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Abstract: This paper presents a significant contribution in the form of a new general equation, namely
the q-deformed equation or the q-deformed tanh-Gordon equation. The introduction of this novel
equation opens up new possibilities for modeling physical systems that exhibit violated symmetries.
By employing the (G′/G) expansion method, we have successfully derived solitary wave solutions for
the newly defined q-deformed equation under specific parameter regimes. These solutions provide
valuable insights into the behavior of the system and its dynamics. To further validate the obtained
analytical results, the numerical solution of the q-deformed equation has been constructed by using
the finite difference method. This numerical approach ensures the accuracy and reliability of the
findings. To facilitate a comprehensive understanding of the results, we have included two- and three-
dimensional tables and figures, which provide visual representations and comparisons between the
analytical and numerical solutions. These graphical illustrations enhance the clarity and interpretation
of the obtained data. The significance of the q-deformation lies in its ability to model physical systems
that exhibit deviations from standard symmetry properties, such as extensivity. This type of modeling
is increasingly relevant in various fields, as it allows for a more accurate representation of real-world
phenomena.
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1. Introduction

Dynamical models play a fundamental role in various scientific fields, although their coverage in the
literature is unevenly distributed among these fields. Almusawa et al. [1] conducted a protracted study
on a real physical phenomenon generated by media inhomogeneities, highlighting the importance of
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dynamical models in elucidating and analyzing complex systems. Moaaz and Ramos [2] introduced
a new precise criterion for oscillation in second-order Emden-Fowler neutral differential equations,
further emphasizing the significance of dynamical models in capturing and predicting system behavior.
Building on this, Moaaz et al. [3] presented new oscillation results for fourth-order neutral differential
equations, contributing to the comprehensive understanding of dynamical systems. Ahmad et al. [4]
focused on the global stability of a fractional order HIV/AIDS epidemic model, showcasing the
application of dynamical models in the study of real-world phenomena and as a tool to inform
computational modeling efforts. They constitute a crucial area of research in mathematics and
theoretical physics, often relying on nonlinear ordinary or partial differential equations. Nonlinearity
has enabled the study of significant effects and phenomena, not only in macroscopic systems but also in
microscopic systems governed by quantum physics. An example of such phenomena is the occurrence
of Rogue waves [5, 6]. Incorporating the q-deformed hyperbolic function as introduced by Arai in the
1990s [7, 8], into a dynamical system disrupts the symmetry of the system and consequently affects
the symmetry of the solution. Recently, numerous solutions have been derived for the Schrödinger
equation and Dirac equation and they entail employing the q-deformed hyperbolic potential [9, 10].
The use of q-deformed functions shows great promise for applications involving modeling atom-
trapping potentials or statistical distributions in Bose-Einstein condensates [11], as well as exploring
the vibrational spectra of diatomic molecules [12,13]. The study of q-deformed equations has led to the
development of various techniques and tools, including q-special functions, q-difference equations, and
q-integral transforms. These tools have proven to be useful in the study of a wide range of problems in
mathematics and physics.

The generalized q-deformed sinh-Gordon equation, an extension of the sinh-Gordon equation, was
introduced by H. Eleuch in 2018 in the following form [14]:

∂2u(x, t)
∂x2 −

∂2u(x, t)
∂t2 = [sinhq(uγ)]p − δ, t > 0, 0 < q 6 1, (1.1)

where sinhq is defined by:

sinhq(t) =
et − qe−t

2
,

and coshq is defined by:

coshq(t) =
et + qe−t

2
.

Eleuch proposed an analysis of the propagating wave solutions for this more comprehensive form of
the equation.

Many researchers have conducted both analytical and numerical studies (1.1) [14–17].
A new form of the q-deformed Sinh-Gordon equation was introduced by Ali et al. in 2023 [18]:

∂2u(x, t)
∂x2 −

∂2u(x, t)
∂t2 = eαu[sinhq(uγ)]p − δ. (1.2)

In this work, a new form of the q-deformed equation is introduced as follows:

∂2u(x, t)
∂x2 −

∂2u(x, t)
∂t2 =

(
tanhq u(x, t)%

) p
(
eλu(x,t) + βq

)ρ
− δ, (1.3)
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where tanhq is defined by:

tanhq(t) =
et − qe−t

et + qe−t ,

where u(x, t) is a scalar field, tanhq denotes the q-tanh function, %, p, λ, β, and ρ are constants, and
δ is a source term. This equation is a generalization of the standard q-deformed equation and can be
applied to a rich variety of nonlinear phenomena and complex dynamics.

In this paper, we present an extended study for a new form of the q-deformed equation. To date
this equation has not been presented in this form. We first use the (G′/G)-expansion method to derive
exact analytical solutions for the equation [19]. In addition, we introduce a numerical scheme by using
the finite difference method to obtain numerical solutions for the equation and compare them with
the analytical solutions [20, 21]. We also study the behavior of the solutions under various parameter
regimes, including the effects of the deformation parameter q.

