimg
data. So, to construct a second test, and, particularly, to try to measure the true positive results of
the models, we randomly selected 10,000 malicious images from both MaleVis and Malimg. And, in
addition to the 3,231 unseen benign images, we added 6,769 benign images which were used in the
training phase. As a result, for the second test results, we employed 20,000 images: 10,000 unseen
malicious and 10,000 benign images 30% of which corresponded to unseen data.

To provide a clearer understanding of the complexity and computational burden of the models, we
offer relevant information regarding the total parameter numbers and the corresponding training times
for each model in Table 3.

Table 3. Complexity of the models and time consumed during training.

Total Parameters Trainable Parameters Average Time

(seconds/epoch)
CNN model 1 5,631,169 5,631,169 390
CNN model 2 1,953,217 1,953,217 430
Autoencoder (autoencoder) 333,955 333,955 1140
Autoencoder (classifier) 12,853,505 12,853,505 735
VGG16 14,780,481 65,793 1250
ResNet50 23,850,113 262,401 735
InceptionV3 22,065,185 26,2401 380
MobileNet 3,360,193 131,329 265

To emphasize the main contribution of this work, we present a comparison in Table 4, which
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summarizes the performance of previously studied image-based models on the MaleVis and Malimg
datasets, alongside our models.

Table 4. Comparison of the performance of previously studied models and our models.

Accuracy (%) Specificity (%) Dataset
Vinayakumar et al. [32] 86.29 - MaleVis
Luo and Lo [33] 92.24 - MaleVis
Cui et al. [34] 92.13 - MaleVis
Gilbert [35] 90.59 - MaleVis
Singh et al. [36] 93.00 - MaleVis
Vinayakumar et al. [32] 96.30 - Malimg
Luo and Lo [33] 93.72 - Malimg
Cui et al. [34] 94.50 - Malimg
Gilbert [35] 95.33 - Malimg
Singh et al. [36] 96.08 - Malimg
CNN model 1 88.15 87.61 Trapmine, MaleVis, and Malimg
CNN model 2 87.76 90.25 Trapmine, MaleVis, and Malimg
Autoencoder 89.10 87.49 Trapmine, MaleVis, and Malimg
VGG16 90.65 96.24 Trapmine, MaleVis, and Malimg
ResNet50 81.84 89.21 Trapmine, MaleVis, and Malimg
InceptionV3 90.36 97.74 Trapmine, MaleVis, and Malimg
MobileNet 90.65 97.05 Trapmine, MaleVis, and Malimg

It is important to note that this is not a direct comparison since these models were designed
to be multi-class malware detectors, whereas our models were designed to be two-class detectors.
Furthermore, these models were trained and tested on their respective datasets, while our model was
trained on a distinct dataset called Trapmine and tested by applying Trapmine for the normal class
and a subset of the MaleVis and Malimg datasets for the abnormal class. However, by comparing the
accuracies and true positive scores of the models, we were able to gain insights into their performance
as a tool to detect abnormal samples.

VGG16 demonstrated the highest accuracy (90.65%) and specificity (96.24%), while the
autoencoder model achieved the best sensitivity (90.71%). This observation aligns with their results
from in the previous test conducted exclusively on the Trapmine dataset, further establishing VGG16
and the autoencoder model as the top-performing models.

5.3. Results for convergence metrics

Regarding the convergence metrics for our applications, we present details in Table 5 which
provide insights into the training process. This table includes information on the number of iterations,
convergence criteria, and training stability during training.
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Table 5. Convergence metrics for the models during the training.

Number of Iterations Loss Function Training Stability
(Epoch Numbers) (Function & Convergence Point)  (Early Stopping)
CNN model 1 60 binary cross-entropy & 0.13 50
CNN model 2 68 binary cross-entropy & 0.19 50
Autoencoder 135 binary cross-entropy & 0.19 50
VGG16 225 binary cross-entropy & 0.27 100
ResNet50 345 binary cross-entropy & 0.45 100
InceptionV3 174 binary cross-entropy & 0.29 100
MobileNet 112 binary cross-entropy & 0.19 100

By incorporating these metrics into Table 5, we aim to offer a more nuanced understanding of
how our models converged during training, as well as how effectively they reached their optimal
performance levels. Additionally, we implemented early stopping across all models to ensure training
stability and prevent overfitting. This means that if the validation loss does not show improvement over
consecutive epochs, training will stop early to mitigate the risk of overfitting. This proactive approach
helped our models to generalize well to unseen data and maintain optimal performance levels.

6. Discussion

Future research directions may involve further optimizing model architectures, exploring additional
datasets, and investigating real-time deployment possibilities to enhance the practicality and efficiency
of malware detection systems. To address complex malware in future works, advanced techniques
such as ensemble learning, where multiple models work collaboratively to improve detection accuracy
and resilience against evasion strategies can be used. Since ensemble methods combine the strengths
of different models, thereby mitigating individual weaknesses and enhancing overall performance,
combining multiple models can be an efficient methodology. However, it is important to note that this
approach comes with a significant computational burden, representing the primary drawback of the
ensemble methodology. Moreover, continuous monitoring and updating of malware detection models
by using real-time threat intelligence feeds and dynamic learning mechanisms can enhance their ability
to adapt to evolving malware landscapes and detect new variants effectively.

7. Conclusions

In this study, we deployed a comprehensive approach to malware detection, utilizing a variety of
models such as CNN and autoencoder models, VGG16, ResNet50, InceptionV3, and MobileNet. The
models were extensively evaluated on multiple datasets, including the Trapmine, MaleVis, and Malimg
datasets.

The results obtained for the Trapmine test dataset revealed the distinctive strengths of each model.
Notably, the CNN models exhibited robust capability to recognize general malware patterns, achieving
an accuracy rate of around 80%. Furthermore, the autoencoder model emerged as a pivotal asset,
contributing significantly to feature extraction and learning processes and achieving an impressive
accuracy rate of 90%.
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Expanding our evaluation to the MaleVis and Malimg test datasets provided insights into the
models’ performance on a completely unknown dataset. CNN models, the autoencoder model, and
other pre-trained models demonstrated competitive accuracy rates, showcasing their adaptability to
diverse malware variants.

Considering the computational aspects, we have presented the complexity of each model in terms
of the total number of parameters, trainable parameters, total number of and average training time per
epoch. These metrics provide valuable insights into the computational burden associated with each
model.

In conclusion, our study highlights the multifaceted strengths of each model and their unique
contributions to the field of malware detection. The robustness of the CNN infrastructure, coupled
with the significant role played by the autoencoder model, collectively enhances our understanding of
effective methodologies in the realm of malware detection.

In this paper, the highlight of CNNss lies in its robust ability to recognize general malware patterns.
Even a simple and modest model constructed using several CNN layers exhibited strong detection
performance. Furthermore, we selected pre-trained models with a CNN infrastructure with the
expectation that the CNN architecture would be robust when applied for image classification tasks.
The results are very promising. To compare the strengths of the models with previously studied
models, we constructed a test set that combined both our training set Trapmine and public datasets
MaleVis and Malimg. Since the abnormal samples were taken from public datasets, the specificity
score, or the strength of distinguishing abnormal samples, was around 97% for the models. This result
reflects the ability of CNNss to effectively distinguish between benign and malicious software based on
visual signatures, contributing significantly to the overall effectiveness of the malware detection system
discussed in the paper.
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