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1. Introduction

Several areas of mathematics as well as other fields of study use fixed point theory as the primary
motivation for both new findings and the generalization of fixed point theorems that have already been
established. In recent decades, the theory of fixed points has been dynamically developing. The
Banach theorem is the first significant finding in the theory of fixed points regarding contractive
mapping (the principle of contractive mapping). The aforementioned theorem was introduced in
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Banach’s dissertation [1] in 1922. This particular theorem is a crucial tool for research in many
different areas of mathematics. Authors generalized the Banach theorem in different ways
(see, [2–7]). One of the generalizations includes proving the theorem in generalized metric spaces
(see, [8–11]). Again, to generalize metric spaces, one of the best ways used by authors is to change
the co-domain of the metric function. Brzdek et al. [12] generalized the Banach theorem across a
variety of spaces (e.g., in quasi-Banach spaces, p-Banach spaces, ultrametric spaces, and dq-metric
spaces). Recently, over Banach algebras, Bakr and Hussein [13] studied vector quasi-cone metric
spaces.

Ma et al. [8] developed the concept of the C∗-algebra valued metric space (C∗-avMS ) by substituting
the set of real numbers with the collection of all positive elements in a unitary C∗-algebra. In a C∗-
algebra, by restricting the codomain of the metric to positive elements, you ensure that the metric
reflects this positivity and maintains compatibility with the algebraic operations on positive elements.
By focusing on positive elements in the codomain of the metric, you align the metric more closely
with the operator norm and its properties. Again, C∗-algebras have a natural order structure defined
by positive elements. By considering the set of positive elements in the codomain of the metric, you
emphasize this ordered structure and make it more prominent in the metric space. This can be beneficial
for studying properties related to order, such as lattice properties or the structure of positive cones.
Positive elements have well-defined square roots, which can be useful in various contexts, such as
functional calculus or spectral theory. Restricting the codomain of the metric to positive elements can
lead to more straightforward calculations and proofs in many cases.

Non-commutative spaces and quantum spaces are commonly exemplified by C∗-algebras. They are
crucial to the non-commutative geometry. Since bounded linear operators on Hilbert spaces and
matrices are common quantum space problems, the theory should apply to many of these issues. As a
result, an alternative to regular metric spaces, C∗-algebras offer non-commutative spaces. The
standard metric’s symmetry characteristic can be eliminated to create one of the first generalizations
of metric spaces. Semi-metricity is another idea that was introduced early on. The self-distance and
symmetry properties which are distinctive to the Euclidean metric are satisfied by this kind of metric.
The symmetry property is satisfied by the metric in our instance of C∗-avMS .

Bianchini and Grandolfi [14] in 1968 defined the Bianchini-Grandolfi gauge function (BGGF)
on [0,+∞), which is nowadays called as the function of the rate of convergence, named by Ptak [15].
In 2006, using the idea of Bianchini-Grandolfi, Proinov [16] introduced a function called the gauge
function (GF) with an immediate lemma and proved the higher order of convergence of subsequent
approximations as a generalization of the Banach contraction mapping principle.

Samet et al. [3] first proposed α-admissible and α-contractive mappings in 2012, and also
produced several numbers of fixed point problems for such contractions, and these notions are now
widely accepted. Triangular α-admissible mapping was a concept that Karapinar et al. [4] presented
later in 2013, expanding the definition of α-admissible mappings. Geraghty [2] created a fascinating
contraction in 1973. In light of this, he looked at a few contractions via auxiliary functions that force
the presence and uniqueness of fixed points in arbitrary complete metric spaces. The concept of
α-Geragthy contractive mappings, which generalizes the concept of α-admissible mappings, was first
described by Cho et al. in [17]. For (α, β)-admissible Geraghty contraction mappings, Chandok [18]
demonstrated some intriguing fixed point results in 2015. Later on, authors generalized the theorem in
this direction by introducing different auxiliary functions and different rational contractions
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(see, [5, 11, 19–22]).
Motivated by the preceding discussion, we redefine the gauge function, the BGGF, α-admissibility,

Geraghty contractive mapping, and (α, β)-admissible mapping in the C∗-algebra sense. Utilizing these
definitions, we present two types of (α, β)-Bianchini-Grandolfi gauge contractions. We then
demonstrate our primary findings, which require functions meeting our contraction criterion to have a
single fixed point. We also provide some illustrative examples to clarify our outcomes. Finally, using
our primary finding we investigate if a solution to the integral equation exists and is unique. The
findings in this paper expand a few C∗-avMS fixed-point theorems of [2–4, 8, 14, 16].