This paper is organized into several sections. The second section contains an analysis of the
proposed equation. The third section describes the analytical methodology that was used in this study.
The fourth section presents the analytical solutions that were obtained. The fifth section provides
numerical solutions. The sixth section includes graphical representations of the solutions that were
obtained. In the seventh section, we analyze and discuss the results that were obtained. Finally, in the
eighth section, we present our conclusions based on the work that was conducted in this study.

2. The mathematical analysis of the model

To obtain the traveling wave solution of Eq (1.3), we employ the following transformation:

u(x, t) = v(E), (2.1)

where
E = kx − ϑt, (2.2)

where, ϑ represents the speed of the traveling wave. With the help of Eqs (2.1) and (2.2), we can
rewrite Eq (1.3) as: (

k2 − ϑ2
)

v′′(E) − tanhq (v(E)%) p
(
eλv(E) + βq

)ρ
+ δ = 0. (2.3)

Now we will look at two cases for Eq (2.3).

• Case 1: λ = 2, % = p = 1, δ = −q, β = 1, ρ = 1.

Thus, Eq (2.3) can be written as: (
k2 − ϑ2

)
v′′(E) −

(
e2v(E)

)
= 0. (2.4)

We can multiply both sides of Eq (2.4) by v′(E) and get the following equation after integration,

1
2

(
−

((
ϑ2 − k2

)
v′(E)2

)
− e2v(E)

)
−C1 = 0. (2.5)

The integration constant is C1.
Let

v(E) =
1
2

ln(h(E)). (2.6)
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Then, Eq (2.5) becomes,

− 8C1h(E)2 +
(
k2 − ϑ2

)
h′(E)2 − 4h(E)3 = 0. (2.7)

Therefore, we can solve Eq (2.7) to obtain the solution of Eq (1.3) in the first case.

• Case 2: Assume that λ = 2, % = 1, p = 2, ρ = 2, β = 1, δ = q2.

Then, Eq (2.3) can be written as:(
k2 − ϑ2

)
v′′(E) + 2qe2v(E) − e4v(E) = 0. (2.8)

We can multiply both sides of Eq (2.8) by v′(E) and get the following equation after integration.

−
1
2

(
ϑ2 − k2

)
v′(E)2 + qe2v(E) −

1
4

e4v(E) −C2 = 0. (2.9)

Let
v(E) = ln(h(E)). (2.10)

Then, Eq (2.9) becomes,

− 4C2h(E)2 + 2(k2 − ϑ2)h′(E)2 + 4qh(E)4 − h(E)6 = 0. (2.11)

Then, we can solve Eq (2.11) to find the solution Eq (1.3) in the second case.

3. The strategy of the (G′/G)-expansion approach

We can express the governing equation in the following manner:

F(u, uxx, utt, ...) = 0. (3.1)

Equation (3.1) features a polynomial function F that depends on the function u and its derivatives with
respect to both space and time. To convert this partial differential equation into an ordinary differential
equation, we can utilize the traveling wave transformation Eq (2.1):

H(v, v′′, ...) = 0. (3.2)

The essential steps of the (G′/G)-expansion method are as follows:

Step 1: Let us assume that the exact solutions to Eq (3.2) can be expressed as follows:

v(E) =

N∑
i=0

Ri

(G′

G

)i

, (3.3)

where, G = G(E) satisfies the second-order linear ordinary differential equation given by:

G′′(E) + σG′(E) + νG(E) = 0, (3.4)

where Ri (i = 0, 1, 2, ...,N),RN , 0, σ and ν are constants to be calculated.
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Step 2: Equation (3.2) contains a highest order derivative term and the highest power nonlinear term.
By balancing these two terms, a positive integer N can be obtained, as shown in Eq (3.3). This
integer value is likely to be significant in the characterization of the behavior of the system
described by the equations, although further information about the equations is necessary to fully
understand the meaning of N.

Step 3: We can identify three distinct families of traveling wave solutions for Eq (3.4):

Family 1: Hyperbolic function solutions, when σ2 − 4ν > 0,

G′

G
=
−σ

2
+

1
2

√
σ2 − 4ν

g1 sinh 1
2

√
σ2 − 4νE + g2 cosh 1

2

√
σ2 − 4νE

g1 cosh 1
2

√
σ2 − 4νE + g2 sinh 1

2

√
σ2 − 4νE

. (3.5)

Family 2: Trigonometric function solutions, when σ2 − 4ν < 0,

G′

G
=
−σ

2
+

1
2

√
4ν − σ2

−g1 sin 1
2

√
4ν − σ2E + g2 cos 1

2

√
4ν − σ2E

g1 cos 1
2

√
4ν − σ2E + g2 sin 1

2

√
4ν − σ2E

. (3.6)

Family 3: Rational function solutions, when σ2 − 4ν = 0,

G′

G
=
−σ

2
+

g2

g1 + g2E
. (3.7)

Step 4: To derive a system of algebraic equations with Ri, k, and ϑ, we substitute Eq (3.3) for Eq (3.2)
and utilize Eq (3.4) to group together the terms with identical powers of (G′

G ). We then equate
each coefficient to zero, and this system of equations can be solved by using the Mathematica
program.

