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1. Introduction

In the past few decades, fractional calculus has been widely used in fields such as science and
engineering. Many natural systems can be properly modeled by a nonlinear differential equation in the
real world, such as neural networks [1], control systems [2, 3], disease models [4], blood production in
leukemia patients (Mackey- Glass model) [5], and population dynamics [6]. Compared with classical
integer-order systems, fractional systems can more accurately describe the memory characteristics of
various materials and processes.

In recent years, g-calculus has been widely used in various areas, such as, in the approximation
theory [7], number theory [8], quantum theory [9], and physics [10]. In 2010, the authors (see [11,12])
introduced (g, h)-calculus as an extension of the basic notions of discrete fractional calculus. Since
then, new results involving (g, h)-calculus have continued to emerge [13-15].

The existence and uniqueness of solutions are the basis for studying the stability problem, but they
are easily neglected. We can mention [2, 3, 16-23], references therein, etc. However, as far as we
know, most nonlinear functions are already mentioned in the existing literature. Fractional difference
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systems are Lipschitz continuous. The results of the uniqueness theorem for solutions to non-Lipschitz,
nonlinear fractional difference equations are rare. In [24], applying the fractional Bihari inequality,
the authors investigated the uniqueness theorem of the Caputo difference equation. Motivated by the
above discussion, the uniqueness theorem of solutions of fractional (g, #)-difference equations with
non-Lipschitz nonlinearities is given in this paper.

Owing to Lazarevic’s remarkable and seminal works [25-27], more and more scientists have
become increasingly interested in the finite-time stability analysis of fractional delay systems. Since
stability analysis is critical in fractional systems, many experts and scholars are dedicated to studying
methods of stability analysis, such as Lyapunov’s method [28], the Gronwall inequality [29-33], the
fractional Fourier transform [34], and Mittag-Leffler matrix functions [35].

In our paper, with the aid of the discrete (g, h)-fractional Bihari inequality, we apply a new method
to study the finite-time stability of the (g, h)-fractional difference equation (1.1)

SV XD = gx(®), 1€ Ty, (1.1)
x(a) = xo,

where 0 < p < 1, g : R — [0, +00), x(1) : T() = R, T € T(').

Remark 1.1. In [36], fractional Bihari difference inequalities were studied. In our paper, a discrete
fractional Bihari inequality with a (q, h) time scale is generalized and developed. Unlike the case
in [36], where the existence of the inverse function of the function ® was not clarified, the proof of
discrete (q, h)-fractional Bihari inequality in our paper is more complete and precise.

The rest of this paper is organized as follows: In Section 2, fundamental concepts of discrete
fractional calculus on (g, h)-time scales are illuminated. In Section 3, the discrete (g, h)-fractional
Bihari inequality is generalized. In Section 4, the uniqueness and finite-time stability of solutions
of fractional (g, h)-difference equations with non-Lipschitz and nonlinear conditions are obtained.
In Section 5, an example of a non-Lipschitz condition is presented to illustrate the validity of our
conclusion numerically.

2. Preliminaries

In this section, fundamental concepts and conclusions about fractional (g, h)-difference are
illuminated.
For any s,t € R, one has
Ny:i={s,s+1,s+2,...},
N o={s,s+1,5s+2,...,1}, ift—seNy,
otherwise, N := 0.

Definition 2.1. [/2] Let ty > 0 and h > 0. For q > 1, the (q, h)-time scale is given by

h
O, = {tog" + [mlgh,m € Z} U {:1} 2.1)
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where [m], := qqm%ll, [m]; := m. Particularly, the (1, h)-time scale is given by Téﬂ’h) = {to + mh,m € Z}.

Letty>0,g>1,h>0,anda € TE"q " with a > %}. Restrictions of the time scale Tzoq ) are given as

ToS =t e T 01 2 (@), fori=0,1,2,... (2.2)
i T =L €T, 0(@) <1< M}, for M € T (2.3)

Here, 0°(a) = a and o(a) = o(0"~!(a)) for i € N, (analogously for p).