2. Preliminaries

Throughout the paper, we use C to represent a unitary C∗-algebra [23, 24]. A Banach ∗-algebra
with ∥c∗c∥ = ∥c∥2, ∀c ∈ C, is known as a C∗-algebra, where ∗ is involution with (c1c2)∗ = c∗2c∗1 and
c∗∗1 = c1, ∀c1, c2 ∈ C. With respect to the zero element 0C in C an element c ∈ C is positive if 0C ⪯ c.
Let

C+ = {c ∈ C : 0C ⪯ c}.

Suppose
c1 ⪯ c2 ⇔ 0C ⪯ c2 − c1

is the partial ordering defined in it.
Now we know the definition of C∗-avMS on which the whole paper relies.

Definition 2.1. [8] Let V , ∅. A mapping d: V × V −→ C is known to be a C∗-algebra valued metric
(C∗-avM) on V if it satisfies

(i) d(v1, v2) ⪰ 0C and d(v1, v2) = 0C iff v1 = v2;

(ii) d(v1, v2) = d(v2, v1);
(iii) d(v1, v3) ⪯ d(v1, v2) + d(v2, v3);

for all v1, v2, v3 ∈ V. The triplet (V,C, d) is known as a C∗-avMS .

The following are examples of C∗-avMS , one of which is useful to conclude the presence of a
solution of an integral equation in this context.

Example 2.1. Let V = R,C = M2(R). Then, with respect to the metric

d(v1, v2) =
[
|v1 − v2| 0

0 α|v1 − v2|

]
, ∀v1, v2 ∈ R, α ≥ 0,

(V,C, d) is a complete C∗-avMS by the completeness of R.

Example 2.2. Let M be a Lebesgue measurable set, V = L∞(M) and C = B(L2(M)), where B(L2(M))
is the family of all bounded linear operators on L2(M) and L2(M) represents the Hilbert space of
square-integrable functions over M. Then, with the usual operator norm, C is a C∗-algebra. Let d:
V × V −→ C be given by

d(ζ1, ζ2) = π|ζ1−ζ2 |, ∀ζ1, ζ2 ∈ V,
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where πϕ: L2(M) −→ L2(M) is the multiplicative self mapping defined by

πϕ(ζ) = ϕ · ζ, ∀ζ ∈ L2(M),

and |ζ | for a ζ ∈ L2(M) represents the absolute value of the function ζ. Then d is a C∗-avM and
C∗-avMS (V,C, d) is complete.

The following are some basic definitions and examples required to understand the theory in a better
way.

Definition 2.2. [14] A non-decreasing function function ϑ: [0,+∞) −→ [0,+∞) is called BGGF if
∀c ∈ [0,+∞),

σ(c) =
∞∑

i=0

ϑi(c) is finite,

where ϑ0(c) = c.

Definition 2.3. [16] A GF of order i ≥ 1 is a function ϑ: [0,+∞) −→ [0,+∞) satisfying

(i) ϑ(λc) ≤ λiϑ(c), ∀ c ∈ [0,+∞) and λ ∈ (0, 1);
(ii) ϑ(c) < c, ∀c ∈ [0,+∞) \ {0}.

Example 2.3. Every convex function ϑ on [0,+∞) such that ϑ(0) = 0 and ϑ(c) < c,∀c ∈ (0,∞), is a
GF on [0,+∞) of order 1.

Lemma 2.1. [16] Every GF of order i ≥ 1 on [0,+∞) is a BGGF on [0,+∞).

Definition 2.4. [2] A self mapping H: V −→ V is known as a Geraghty contraction in an arbitrary
metric space (V, d) if, for some mapping β: (0,+∞) −→ [0, 1),

lim
n→+∞

β(rn) = 1⇒ lim
n→+∞

rn = 0

satisfies
d(Hv1,Hv2) ≤ β(d(v1, v2))d(v1, v2), v1, v2 ∈ V.

Definition 2.5. [3] In an arbitrary metric space (V, d), let H be a self mapping and α: V × V −→
[0,+∞). Then, H is known to be α-admissible if

α(Hv1,Hv2) ≥ 1, whenever α(v1, v2) ≥ 1, ∀v1, v2 ∈ V.

Definition 2.6. [17] In an arbitrary metric space (V, d), let H be a self mapping. Then, there are
mappings α: V × V −→ [0,+∞), β ∈ B satisfying

α(v1, v2)d(Hv1,Hv2) ≤ β(M(v1, v2))M(v1, v2), v1, v2 ∈ V,

where
M(v1, v2) = max{d(v1, v2), d(v1,Hv1), d(v2,Hv2)}.