4. The model’s mathematical solutions

In this section, we use the (G′/G)-expansion method to determine the analytical solutions for the
two cases considered in the problem given by Eq (1.3). The (G′/G)-expansion method is a highly
effective analytical technique that is utilized to obtain approximate solutions to nonlinear differential
equations.

• The analytical solution of case one with λ = 2, % = p = 1, δ = −q, β = 1, ρ = 1:

Applying the balance principle to Eq (2.7) between the terms h′2 and h3 yields 2N + 2 = 3N, which
implies that N = 2. Using Eq (3.3), we can express the solution to Eq (2.7) as follows:

h(E) =

2∑
i=0

Ri

(G′

G

)i

. (4.1)

By substituting Eq (4.1) for Eq (2.7) and equating the coefficients of like powers of
(

G′
G

)
to zero, we

obtain the following system:

−8C1R2
0 + k2ν2R2

1 − ν
2R2

1ϑ
2 − 4R3

0 = 0,
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−16C1R0R1 + 4k2ν2R1R2 + 2k2νR2
1σ − 4ν2R1R2ϑ

2 − 2νR2
1σϑ

2 − 12R2
0R1 = 0,

−8C1R2
1 − 16C1R0R2 + 4k2ν2R2

2 + 8k2νR1R2σ + 2k2νR2
1 + k2R2

1σ
2

−4ν2R2
2ϑ

2 − 8νR1R2σϑ
2 − 2νR2

1ϑ
2 − R2

1σ
2ϑ2 − 12R0R2

1 − 12R2
0R2 = 0,

−16C1R2R1 + 8k2νR2
2σ + 8k2νR2R1 + 4k2R2R1σ

2 + 2k2R2
1σ − 8νR2

2σϑ
2

−8νR2R1ϑ
2 − 4R2R1σ

2ϑ2 − 2R2
1σϑ

2 − 4R3
1 − 24R0R2R1 = 0,

−8C1R2
2 + 8k2νR2

2 + 4k2R2
2σ

2 + 8k2R1R2σ + k2R2
1 − 8νR2

2ϑ
2

−4R2
2σ

2ϑ2 − 8R1R2σϑ
2 − R2

1ϑ
2 − 12R0R2

2 − 12R2
1R2 = 0,

8k2R2
2σ + 4k2R1R2 − 8R2

2σϑ
2 − 4R1R2ϑ

2 − 12R1R2
2 = 0,

4k2R2
2 − 4R2

2ϑ
2 − 4R3

2 = 0.

By solving the aforementioned set of equations using the Mathematica program, the following sets of
solutions were obtained:

R0 =
νR1

σ
, R2 =

R1

σ
, C1 =

R1σ
2 − 4νR1

8σ
, k = ∓

√
R1 + σϑ2

√
σ

. (4.2)

By plugging the values from Eq (4.2) into Eq (4.1) and utilizing Eqs (3.6) and (3.5), we can
determine h(E). Subsequently, by substituting h(E) into Eq (2.6), we can find v(E). Finally, by
replacing v(E) in Eq (2.1) along with Eq (2.2), we can obtain the solutions of Eq (1.3) when
λ = 2, % = p = 1, δ = −q, β = 1, ρ = 1 as follows:

Family 1: Hyperbolic function solutions, when σ2 − 4ν > 0,

u1,2(x, t) =
1
2

ln
(
R0+

R1

(
−σ

2
+

1
2

√
σ2 − 4ν

g1 sinh 1
2

√
σ2 − 4ν(kx − ϑt) + g2 cosh 1

2

√
σ2 − 4ν(kx − ϑt)

g1 cosh 1
2

√
σ2 − 4ν(kx − ϑt) + g2 sinh 1

2

√
σ2 − 4ν(kx − ϑt)

)
+

R2

(
−σ

2
+

1
2

√
σ2 − 4ν

g1 sinh 1
2

√
σ2 − 4ν(kx − ϑt) + g2 cosh 1

2

√
σ2 − 4ν(kx − ϑt)

g1 cosh 1
2

√
σ2 − 4ν(kx − ϑt) + g2 sinh 1

2

√
σ2 − 4ν(kx − ϑt)

)2)
.