Definition 2.2. [37] Assume x: ’]I‘g,h) — R. Then the nabla (q, h)-derivative of the function x can be
defined by

x(1) — x(p(1)) _ x(1) — x(q(z — h))
(1) (0 =t+gh

where g = }1 o(t)y=qt+h, p(t) =gt —h), v(t) =t —p(t) = (1 — )t + gh.

(2.4)

V(q,h))(,'(t) =

o) = 0o @), PO = "), m=0,1,--
The two standard notations above can help us obtain the following equalities:

o) = q"t+[mleh, p"(1) = q7"(t = [m]4h).

Remark 2.3. Fort € T | the following equalities hold:

(¢:hy
D v () = ¢ (g - Dt + h);
2) v(p' (o (1)) = V(o (1)).

Definition 2.4. [12]1'; is the q-Gamma function, which is introduced as

~ _anlex
= EDM D7 pyo,-1,-2,- ), 2.5)

(G @

where (a,9) = | [(1 - ag").
k=0
For x € R and k € Z, the g-binomial coeflicient is defined by

H . Ci(x+1)

k|, Tkt D —k+ 1) 26

Definition 2.5. [12] The u-th power function on TZ‘;J[) is defined as

=)y = (=D, 6TeTp,, 2.7)
v(s)

where [s] is given by [s] := s + hg/(1 — @) = iz and u € R.
The u-th nabla fractional (g, h)-Taylor monomial on T?z);,h) is given by

. (t— 9,
h(t,s) = —22  fseTo | 2.8
(2, 5) T ) se€Tg, (2.8)

1

where u € R, g = 7
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Lemma 2.6. Letu # —1,-2,-3,---. Fors € TZ[(Z)) the following fractional equalities can be derived:

(1) (s, 5) = 0; (2) Vguhu(s.7) = =hucr (5, 0(0); (3) [ (s, o)V gy = By (s, a).
Lemma 2.7. ( [12] g-Pascal rules) Property of the g-binomial coefficients:

m m-—1 alm-=1
A RN e
g q q

Lemma 2.7 is valuable in proving the monotony of the function @ in Eq (3.1).

Definition 2.8. [12] Assume f : TZI(’;’; — Rand s = 0™(a), m > 1. Then, the nabla (g, h)-integral of
f from a to s is defined by

f J@OVT = Zf (T (@)v(o”(a)) (2.10)

j=1
with the standard convention that fa ¢ f(@)Vr =0.

Definition 2.9. [12] The definition of u-th (u € R*) nabla (g, h)-fractional integral is given by
V@ = f hy1(1,p(D) f(T)VT = Z hy-1(0"(@), o~ (@) f (o (@) V(o (a)). (2.11)
a =1

Definition 2.10. [/2] The u-th (im — 1 < u < m,m € Z*) Riemann-Liouville (R-L) nabla (g, h)-
fractional difference of function f can be defined by

Vi@ = V5V f (). (2.12)
Particularly, for 0 < u < 1, one has
Vg ® = VinaV " fO). 2.13)

Definition 2.11. [12] The u-th (m — 1 < u < m,m € Z*) Caputo nabla (q, h)-fractional difference of
function f can be introduced as

SV (0 = VOV (). (2.14)

Particularly, for O < u < 1, one has
svilq,h)f(t) = av(_q(’;'u)v(q’h)f(l).

Lemma 2.12. [38, Theorem 3.39] Given two functions u,v : TZ](‘,?) — R. Then, the integration by
parts formula in fractional calculus is obtained as

! !
f () ViV g = u(@v(©)|._ ~ f VOV @MV g7, 1€ THD. (2.15)
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Lemma 2.13. Assume O <u < 1,andy : T( n — R Then,

SV (D = —h (1, a)y(a) + f | G OO
Proof. By Definition 2.11, one has
SVE YO = VOV ()
= fu t iz_y(t, PNV g y($)Vigms
@15 fa t By (8, (Y)Y gy S + hy(t, S>y(s)|§:a

_ f e (s (Y g — st Y@,

a
where, by convention, fz_#(t, Hn=0

Lemma2.14. [I12]IfucR,t,s € T  t=0"(s) (n € N), then,

(q.hy

hu(t, s) = (VDY

u+n 1]
1 .
q

Lemma 2.15. [38] Assume x : T(\) — R, and v, > 0. Then,

aVignaV iy (D = a¥ 4y X(0).