Then, H is known to be a α-Geraghty generalized contraction.
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3. Auxiliary results

Using the theory of C∗-algebra, we redefine some of the above definitions by replacing the co-
domain with a C∗-algebra. Some results are constructed using these definitions, and examples are
given. In a C∗-algebra C, let us define Cc, CI , and CIC by the subsets

{a ∈ C : ab = ba,∀ b ∈ C}, {a ∈ C : ab = ba,∀ b ∈ C and a ⪯ IC}

and
{a ∈ C : ab = ba,∀ b ∈ C and a ⪰ IC},

respectively, where IC is the unit element.

Definition 3.1. A function ϑ: Cc −→ Cc is called a C∗-algebra valued GF of order i ≥ 1 if

(i) ϑ(λc) ≺ λiϑ(c), ∀ c ∈ Cc and λ ∈ CI;

(ii) ϑ(c) ≺ c, ∀c ∈ Cc \ {θ}.

The following is an immediate lemma.

Lemma 3.1. From Definition 3.1, we can conclude that

(i) ϑ(0C) = 0C;
(ii) ϑ(c)

ci is non-decreasing on Cc \ {0C}.

Definition 3.2. A non-decreasing C∗-algebra valued GF ϑ: Cc −→ Cc is called a C∗-algebra valued
BGGF if, ∀c ∈ Cc,

σ(c) =
∞∑

i=0

ϑi(c) is finite,

where ϑ0(c) = c.

Now we present two examples of GFs.

Example 3.1. Let C = M2(R) then Cc is the collection of all diagonal matrices in M2(R). Suppose ϑ:
Cc −→ Cc is given by

ϑ

([
c 0
0 c

])
=

[
λc 0
0 λc

]
(0 < λ < 1), ∀c ∈ R.

Then, ϑ is a C∗-algebra valued GF on Cc.

Example 3.2. Letting

C = M2


0, (1

k

) 1
r−1


 (k > 0, r > 1),

then Cc is the collection of all diagonal matrices in M2

([
0,

(
1
k

) 1
r−1

))
. Suppose ϑ: Cc −→ Cc is given by

ϑ

([
c 0
0 c

])
=

[
kcr 0
0 kcr

]
, ∀c ∈

0, (1
k

) 1
r−1

 .
Then, ϑ is a C∗-algebra valued GF on Cc.
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The following are analogous lemmas we can derive from the theory discussed in the introduction
section.

Lemma 3.2. Every C∗-algebra valued GF of order i ≥ 1 on Cc is a C∗-algebra valued BGGF on Cc.

Proof. The proof can be done in a similar way to Proinov [16]. □

Lemma 3.3. From Definition 3.2, we can conclude that

σ(c) = σ(ϑ(c)) + c.

Proof. Since

σ(c) =
∞∑

i=0

ϑi(c) = ϑ0(c) +
∞∑

i=0

ϑi(ϑ(c)),

the proof is obvious. □

Lemma 3.4. From Definition 3.2, we can conclude that for every C∗-algebra valued GF function ϑ:
Cc −→ Cc,

σ(c) =
∞∑

i=0

λiϑi(c) is finite for every λ ∈ CI ,

where ϑ0(c) = c.

Proof. Since λ ∈ CI implies λ ⪯ IC and
∞∑

i=0
ϑi(c) is finite, the rest of the proof is obvious from the theory

of convergent series. □

Now we define C∗-algebra valued Geraghty contraction.

Definition 3.3. Let H be a self mapping in a C∗-avMS (V,C, d) and β : C+ \ {0C} −→ CI , where

lim
n→+∞

β(rn) = IC ⇒ lim
n→+∞

rn = 0C

satisfies
d(Hv1,Hv2) ⪯ β(d(v1, v2))d(v1, v2), ∀v1, v2 ∈ V.

Then, H is said to be a C∗-algebra valued Geraghty contraction.

From now on, we denote B as the set of maps β, defined in Definition 3.3. The following is an
example of a member of B.

Example 3.3. Let C = M2(R). Then, CI is the collection of all diagonal matrices with elements
from [0, 1) in M2(R). So, the β: C+ \ {0C} −→ CI functions given by

β

([
c 0
0 c

])
=

[ 1
1+c 0
0 1

1+c

]
, ∀c ∈ (0,+∞),

β

([
c 0
0 c

])
=

[ 1
ec 0
0 1

ec

]
, ∀c ∈ (0,+∞)

are members of B.
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Now we have the significant meaning of C∗-algebra valued α-admissibility.