(4.3)

Family 2: Trigonometric function solutions, when σ2 − 4ν < 0,

u3,4(x, t) =
1
2

ln
(
R0+

R1

(
−σ

2
+

1
2

√
σ2 − 4ν

−g1 sin 1
2

√
σ2 − 4ν(kx − ϑt) + g2 cos 1

2

√
σ2 − 4ν(kx − ϑt)

g1 cos 1
2

√
σ2 − 4ν(kx − ϑt) + g2 sin 1

2

√
σ2 − 4ν(kx − ϑt)

)
+

R2

(
−σ

2
+

1
2

√
σ2 − 4ν

−g1 sin 1
2

√
σ2 − 4ν(kx − ϑt) + g2 cos 1

2

√
σ2 − 4ν(kx − ϑt)

g1 cos 1
2

√
σ2 − 4ν(kx − ϑt) + g2 sin 1

2

√
σ2 − 4ν(kx − ϑt)

)2)
.

(4.4)

• The analytical solution of case two with λ = 2, % = 1; p = 2, ρ = 2, β = 1, δ = q2:
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By applying the balance principle to Eq (2.11) between the terms h′2 and h6, we arrive at 2N + 2 = 6N.
However, this equation does not produce a solution for N. As a result, we must make a transformation
as follows:

h(E) =
√

f (E). (4.5)

Then, Eq (2.11) becomes

(k − ϑ)(k + ϑ) f ′(E)2 − 2 f (E)2
(
4C2 − 4q f (E) + f (E)2

)
= 0. (4.6)

Applying the balance principle to Eq (4.6) between the terms f ′2 and f 4 yields 2N + 2 = 4N, which
implies that N = 1. From Eq (3.3), the solution of Eq (4.6) can be presented as follows:

f (E) =

1∑
i=0

Ri

(G′

G

)i

. (4.7)

By substituting Eq (4.7) into Eq (4.6) and equating the coefficients of like powers of
(

G′
G

)
to zero, we

obtain the following system:

−8C2R2
0 + k2ν2R2

1 + 8qR3
0 − ν

2R2
1ϑ

2 − 2R4
0 = 0,

−16C2R1R0 + 2k2νR2
1σ + 24qR1R2

0 − 2νR2
1σϑ

2 − 8R1R3
0 = 0,

−8C2R2
1 + 2k2νR2

1 + k2R2
1σ

2 + 24qR0R2
1 − 2νR2

1ϑ
2 − R2

1σ
2ϑ2 − 12R2

0R2
1 = 0,

2k2R2
1σ + 8qR3

1 − 2R2
1σϑ

2 − 8R0R3
1 = 0,

k2R2
1 − R2

1ϑ
2 − 2R4

1 = 0.

By using the Mathematica program to solve the aforementioned set of equations, we obtained the
following sets of solutions:

• Set 1:

R0 =
q2σ2√

q2σ2 (
σ2 − 4ν

) + q, R1 =
2q2σ√

q2σ2 (
σ2 − 4ν

) ,C2 = q2, ϑ = ∓

√
ν2q

(
k2 −

8q2

σ2−4ν

)
ν
√

q
. (4.8)

By substituting the values from Eq (4.8) into Eq (4.7), we obtain f (E). Then, by substituting f (E)
into Eq (4.5) and utilizing Eqs (3.6) and (3.5), we can determine h(E). Next, by substituting h(E) into
Eq (2.10), we can find v(E). Finally, by replacing v(E) in Eq (2.1) along with Eq (2.2), we can obtain
the solutions of Eq (1.3) when λ = 2, % = 1; p = 2, ρ = 2, β = 1, δ = q2 as follows:
Family 1: Hyperbolic function solutions, when σ2 − 4ν > 0,

u1,2(x, t) = ln
(
R0+

R1

(
−σ

2
+

1
2

√
σ2 − 4ν

g1 sinh 1
2

√
σ2 − 4ν(kx − ϑt) + g2 cosh 1

2

√
σ2 − 4ν(kx − ϑt)

g1 cosh 1
2

√
σ2 − 4ν(kx − ϑt) + g2 sinh 1

2

√
σ2 − 4ν(kx − ϑt)

)) 1
2

.
(4.9)
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Family 2: Trigonometric function solutions, when σ2 − 4ν < 0,

u3,4(x, t) = ln
(
R0+

R1

(
−σ

2
+

1
2

√
σ2 − 4ν

−g1 sin 1
2

√
σ2 − 4ν(kx − ϑt) + g2 cos 1

2

√
σ2 − 4ν(kx − ϑt)

g1 cos 1
2

√
σ2 − 4ν(kx − ϑt) + g2 sin 1

2

√
σ2 − 4ν(kx − ϑt)

)) 1
2

.
(4.10)

• Set 2:

R0 = q −
q2σ2√

q2σ2 (
σ2 − 4ν

) , R1 = −
2q2σ√

q2σ2 (
σ2 − 4ν

) ,C2 = q2, ϑ = ∓

√
ν2q

(
k2 −

8q2

σ2−4ν

)
ν
√

q
. (4.11)