Lemma 2.16. [38] For p-th(m -1 <u <m,m € Z*), and x : T - R, it follows:

(g1

~(m—p1) m- _
Vo V() = X(0),

Lemma 2.17. [37] Foru-th(m—1<u<m,meZ"), and x : T( h)—>R, one has

oV SV X(8) = X(1) = x(@).

From Lemmas 2.13 and 2.14, we have the following lemma:

Lemma 2.18. Assume x : Tg](% — Randt=0"(a), n>1,0<u<1. Forn>1, it follows:
CVH 5 (0) = (@) x(0" (@) - (e @)y | H T 1] x(@)
q

—u+i—1

n—1
+ > e @)™
i=1

] x(a" (@)v(o"(@)).
7

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

AIMS Mathematics Volume 9, Issue 6, 15132-15148.



15137

Proof. For simplicity, we denote x(c”(a)) := x(n). Owing to Lemma 2.13, it follows:

CVE () = =h_ (. )y(a) + f heyi1 (0 (DY) Vi

= —h (@), a)x(@) + ) h (@), o (@)x(o (@)v(e (@)
i=1

= —h_, (0" (a),a)x(a) + h_,_ (0" (a), o (@)v(0”"(a))x(n)

n—1 .
+ ;ww"(a»)—“-l T 1L X" (@)W (@)).
—p+n—1
= (M (@) (@) = (e @) | T } x(@)
q
n—1 .
+ ;(v(an(a)))_" | +l.l - 1L x(o" (a)v(o” ().

O

Lemma 2.19. Let u(c*(a)) and v(c"(a)) be nonnegative functions, § > 0 and n € N,. If u(c'(a)) <
v(oi(a)) for 1 <i < n, then,
V(@) < V7 V(0" (@).

Proof. Owing to Definition 2.9, one has

"(a)
aV(_qIB,h)u(O'n(a)) = f hﬁ—l (O-n(a)a p(S))I/t(S)V(q,h)S

> hs(@(@), o @)@ (@ @)
i=1

n—1
D (@@, o @@ @)m(e(@) + (o @)Yu(e (@).
i=1

Similarly, we can derive

n—1
Ve (@) = Z hy-1 (0 (@), @)V (@)WV( (@) + (VT (@) Pr(a”(a)).
i=1

Forp>0,1 <i<n-1,ithas

) | | L
hy1 (o (@), 0 @) "2 (07 (@) [ﬂ ot l]
Li(v+n—1)

26 o -1
=" (V" (a)) T;(n—i+ DTy(B)

1@ Do, Do
(@, @)oo

25)

= (v(d"(@))”
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T =g [T, = 79 .

1 aLls 0.
Hk:O(l _ qﬂ+n—t+k)

= (0" (@)Y~

Thus, for 1 <i <n -1, one has

hg_1(0”"(a), 7 (@)u(T (@)W((a)) < -1 (0 (@), 7 (@)( (@)V(o(a)),
and
(o (@)Y u(c(a)) < (0" (@)’v(o” ().

Therefore, aV(_‘f h)u(O'"(a)) < aV(_f h)v(O'”(a)). O
3. Discrete (g, h)-fractional Bihari inequality

In this section, a new (g, h)-fractional Bihari inequality is developed.
According to the proof of Lemma 3.1 of [24], the discrete (g, h)-fractional Bihari inequality can be
further generalized as follows:

Lemma 3.1. Assume x : [0,00) — [0,00), 0 < u < 1. Let x be a continuous and nondecreasing
function with x(0) = 0. For any positive sequence {V(c"(a))|n € Ny}, ®(u) is a solution to Eq (3.1),

vt V(o"(a))
Con n _a (g,h)
a Vign V(@' (@)) = x(V(o™(a)))

3.1

If 0 < my < my, then ®(my) < O(my).