Definition 3.4. Let H be a self mapping in a C∗-avMS and α: V × V −→ C. Then H is known to be
C∗-algebra valued α-admissible if, for all v1, v2 ∈ V,

α(Hv1,Hv2) ⪰ IC, whenever α(v1, v2) ⪰ IC.

For example, below H is a C∗-algebra valued α-admissible mapping.

Example 3.4. Let C = M2(R). Then, CIC is the collection of all diagonal matrices with elements
from [1,+∞) in M2(R). Also, let (V, d) be an arbitrary metric space, and for all the following pairs of
mappings H: V −→ V, α: V × V −→ C given by(

v3 +
7√v ;

[
v5

1 − v5
2 0

0 v5
1 − v5

2

])
,

(
3√v ;

[
ev1−v2 0

0 ev1−v2

])
and v4 + ln(v2 + 1) ;


v3

1
1+v3

1
−

v3
2

1+v3
2
+ 1 0

0 v3
1

1+v3
1
−

v3
2

1+v3
2
+ 1


 .

H is C∗-algebra valued α-admissible. Indeed, whenever

α(v1, v2) ⪰ IC =
[
1 0
0 1

]
,

we get

v5
1 − v5

2, v1 − v2,
v3

1

1 + v3
1

−
v3

2

1 + v3
2

+ 1 ≥ 1.

Now, if we apply the corresponding H and calculate α(Hv1,Hv2), we see α(Hv1,Hv2) ⪰ IC.

4. Main results

The following definition of (α, β)-Bianchini-Grandolfi gauge contraction of type I is one of our
primary definitions.

Definition 4.1. Let H be a self mapping in a C∗-avMS (V,C, d) and α: V × V −→ C. Then H is said to
be a C∗-algebra valued (α, β)-Bianchini-Grandolfi gauge contraction of type I if for all v1, v2 ∈ V and
for some β ∈ B,

d(Hv1,Hv2) ⪰ θ ⇒ α(v1, v2)d(Hv1,Hv2) ⪯ ϑ(β(d(v1, v2))d(v1, v2)). (4.1)

Here, ϑ: Cc −→ Cc is a C∗-algebra valued BGGF.

Now we prove one of our primary results.

Theorem 4.1. In a complete C∗-avMS (V,C, d), let H: V −→ V be a C∗-algebra valued
(α, β)-Bianchini-Grandolfi gauge contraction of type I. Then, H must have unique v∗ ∈ V such that
Hv∗ = v∗.
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Proof. Let v0 ∈ V be arbitrary and {vn} be the sequence defined by

vn = Hvn−1,∀n ∈ N.

Suppose there is a m ∈ N so that vm+1 = vm. Then Hvm = vm and vm is a fixed point. Now we
can assume the sequence {vn} is a sequence of distinct terms. Since H is a C∗-algebra valued (α, β)-
Bianchini-Grandolfi gauge contraction of type I, we have

d(vn, vn+1) ⪯ α(vn, vn+1)d(vn, vn+1)
= α(vn, vn+1)d(Hvn−1,Hvn)
⪯ ϑ(β(d(vn−1, vn))d(vn−1, vn))
= ϑ(λ(vn−1, vn)) λ = max

{vn}
β

⪯ λϑ(d(vn−1, vn)),

for any n ∈ N. For n = 1,
d(v1, v2) ⪯ λϑ(d(v0, v1)).

For n = 2,
d(v2, v3) ⪯ λϑ(d(v1, v2)) ⪯ λϑ(λϑ(d(v0, v1))) ⪯ λ2ϑ2(d(v0, v1)).

Continuing the process, we have

d(vn, vn+1) ⪯ λnϑn(d(v0, v1)),∀n ∈ N.

Now,

d(vn, vn+m) ⪯d(vn, vn+1) + d(vn+1, vn+m)
⪯d(vn, vn+1) + d(vn+1, vn+2) + d(vn+2, vn+m)
...

⪯d(vn, vn+1) + d(vn+1, vn+2) + · · · + d(vn+m−2, vn+m−1) + d(vn+m−1, vn+m)
⪯λnϑn(d(v0, v1)) + λn+1ϑn+1(d(v0, v1)) + · · · + λn+m−2ϑn+m−2(d(v0, v1))
+ λn+m−1ϑn+m−1(d(v0, v1))

=

n+m−1∑
j=n

λ jϑ j(d(v0, v1))

⪯

∞∑
j=0

λ jϑ j(d(v0, v1))

≺∞,

for any n,m ∈ N,m ≥ 2. Which shows that the sequence {vn} is Cauchy. Being (V,C, d) complete
C∗-avMS , there exist v∗ ∈ V so that {vn} converges to v∗, i.e.,

lim
n→∞

d(v∗, vn) = 0C.
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Again,

d(Hv∗, vn+1) ⪯ α(Hv∗, vn+1)d(Hv∗, vn+1)
⪯ ϑ(β(d(v∗, vn))d(v∗, vn))
⪯ β(d(v∗, vn))ϑ(d(v∗, vn))
⪯ β(d(v∗, vn))d(v∗, vn).