By substituting the values from Eq (4.11) into Eq (4.7), we obtain f (E). Then, by substituting f (E)
into Eq (4.5) and utilizing Eqs (3.6) and (3.5), we can determine h(E). Next, by substituting h(E) into
Eq (2.10), we can find v(E). Finally, by replacing v(E) in Eq (2.1) along with Eq (2.2), we can obtain
the solutions of Eq (1.3) when λ = 2, % = 1, p = 2, ρ = 2, β = 1, δ = q2 as follows:

Family 1: Hyperbolic function solutions, when σ2 − 4ν > 0,

u5,6(x, t) = ln
(
R0+

R1

(
−σ

2
+

1
2

√
σ2 − 4ν

g1 sinh 1
2

√
σ2 − 4ν(kx − ϑt) + g2 cosh 1

2

√
σ2 − 4ν(kx − ϑt)

g1 cosh 1
2

√
σ2 − 4ν(kx − ϑt) + g2 sinh 1

2

√
σ2 − 4ν(kx − ϑt)

)) 1
2

.
(4.12)

Family 2: Trigonometric function solutions, when σ2 − 4ν < 0,

u7,8(x, t) = ln
(
R0+

R1

(
−σ

2
+

1
2

√
σ2 − 4ν

−g1 sin 1
2

√
σ2 − 4ν(kx − ϑt) + g2 cos 1

2

√
σ2 − 4ν(kx − ϑt)

g1 cos 1
2

√
σ2 − 4ν(kx − ϑt) + g2 sin 1

2

√
σ2 − 4ν(kx − ϑt)

)) 1
2

.
(4.13)

5. The numerical solution for the model

In this section, we employ approximations for both spatial x and temporal t derivatives, as detailed
in prior studies [20, 21].

The purpose of these approximations is to estimate the time derivative of the exact solution at
a specific grid point, as based on the numerical solution at that point and its neighboring points. The
accuracy of these approximations is determined by both the order of the approximation and the spacing
between the grid points. Generally, using higher order approximations and smaller grid spacings results
in more accurate estimates of the time derivative.

Assuming that u represents the exact solution at the grid point (xi, tn) and U represents the numerical
solution at the same point, we can express the approximation for the space derivative with respect to x
as follows:

uxx '
1

(∆x)2

(
Ui+1,n − 2Ui,n + Ui−1,n

)
. (5.1)
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The following equation is the approximation for the time derivative with respect to t:

utt '
Ui,n+1 − 2Ui,n + Ui,n−1

(∆t)2 . (5.2)

Upon substituting Eqs (5.1) and (5.2) into Eq (1.3), we obtain a system of difference equations at Ui,n,

1
(∆x)2

(
Ui+1,n − 2Ui,n + Ui−1,n

)
−

Ui,n+1 − 2Ui,n + Ui,n−1

(∆t)2

=
(
tanhqU%

i,n

)
p
(
eλUi,n + βq

)ρ
− δ, i = 0, 1, ...,N, n = 1, 2, ...,M.

(5.3)

The system described above consists of (N + 1) equations with (N + 3) unknowns at each time level
n. By utilizing Eq (5.3) and applying the boundary conditions obtained from the analytical solutions,
we can solve the system numerically by using a Mathematica program on a PC with “Core i7-1165G7
@ 2.80GHz”. If we substitute n = 0, 1, ...,M, we obtain a system of algebraic equations involving
the levels U−1,U0, ....,Um+1. However, since U−1 is a delayed value that we do not know, we must
start with n = 1, ...,M. To solve the system, we need to determine the initial values U0 and U1, which
can be obtained from the analytical solution. To study the convergence of the solutions to ensure the
accuracy of the proposed method, we can calculate L2 and L∞ as follows:

L2 =

√√
∆x

N∑
i=0

|UNum. − uEx.|
2,

L∞ = Max
0≤i≤N
|UNum. − uEx.|.

The numerical results

In this section, we provide numerical outcomes for the q-deformed tanh-Gordon equation’s general
form. To accomplish this, we will examine two particular instances of the generalized q-deformed
tanh-Gordon equation:

• The numerical results for case one: λ = 2, % = p = 1, δ = −q, β = 1, ρ = 1

Table 1 and Figure 7 present a comparison between the numerical results obtained from our numerical
scheme and the analytical solution given by Eq (4.3) for Eq (1.3) with the following parameter values:
g1 = 0.2, g2 = 0.01, ν = 0.001, q = 0.1,R1 = 0.1, σ = 0.2, ϑ = 0.1,∆t = 0.1,∆x = 0.2,−10 6 x 6 10,
and t = 5. These comparisons demonstrate the accuracy of our numerical scheme and the validity
of our analytical solutions, as indicated by the close agreement between the numerical and analytical
results.
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Table 1. Comparison between the numerical results obtained via our numerical scheme and
the analytical solution.

x Numerical solution Analytical solution Absolute error
-10 3.31053 3.31053 0.00000
-8 3.24612 3.24612 4.61672 ×10−7

-6 3.19420 3.19420 9.19299 ×10−7

-4 3.15609 3.15609 1.31071 ×10−6

4 3.15729 3.15729 1.13184 ×10−6

6 3.19595 3.19595 7.14930 ×10−6

8 3.24838 3.24838 3.28793 ×10−7

10 3.31323 3.31323 0.00000

The results presented in Table 1 and Figure 7 provide valuable insights into the behavior and
properties of the solutions for Eq (1.3) under the specified parameter values. Moreover, these
comparisons demonstrate the effectiveness of our combined analytical and numerical approach in
investigating the equations we derived; they aslo provide evidence of the accuracy and reliability of
our numerical and analytical solutions.