Proof. For simplicity, we denote V(c(a)) := V;, where i € {0,1,2,3,--- ,n}.
By Lemma 2.18, it follows:

—u—1
VW @(V,) = (@) *O(V,) — (Vo (@) ™ [” n/j : ] D(Vy)
q

n-1 .
g —H-1 i- H= 1 n—i
+ ;(v(cr (@)™ [ P, W (@) D(V,_,),

(n—u—1
5Wﬁwz=ww%m»wufwwv%m»ﬂ”nflL%

n—1 7
e [T =1 n—i
+;Mw@»”[ P e @V

According to Eq (3.1), one has

n—u—1
n—1

(" (@) FO(V,) = (o (@) [ ] (Vo)
q

n—1 .
+;Mwwwwrﬂf1yWWm@w»

q
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= (W(c"(@) ™"V, = (W(a" (@) [” ;ﬁ I 1] Vo
g

n—1 .
n —p-1 |t M~ 1 n—i )
+ Zl](v(cr (@) [ ; L Yo" @)V,
which leads easily to

O(V,) =

i o)

PoH- ] (@) V(" ’(a))(

1

RO - (V)

In particular, we take a sequence {V} that satisfies the following conditions:

V. = my, 1f0$]$n—1,
P my, if j>n,

where 0 < my < m;.
For 0 < m, < my, attending to Eq (3.2), it follows:

O(my) = O(V,)
__m +[n—,u—1] (d)(mz)— m )
q

x(my) n-1 x(my)
n—1 . 1
sy TR ] (0" @) (o @) )
i=1 q
n—1

_ m my i_lu_l n -1 n—i _ n_lu_l
B x(mz) " X(M2)(;[ i L (V(O- (a))) V(O- (a)) [ n—1 L)

n—-1r.

+ @(m) - Zl [l T 1]~ @) o my + | IL)
n—1 i— — - 1
- x(mz) x(mz) ; [ ; ] v(o"(@) " v(p' (0" (a))) - [ 1 L)

+ @0 - [ l 1] M@)o (" (@) +

n—u-— 1])
n—1 |
g

Remark232) My My (" [i—,u—l] N,-_[n—,u—l])

x(my)  x(my) — i n-1
n—1r.
+c1>(m1)(—2[’_‘;_ !
q

~I

n—u—1
a+ n—1 ])
i=1 q

@9 My ("1[1 ,u] nl[' ,u—l] _[n—,u—l])
x(mg) x(mz)l _ - i—1 . n-1 i

=

(3.2)
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n—1 n—1
i— i—u— n—u—1
+@0m) - Z[ RO [y ] [ o ])
i= i=1 q q
myp m
= O(m;). (3.3)
xm)  xm)
Thus, for 0 < m, < my, one has ®(m,) < ®(m;). The proof is completed. ]

Remark 3.2. If0 < my < my, and ®(my;) is defined as (3.3), one has

lim ®(my) = —oo,

m2—>0+

which is critical in the proof of the uniqueness theorem.
Remark 3.3. According to equality (3.2), we can clarify the existence of a solution to Eq (3.1).

Theorem 3.4. (Discrete (g, h)-fractional Bihari inequality) Suppose 0 < u < 1, u(?) : T?q,h) —

[0, +00), and ¢ > 0 is a constant. Assume [0, +o0) — [0, +00), and ¢ is a continuous and nondecreasing
Sfunction with ¢(0) = 0. If

u(t) <c+ aV{: pdW(0), 1€, h)TO'(a)’ (3.4
=0 (a)
where T € T( oy then,
u(t) < qr‘(cp(c) T, a)), re gt (3.5)
where ®(u) is a solution to
V(o"(a))
SV V(@) = Vs
@ ¢(V( o"(a)))
for any positive sequence {V(0"(a))|n € Ny}.
Proof. Let v(¢) be the right-hand side of the inequality (3.4), namely
V(t) =c+ V( h)¢(u(t))’ te (q h)TO'(a)
It follows that
ut) <v(t), teq, h)T(,(a) (3.6)
Fort e ,,)TU( )» one has
VeV = Ve V()