Limiting both sides, we have
lim
n→∞

d(Hv∗, v∗) = 0C ⇒ Hv∗ = v∗,

i.e., v∗ is a fixed point of H. Let v∗ and v∗∗ be two distinct fixed points of H. Then

d(Hv∗,Hv∗∗) ⪯ α(Hv∗,Hv∗∗)d(Hv∗,Hv∗∗)
⪯ ϑ(β(d(v∗, v∗∗))d(v∗, v∗∗))
⪯ β(d(v∗, v∗∗))ϑ(d(v∗, v∗∗))

⇒ d(v∗, v∗∗) ⪯ β(d(v∗, v∗∗))d(v∗, v∗∗).

This implies
β(d(v∗, v∗∗)) ⪰ IC,

a contradiction. So, v∗ is unique in V so that Hv∗ = v∗. □

The example below demonstrates Theorem 4.1.

Example 4.1. Let V = [1,+∞), C = M2(R), and d: V × V −→ C be described as

d(v1, v2) =
[
|v1 − v2| 0

0 |v1 − v2|

]
.

Now, the mapping H: V −→ V given by

Hv =
1
2

(
v + 1

v
+ 1

)
is such that

d(Hv1,Hv2) =

1
2

∣∣∣∣ v1+1
v1
−

v2+1
v2

∣∣∣∣ 0

0 1
2

∣∣∣∣ v1+1
v1
−

v2+1
v2

∣∣∣∣


=

1
2

∣∣∣∣ v2−v1
v1v2

∣∣∣∣ 0

0 1
2

∣∣∣∣ v2−v1
v1v2

∣∣∣∣


⪯

1
2
|v1−v2 |

1+|v1−v2 |
0

0 1
2
|v1−v2 |

1+|v1−v2 |

 , ∀v1, v2 ∈ V.

That is, for

α(v1, v2) =
{

IC, v1 ∈ V,
0C, otherwise,
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ϑ

([
c 0
0 c

])
=

[ c
2 0
0 c

2

]
, ∀

[
c 0
0 c

]
∈ C

and

β

([
c 0
0 c

])
=

[ 1
1+c 0
0 1

1+c

]
, ∀

[
c 0
0 c

]
∈ C+ \ {0C},

H satisfies all conditions of Theorem 4.1, having a unique fixed point.

We now present the definition of C∗-algebra valued (α, β)-Bianchini-Grandolfi gauge contraction of
type II.

Definition 4.2. Let H be a self mapping in a C∗-avMS (V,C, d) and α: V × V −→ C. Then H is said to
be a C∗-algebra valued (α, β)-Bianchini-Grandolfi gauge contraction of type II if for all v1, v2 ∈ V and
for some β ∈ B, d(Hv1,Hv2) ⪰ θ implies

α(v1, v2)d(Hv1,Hv2) ⪯ ϑ(β(m(v1, v2))m(v1, v2)), (4.2)

where ϑ: Cc −→ Cc is a C∗-algebra valued BGGF and

m(v1, v2) = max{d(v1, v2), d(v1,Hv1), d(v2,Hv2)}.

The result below utilizes (α, β)-Bianchini-Grandolfi gauge contraction of type II.

Theorem 4.2. In a complete C∗-avMS (V,C, d), let H: V −→ V be a C∗-algebra valued
(α, β)-Bianchini-Grandolfi gauge contraction of type II. Then H must have unique v∗ ∈ V such that
Hv∗ = v∗.

Proof. Let v0 ∈ V be arbitrary and {vn} be the sequence defined by

vn = Hvn−1, ∀n ∈ N.