Table 2 and Figure 8 present the numerical results alongside the analytical solution Eq (4.4) for
Eq (1.3) with the following parameter values: g1 = 0.1, g2 = 0.0001, ν = 0.01, q = 0.1,R1 = 0.001, σ =

0.001, ϑ = 0.4,∆t = 0.1,∆x = 0.2,−10 6 x 6 10 and t = 5.

Table 2. Comparison between the numerical results obtained via our numerical scheme and
the analytical solution.

x Numerical solution Analytical solution Absolute error
-10 1.05993 1.05993 0.00000
-8 1.58215 1.58227 1.20778 ×10−4

-6 1.89013 1.89022 9.23073 ×10−4

-4 2.08808 2.08812 3.84487 ×10−5

4 2.27593 2.27596 2.53936 ×10−5

6 2.19998 2.20003 4.81050 ×10−5

8 2.06635 2.06639 3.45989 ×10−5

10 1.85664 1.85664 0.00000

The results presented in Table 2 and Figure 8 provide valuable insights into the behavior and
properties of the solutions for Eq (1.3) under the specified parameter values. Furthermore, these
comparisons demonstrate the effectiveness of our combined analytical and numerical approach in
investigating the equations we derived; they also provide evidence of the accuracy and reliability of
our numerical and analytical solutions.

Table 3 presents the L2, L∞ errors and CPU times for case one at different time levels for Eq (4.4)
with the following parameter values: g1 = 0.1, g2 = 0.0001, ν = 0.01, q = 0.1,R1 = 0.001, σ =

0.001, ϑ = 0.4,∆t = 0.1,∆x = 0.2, and −10 6 x 6 10.
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Table 3. Results of L2 and L∞ errors for case one at different time levels.

t L∞-error L2-error CPU time
1 1.18427×10−5 1.74167×10−5 1.248s
3 5.97847×10−5 1.11482×10−4 1.719s
5 9.23073 ×10−4 2.50966×10−4 2.294s
6 1.61731 ×10−4 3.45894×10−4 2.327s

From the previous table, it is clear to us that there is stability in the solutions, which means that the
method used is effective and good; moreover the time used was minimal, which means that the cost is
low.

• The numerical results for case two: λ = 2, % = 1; p = 2, ρ = 2, β = 1, δ = q2

Table 4 and Figure 9 present a comparison between the numerical results obtained via our numerical
scheme and the analytical solution given by Eq (4.12) for Eq (1.3) with the following parameter values:
∆x = 0.2, ∆t = 0.1, t = 5, g1 = 0.3, g2 = 0.4, k = 0.4, ν = 0.001, q = 0.4,−10 6 x 6 10 and σ = 0.1.

Table 4. Comparison between the numerical results obtained via our numerical scheme and
the analytical solution.

x Numerical solution Analytical solution Absolute error
-10 1.46157 1.46157 0.00000
-8 1.48611 1.48651 4.72781 ×10−4

-6 1.51075 1.51144 8.31275 ×10−4

-4 1.53573 1.53635 8.18738 ×10−4

6 1.66095 1.66125 3.91081 ×10−4

8 1.68618 1.68634 1.99887 ×10−4

10 1.71149 1.71149 0.00000

Table 4 and Figure 9 demonstrate how well the numerical and analytical solutions match each other,
indicating the accuracy of our numerical scheme and the validity of our analytical solutions.

Table 5 and Figure 10 present a comparison between the numerical results obtained via our
numerical scheme and the analytical solution given by Eq (4.13) for Eq (1.3) with the following
parameter values: ∆x = 0.2, ∆t = 0.1, t = 5, g1 = 0.4, g2 = 0.01, k = 0.3, ν = 0.1, q = 0.001,
σ = 0.001 and −10 6 x 6 10.
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Table 5. Comparison between the numerical results obtained via our numerical scheme and
the analytical solution.

x Numerical solution Analytical solution Absolute error
-10 3.20432 3.20432 0.00000
-8 3.30431 3.30540 1.09866 ×10−3

-6 3.37268 3.37348 8.02187 ×10−4

-4 3.41747 3.41812 6.5164 ×10−4

4 3.42547 3.42609 6.26715 ×10−4

6 3.38561 3.38636 7.53512 ×10−4

8 3.32367 3.32466 1.00123 ×10−3

10 3.23301 3.23301 0.00000

Table 5 and Figure 10 demonstrate the excellent agreement between the numerical and analytical
solutions, confirming the precision of our numerical approach and the soundness of our analytical
solutions.