= T V(e + oV pu)

1-1) _
= Ve VanaV g @u@)

O UV ()
= o).
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Combining the monotonicity of ¢ and the inequality (3.6) yields

EvE (D) < ¢((D),  t € uwTh

(g.h) 4ON

Therefore,

V¥ @ L 90@) _

et D) = . t€gnThe (3.7)
N 00 = 600) e
Using Lemma 2.19 on the inequality (3.7), one has
V(_q” h)gV’(‘ 2 P(D) < h(t,a), te, h)To'(a)’ (3.8)
where we use
t
~ Lem.2.6 4
Y ;‘h)l = fo hy 1 (8, p(O)Vimt = hy(t,a).
By Lemma 2.17, we get
O(v(1)) < D(v(a)) + hy(t,a), te h>TG(a) (3.9)
Using the monotonicity of ® and the inequality (3.9) obtains
W) < cD—l(cD(v(a)) Ty, a)), t€ @il
Consequently,
u(t) < (1) < (D_l(cl)(c) ht, a)), t€ @il
This completes the proof. O

4. Applications of discrete (g, h)-fractional Bihari inequality

In this section, by using the discrete (g, h)-fractional Bihari inequality, the uniqueness and finite-
time stability of solutions to the fractional (g, h)-difference equation are derived.
Consider the fractional (g, h)-difference initial value problem

cVEYD = g0, 1€ @inThg, (4.1)
y@ = yo,

where 0 < p < 1, g : R — [0, +00), y() : T(}) - R, T € T()).

Theorem 4.1. (Uniqueness theorem) If a solution of the (q,h)-fractional difference initial value
problem (FDIVP) (4.1) exists, then the Eq (4.1) has a unique solution on h)T if the function f
satisfies:

o(a)

lg(r(®) = G| < ¢(ly(®) = 3D, (4.2)

where ¢(u) : [0, c0) — [0, 00), ¢ is a continuous and nondecreasing function with ¢(0) =

AIMS Mathematics Volume 9, Issue 6, 15132-15148.
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Proof. Assume that y(¢) and y(¢) are solutions of Eq (4.1). Applying the operator V( - on both sides
of Eq (4.1), we obtain:

Ve VoD = ¥(0) = yo = oV, g0,

which implies

Y(®) = Yo + oV g1, 8(D)).
Similarly, we get

(1) = yo + aV ;) 8F@)).
Thus,

Iv(#) — y(t)l < V(q 180(1) — gD
Vandy@® = 5D
<e+aV,oly® - F@.

Due to Theorem 3.4, it becomes
() — 50| < cb—l(cb(g) T ht, a)), t€ @l
where ®(u) is a solution of
V(od"(a))
v OV (@) =
@) </>(V( "(a)))

for any positive sequence {V(o0"(a))|n € Ny}. According to Remark 3.2, one has

lim ®(e) = -

-0+

From here, it follows:
flim o7 1(¢) =

Hence,

lim &) + () = 0 4.3)
fort € h)TO'(a) Since ¢ is arbitrary, Eq (4.3) means that y(r) = y(z) for t € h)TO'(a) Thus, the
uniqueness theorem is proved. i

Definition 4.2. [27,32] The fractional difference initial value problem (4.1) is finite-time stable w.r.t.
{T, 0, €} with 0 < 6 < € if and only if ||xo|| < ¢ implies ||x(¢)|| < € for any t € (qh)T

o(a)*
Theorem 4.3. Let O < u < 1 and g : R — [0, +00), where g is a continuous and nondecreasing
Sfunction with g(0) = 0. If

(4.4)

forO<d<eand T € TE’(Z)), then the system (4.1) is finite-time stable w.r.t {T, 6, €}, where P(u) is a
solution of

6+ ¢(5)]//\la(h a)<e te€ (4 h)T

o(a)’

V(e (@)
C n (q h)
N PV @) == aa)

for any positive sequence {V(c"(a))|n € Ny}.