Suppose there is some m ∈ N such that vm+1 = vm. Then Hvm = vm and vm is a fixed point. Now
we can assume the sequence {vn} is a sequence of distinct terms. Since H is a C∗-algebra valued
(α, β)-Bianchini-Grandolfi gauge contraction of type II, we have

d(vn, vn+1) ⪯ α(vn, vn+1)d(vn, vn+1)
= α(vn, vn+1)d(Hvn−1,Hvn)
⪯ ϑ (β(vn−1, vn) max{d(vn−1, vn), d(vn−1,Hvn−1), d(vn,Hvn)})

= ϑ(λmax{d(vn−1, vn), d(vn, vn+1)})) λ = max
{vn}

β ⪯ 1

⪯ λϑ(max{d(vn−1, vn), d(vn, vn+1)})),

for any n ∈ N. Letting
max{d(vn−1, vn), d(vn, vn+1)} = d(vn, vn+1),

then

d(vn, vn+1) ⪯ λϑ(d(vn, vn+1)) ⪯ λd(vn, vn+1).
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This implies λ ⪰ IC, a contradiction. So,

max{d(vn−1, vn), d(vn, vn+1)} = d(vn−1, vn)

and
d(vn, vn+1) ⪯ λϑ(d(vn−1, vn)),

for any n ∈ N. For n = 1,
d(v1, v2) ⪯ λϑ(d(v0, v1)).

For n = 2,
d(v2, v3) ⪯ λϑ(d(v1, v2)) ⪯ λϑ(λϑ(d(v0, v1))) ⪯ λ2ϑ2(d(v0, v1)).

Continuing the process, we get

d(vn, vn+1) ⪯ λnϑn(d(v0, v1)), ∀n ∈ N.

Now,

d(vn, vn+m) ⪯d(vn, vn+1) + d(vn+1, vn+m)
⪯d(vn, vn+1) + d(vn+1, vn+2) + d(vn+2, vn+m)
...

⪯d(vn, vn+1) + d(vn+1, vn+2) + · · · + d(vn+m−2, vn+m−1) + d(vn+m−1, vn+m)
⪯λnϑn(d(v0, v1)) + λn+1ϑn+1(d(v0, v1)) + · · · + λn+m−2ϑn+m−2(d(v0, v1))
+ λn+m−1ϑn+m−1(d(v0, v1))

=

n+m−1∑
j=n

λ jϑ j(d(v0, v1))

⪯

∞∑
j=0

λ jϑ j(d(v0, v1))

≺∞,

for any n,m ∈ N,m ≥ 2, which shows that the sequence {vn} is Cauchy. Being (V,C, d) complete
C∗-avMS , there exist v∗ ∈ V so that {vn} converges to v∗, i.e.,

lim
n→∞

d(v∗, vn) = lim
n→∞

d(v∗, vn+1) = 0C.

Again,

d(Hv∗, vn+1) ⪯ α(Hv∗, vn+1)d(Hv∗, vn+1)
⪯ ϑ(β(d(v∗, vn)) max{d(v∗, vn), d(v∗,Hv∗), d(vn,Hvn)})
⪯ β(d(v∗, vn))ϑ(max{d(v∗, vn), d(vn, vn+1)})
⪯ β(d(v∗, vn)) max{d(v∗, vn), d(vn, vn+1)}.
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Limiting both sides, we have
lim
n→∞

d(Hv∗, v∗) = 0C ⇒ Hv∗ = v∗,

i.e., v∗ is a fixed point of H. Let v∗ and v∗∗ be two distinct fixed points of H. Then

d(Hv∗,Hv∗∗) ⪯ α(Hv∗,Hv∗∗)d(Hv∗,Hv∗∗)
⪯ ϑ(β(d(v∗, v∗∗)) max{d(v∗, v∗∗), d(v∗,Hv∗), d(v∗∗,Hv∗∗)})
⪯ β(d(v∗, v∗∗))ϑ(d(v∗, v∗∗))

⇒ d(v∗, v∗∗) ⪯ β(d(v∗, v∗∗))d(v∗, v∗∗).

This implies β(d(v∗, v∗∗)) ⪰ IC, a contradiction. So, v∗ is unique in V such that Hv∗ = v∗. □

Now we illustrate an example satisfying Theorem 4.2.

Example 4.2. Let V = [0, 1], C = M2(R), and d: V × V −→ C be given by

d(v1, v2) =
[
|v1 − v2| 0

0 |v1 − v2|

]
.

Now, the mapping H: V −→ V, given by

Hv =
{ v

3 , v ∈ [0, 1),
1
6 , v = 1,

is such that

d(Hv1,Hv2) =


∣∣∣∣ v1−v2

3

∣∣∣∣ 0

0
∣∣∣∣ v1−v2

3

∣∣∣∣


⪯

[7
8

m(v1,v2)
em(v1 ,v2) 0

0 7
8

m(v1,v2)
em(v1 ,v2)

]
,

∀v1, v2 ∈ V, where
m(v1, v2) = max{|v1 − v2|, |v1 − Hv1|, |v2 − Hv2|}.