Table 6 presents the L2, L∞ errors and CPU times for case one at different time levels for Eq (4.13)
with the following parameter values: ∆x = 0.2,∆t = 0.1, g1 = 0.4, g2 = 0.01, k = 0.3, ν = 0.1,
q = 0.001, σ = 0.001 and −10 6 x 6 10.

Table 6. Results of L2 and L∞ errors for case one at different time levels.

t L∞-error L2-error CPU time
1 5.94295×10−5 1.38597×10−4 1.063s
3 5.48845×10−4 1.32711×10−3 1.344s
5 1.09866 ×10−3 3.68560×10−3 2.094s
6 2.10519 ×10−3 5.28625×10−3 2.116s

Upon analyzing the data presented in the aforementioned table, it becomes apparent that the
solutions exhibit a notable degree of stability. This stability indicates that the method employed is
not only effective, it is also reliable. Additionally, it is worth noting that the time required to achieve
these solutions is relatively minimal, indicating a streamlined and efficient process. Consequently, the
low time investment directly translates into reduced costs, further emphasizing the economic viability
of the method. Overall, the combination of stability, effectiveness, simplicity, and cost-effectiveness
attests to the excellence of the utilized approach.

6. Graphical illustrations

In this study, we employ a combination of analytical and numerical methods to investigate the
equations that we have derived. Our objective is to gain a deeper understanding of the system and its
dynamics. To facilitate a clear interpretation of our findings, we present a series of two-dimensional
and three-dimensional figures that illustrate both the analytical and numerical solutions that we have
obtained. The figures presented in this study serve as visual representations of the solutions’ behavior.
They provide valuable insights into how the system evolves under different conditions as well as shed
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light on the influence of various parameters. Specifically, we focus on showcasing the analytical
solutions for Eqs (4.3) to (4.13) in Figures 1–6, respectively.

In addition to deriving the analytical and numerical solutions, we also performed a comprehensive
evaluation of the accuracy of our numerical scheme and validated the analytical solutions. This
evaluation involved comparing the numerical results obtained via our numerical scheme with the
corresponding analytical solutions for Eqs (4.3), (4.4), (4.12), and (4.13). Figures 7–10 depict
the results of this comparison, showcasing the level of agreement between the numerical and
analytical solutions. These figures provide visual representations of the accuracy and validity of our
methodologies. By examining the plots in Figures 7–10, we can observe the similarities between
the numerical and analytical solutions, indicating that our numerical scheme is capable of accurately
approximating the analytical solutions.

It is worth noting that the accuracy of our numerical scheme is demonstrated for various parameter
configurations, allowing us to assess its robustness across different scenarios. This analysis further
strengthens the validity of our analytical solutions, as the agreement between the numerical and
analytical results was found to persist across different parameter settings.
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Figure 1. Plots for Eq (4.3) with g1 = 0.2, g2 = 0.01, ν = 0.001,R1 = 0.1, σ = 0.2, ϑ = 0.1.
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Figure 2. Plots for Eq (4.4) with g1 = 0.1, g2 = 0.0001, ν = 0.01,R1 = 0.001, σ = 0.001, ϑ =

0.4.
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Figure 3. Plots for Eq (4.9) with g1 = 0.5, g2 = 0.2, k = 0.2, ν = 0.001, q = 0.7, σ = 0.2.
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Figure 4. Plots for Eq (4.10) with g1 = 0.4, g2 = 0.01, k = 0.3, ν = 0.1, q = 0.001, σ = 0.001.
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Figure 5. Plots for Eq (4.12) with g1 = 0.3, g2 = 0.4, k = 0.4, ν = 0.001, q = 0.4, σ = 0.1.
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Figure 6. Plots for Eq (4.13) with g1 = 0.4, g2 = 0.01, k = 0.3, ν = 0.1, q = 0.001, σ = 0.001.
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Figure 7. Comparison between the analytical solution of Eq (1.3) and the numerical
outcomes for Eq (4.3) with ∆t = 0.1, g1 = 0.2, g2 = 0.01, ν = 0.001, q = 0.1,R1 = 0.1, σ =

0.2, ϑ = 0.1,∆x = 0.2, t = 5.
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Figure 8. Compare the analytical solution of Eq (1.3) and the numerical outcomes for
Eq (4.4) with g1 = 0.1, g2 = 0.0001, ν = 0.01, q = 0.1,R1 = 0.001,∆t = 0.1, σ = 0.001, ϑ =

0.4,∆x = 0.2, t = 5.
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Figure 9. Comparison between the analytical solution of Eq (1.3) and the numerical
outcomes for Eq (4.12) with ∆x = 0.2, t = 5, g1 = 0.3, g2 = 0.4, k = 0.4, ∆t = 0.1, ν = 0.001,
q = 0.4, and σ = 0.1.
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Figure 10. Comparison between the analytical solution of Eq (1.3) and the numerical
outcomes for Eq (4.13) with ∆t = 0.1, t = 5, g1 = 0.4, g2 = 0.01, k = 0.3, ν = 0.1,∆x =

0.2, q = 0.001, σ = 0.001.
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7. Analysis and discussion

In this paper, we have presented a new form of q-deformed equation (q-deformed tanh-Gordon
equation). The analytical and numerical solutions for the q-deformed tanh-Gordon equation are
discussed from the perspective of the (G′/G)-expansion method and finite difference method,
respectively. Our goal was to compare and contrast the two methods and to demonstrate their
effectiveness in solving this nonlinear partial differential equation.

We compared the analytical and numerical solutions and found that they were in good agreement,
demonstrating the effectiveness of both methods in solving the q-deformed tanh-Gordon equation.
However, we also found that the analytical solutions were significantly faster to obtain than the
numerical solutions, but the finite difference method provided a more general solution that could be
applied to a wider range of equations.

In conclusion, both the (G′/G)-expansion method and the finite difference method are powerful
techniques for solving differential equations, and each has its advantages and disadvantages. The
(G′/G)-expansion method can provide analytical solutions that are often expressed in closed form, but
may not be applicable to all types of equations. The finite difference method, on the other hand, can
provide numerical solutions that are applicable to a wide range of equations, but it may require more
computational effort. In the case of the q-deformed tanh-Gordon equation, both methods have been
successfully applied to obtain solutions, and the choice of method depends on the specific requirements
of the problem at hand. Finally, we see that in Figures 11 and 12, by changing the value of q, the height
of the wave varies, becomes distorted and does not maintain its shape, which indicates that the results
we have reached are good and can be applied in different fields.
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Figure 11. Effects of q parameter on a solitary wave for Eq (1.3) with the numerical outcomes
for Eq (4.10) with g1 = 0.4, g2 = 0.01, k = 0.3, ν = 0.1, t = 2, σ = 0.001.
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Figure 12. Effecte of q parameter on a solitary wave for Eq (1.3) with the numerical outcomes
for Eq (4.13) with ∆t = 0.1, t = 5, g1 = 0.4, g2 = 0.01, k = 0.3, ν = 0.1,∆x = 0.2, t = 2, σ =

0.001.

Let us go over the physical relevance of these graphical solutions in depth. The study uses
the (G’/G)-expansion method to derive solitary wave solutions to the q-deformed problem. The
graphical depictions in this section depict various solutions, allowing us to see the system’s behavior.
Solitary waves are isolated waves that maintain their shape and travel without dispersion. The
graphical representations facilitate understanding of the propagation properties of these solitons, such
as the amplitudes, widths, and speeds. The graphical depictions show comparisons of analytical
and numerical solutions. Visually comparing these solutions allowed us to assess the accuracy and
dependability of the analytical approach. Discrepancies or agreements between the two sets of
solutions might provide crucial insights into the system’s dynamics and the efficacy of the approaches
used. Changing the values of the parameters in the q-deformed equation was found to produce
different sorts of solutions and different properties. The graphs facilitate determination of the impact
of each parameter on the system’s behavior, such as changes in waveforms, amplitudes, or speeds.
This approach contributes to a better understanding of how q-deformation affects the symmetry and
dynamics of physical systems.

8. Conclusions

To summarize, this research constitutes major advances toward understanding of the q-deformed
equation, notably the q-deformed tanh-Gordon equation. We have proposed a more generic form of
the equation, which broadens the options for modeling physical systems with violated symmetries. We
have used the (G’/G)-expansion method to obtain accurate soliton solutions to the q-deformed tanh-
Gordon problem. These analytical solutions provide useful information about the system’s behavior
and dynamics. To validate the analytical results, we applied the finite difference approach to generate
numerical solutions for the model. Numerical solutions were derived by discretizing the equation
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in space and time, and then iteratively solving the resulting system of algebraic equations. These
numerical solutions check the accuracy of the analytical solutions and allow for the investigation of the
solution’s behavior in more complex settings. We have also included two and three-dimensional tables
and illustrations to show comparisons between analytical and numerical solutions. These graphical
representations were found to improve the validation process by providing a visual representation
of the solution’s behavior. The comparisons between the analytical and numerical solutions help to
improve overall understanding of the accuracy and dependability of both methods. The q-deformed
tanh-Gordon equation has applications in a variety of domains, including optical physics and quantum
mechanics, highlighting its importance as a research topic. This finding has far-reaching implications
for prospective applications in quantum computing, making it a hot topic.
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