That is, for

α(v1, v2) =
{

IC, v1 ∈ V,
0C, otherwise,

ϑ

([
c 0
0 c

])
=

[7c
8 0
0 7c

8

]
, ∀

[
c 0
0 c

]
∈ C

and

β

([
c 0
0 c

])
=

[ 1
ec 0
0 1

ec

]
, ∀

[
c 0
0 c

]
∈ C+ \ {0C}.

H satisfies all requirements of Theorem 4.2, having a unique fixed point.

The following are some consequent results that can be easily obtained from Theorems 4.1 and 4.2.
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Corollary 4.1. In a complete C∗-avMS (V,C, d), let H be a self mapping and α: V × V −→ CIC . Let
self-mapping H be such that, for all v1, v2 ∈ V and for some β ∈ B, d(Hv1,Hv2) ⪰ θ implies

α(v1, v2)d(Hv1,Hv2) ⪯ ϑ(β(m′(v1, v2))m′(v1, v2)), (4.3)

here, ϑ: Cc −→ Cc is a C∗-algebra valued BGGF and

m′(v1, v2) = max
{

d(v1, v2), d(v1,Hv1),
d(v1,Hv1)d(v2,Hv2)

d(v1, v2)

}
.

Then, there is unique v∗ ∈ V such that Hv∗ = v∗.

Corollary 4.2. In a complete C∗-avMS (V,C, d), let H be a self mapping and α: V × V −→ CIC . Let
self-mapping H be such that, for all v1, v2 ∈ V and for some β ∈ B, d(Hv1,Hv2) ⪰ θ implies

α(v1, v2)d(Hv1,Hv2) ⪯ ϑ(β(m′′(v1, v2))m′′(v1, v2)), (4.4)

here, ϑ: Cc −→ Cc is a C∗-algebra valued BGGF and

m′′(v1, v2) = max
{

d(v1, v2), d(v1,Hv1), d(v2,Hv2),
d(v1,Hv2)d(v2,Hv1)

d(v1, v2)

}
.

Then, there is unique v∗ ∈ V such that Hv∗ = v∗.

Corollary 4.3. In a complete C∗-avMS (V,C, d), let H be a self mapping and α: V × V −→ CIC . Let
self-mapping H be such that, for all v1, v2 ∈ V and for some β ∈ B, d(Hv1,Hv2) ⪰ θ implies

α(v1, v2)d(Hv1,Hv2) ⪯ ϑ(β(m′′′(v1, v2))m′′′(v1, v2)), (4.5)

here, ϑ: Cc −→ Cc is a C∗-algebra valued BGGF and

m′′′(v1, v2) = max
{

d(v1, v2), d(v2,Hv2),
d(v1,Hv1)d(v1,Hv2) + d(v2,Hv2)d(v2,Hv1)

d(v1,Hv2) + d(v2,Hv1)

}
.

Then, there is unique v∗ ∈ V such that Hv∗ = v∗.

Corollary 4.4. In a complete C∗-avMS (V,C, d), let H be a self mapping and α: V × V −→ CIC . Let
self-mapping H be such that, for all v1, v2 ∈ V and for some β ∈ B, d(Hv1,Hv2) ⪰ θ implies

α(v1, v2)d(Hv1,Hv2) ⪯ ϑ(β(m′′′′(v1, v2))m′′′′(v1, v2)), (4.6)

here, ϑ: Cc −→ Cc is a C∗-algebra valued BGGF and

m′′′′(v1, v2) = max
{

d(v1, v2), d(v1,Hv1),
d(v2,Hv2)(1 + d(v1,Hv1))

1 + d(v1, v2)

}
.

Then, there is unique v∗ ∈ V such that Hv∗ = v∗.

Remark 4.1. In [10], the authors demonstrated that the notion of C∗-avM is a not so great
generalization in metric fixed point theory. The authors proved that by utilizing a homeomorphism,
the Banach mapping principle in the C∗-avMS can be converted to the same in real metric spaces. In
our case, we used three auxiliary functions, namely α, β, and ϑ, to define (α, β)-Bianchini-Grandolfi
gauge contraction of type I and type II. Following the method of proving the result in [10], we see that
the homeomorphism will not work in our contractions.
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5. Application

In addition to being useful in dynamical systems, engineering, computer science, game theory,
physics, neural networks, and many other fields, fixed point theory is also used to solve differential
and integral equations, which are utilized to explore the solutions of many mathematical models. We
discover a result for a particular type of the following integral in a finite measurable set M as an
application of Theorem 4.1:

v(t) =
∫
M

F(t, s, v(s))ds + g(t), t, s ∈ M, (5.1)

where F: M × M × R −→ R and g ∈ L∞(M).

Now, considering the complete C∗-avMS (V,C, d) as in Example 2.2, if we define a self mapping
H: V −→ V by

Hv(t) =
∫
M

F(t, s, v(s))ds + g(t); t, s ∈ M, ∀v ∈ L∞(M),

then determining the presence of a solution to (5.1) is analogous to determining the presence of a fixed
point in H.

We now state and support our conclusion:

Theorem 5.1. The integral equation of type (5.1) has a unique solution if F: M×M×R −→ R satisfies

|F(t, s, v1(s)) − F(t, s, v2(s))| ≤
λ

m
e−||(v1−v2)||||v1 − v2||,

where |λ| < 1 and m =
∫
M

ds.

Proof. For any ϕ ∈ L2(M), we get

d(Hv1(t),Hv2(t)) = π|Hv1(t)−Hv2(t)|

= π∣∣∣∣ ∫
M

F(t,s,v1(s))ds−
∫
M

F(t,s,v2(s))ds

∣∣∣∣
= π∣∣∣∣ ∫

M
(F(t,s,v1(s))−F(t,s,v2(s)))ds

∣∣∣∣
= ϕ ·

∣∣∣∣ ∫
M

(F(t, s, v1(s)) − F(t, s, v2(s)))ds
∣∣∣∣

with
||d(Hv1(t),Hv2(t))|| =

∣∣∣∣∣∣∣∣ ∫
M

(F(t, s, v1(s)) − F(t, s, v2(s)))ds
∣∣∣∣∣∣∣∣,

and for
ϑ(c) = λc (||λ|| < IC), β(c) = e−c,
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we have

||ϑ(β(d(v1, v2)d(v1, v2))|| = ||λβ(d(v1, v2)d(v1, v2)||
= ||λe−d(v1,v2)d(v1, v2)||
= ||λ|| ||e−(v1−v2)|| ||v1 − v2||.

Hence, for

α(v1, v2) =
{

IC, v1 ∈ L∞(M),
0C, otherwise,

we have

||α(v1, v2)d(Hv1(t),Hv2(t))|| ⪯ ||d(Hv1(t),Hv2(t))||

=
∣∣∣∣∣∣∣∣ ∫

M

(F(t, s, v1(s)) − F(t, s, v2(s)))ds
∣∣∣∣∣∣∣∣

⪯

∫
M

||(F(t, s, v1(s)) − F(t, s, v2(s)))||ds

⪯

∫
M

||
λ

m
|| e−||v1−v2 || ||v1 − v2||ds

⪯ ||
λ

m
|| ||e−(v1−v2)|| ||v1 − v2||

∫
M

ds

⪯ ||ϑ(β(d(v1, v2)d(v1, v2))||.

Thus, by Theorem 4.1, there is unique v∗ ∈ L∞(M) with Hv∗ = v∗, i.e., there exists a unique solution
of (5.1). □

Example 5.1. Consider a finite measurable set M = [0, 1] and the complete C∗-avMS (V,C, d) as in
Example 2.2. If

F(t, s, v(s)) = (t − s)v(s), g(t) = t2,

for all s, t ∈ M, problem (5.1) will become nontrivial. Now, considering α, β, and ϑ same as in the
proof of Theorem 5.1, we see the problem satisfies Theorem 5.1 for m = 1 and

||e−(v1−v2)|| < λ < 1.

Clearly, we obtain

v(t) = t2 +
3

13
t −

17
78

as the unique solution of the nontrivial problem.

6. Conclusions and open problems

Since the concept of the C∗-avMS is a relatively recent addition to the body of literature, in this
paper, we expanded the redefined definitions of the gauge function, BGGF, α-admissibility, Geraghty
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contractive mapping, and (α, β)-admissible mapping in a C∗-algebra sense. Utilizing these definitions,
we presented two types of (α, β)-Bianchini-Grandolfi gauge contractions. We then demonstrated our
primary findings in a C∗-avMS , which require functions meeting our contraction criterion to have a
single fixed point. These findings generalized a few findings of [2–4,8,14,16] in the C∗-algebra sense.
We also provided examples to clarify our results. Finally, using our primary finding, we investigated if
a solution to an integral equation exists and is unique.

We have the following open problems:

(i) Can the primary findings of this study be expressed in terms of a lattice in place of the underlying
C∗-algebra?

(ii) As in [10], is it possible to derive our contraction results?
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