AIMS Mathematics Volume 9, Issue 6, 15132-15148.
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Proof. Applying the operator V( 1 on both sides of (4.1) yields
VS Viny(® = (1) = yo = oV 2, 20,

which implies
YOI < ol +1aV g 80O < 6 + .V g(y(DD.

According to Theorem 3.4, one has

o(a)’

()] < ‘I’“(‘P(d) T, a)), te qnl!

where W(u) is a solution of

V(o' (a))
CyoH n (q h)
« Vi PV (@) = g(V(cT”(a)))

for any positive sequence {V(0"(a))|n € Ny}.
Formula (3.3) and inequality (4.4) lead to

V() - Y(e) =

where 7 € (,;yT7 . Thus,

o(a)*

P(6) + hy(t,a) < P(e), 1€ unIh

o(a)*

By using Lemma 3.4, one has

()] < ‘I"l(‘I’(cS) + . a)) <e tegnt!

o(a)*
This ends the proof. O
5. Anillustrative example

In the last section, a nonlinear example is provided to numerically illustrate the results.

Example 5.1. Consider the Caputo nabla fractional difference equation

V(D) X3 (1), t€ enToq oy
X(l) = 00005,

where T € Tg(ll)) We have g(x(1)) = x%(t) and 6 = 0.001. To begin, we need to prove the existence and

uniqueness of the solution to (5.1). Let # = o'(1), where t € 5, 1)T According to (2.21), we have

()
V03, (1) = (Mo (1) P x(e (1) = (o (1)) [‘O'i e 1]~ ()
q

AIMS Mathematics Volume 9, Issue 6, 15132-15148.
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n—1
n _05-1|=05+i-1
+;<v(a (1) [ l. ]

X" “()ve"(1)

q

= x3(a"(1)).

For simplicity, we define x(c*(1)) := x,, then,

R R U I
q
n—1 .
# 20ty [ e <o
i=1 g
Let
Pul5) = (W) 5, = x5 = (0" (1) [‘O‘fl o 1]~ %
n—1 .
3 (1) [‘0'5 . 1] Vo (1) 52)
i=1 g
Let
@n(x,) = 0(n € Ny). (5.3)

Next, we will discuss the existence of a positive solution x,, to Eq (5.3) using the concept of strong
induction. Assume x; > 0 for i € NA~1,
-05+k-1 —O.5+i—1}

i

1 <0, x; > 0 fori € N*!, one has

Since [
q

>0and[
q

—0. -1
#i(0) = —(v(a"(l)))‘“[ " iiﬁ ] Xo
4q

< 05+i—1
+ ;(V((rk(l)))—(}j—l [ . i I L V(o_k—i(l))xk_i <0.

From Eq (5.2), we have lim ¢;(x;) = 4+00. Note that ¢;(x;) 1s continuous with respect to xy, thus,
Xp—+00

the existence of a positive solution x, to Eq (5.3) is obtained.

Then, applying Theorem 4.1, the uniqueness of the solution to Eq (5.1) is proven.

We assume that there are two positive solutions z(¢) and Z(¢) to Eq (5.1) with z(1) = Z(1) = 0.0005,
hence, we obtain the following inequality:

18(2(t) — gG®)] = |25 (1) — 25 (0)|

_ (1) - 20|
O+ 3OO + 730
=0 -z0)

" Ja(n) = 201
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= 2(H) - Z0)|}
= ¢(Iz(1) — 21D,

where ¢(|z(?)]) = |z(t)|%. By Theorem 4.1, we obtain that the solution to Eq (5.1) is unique.
Finally, using the criterion (4.4) in Theorem 4.3, the largest possible bounds € of the system (5.1)
are shown in Table 1.

Table 1. € for 6 = 0.001 and T varies in Example 5.1.

T 3 7 15 31 63
€ 0.143 0.260 0.403 0.593 0.854

6. Conclusions

In this paper, we have studied the discrete fractional Bihari inequality and applied it to obtain the
uniqueness and finite-time stability of solutions of fractional difference equations with non-Lipschitz
nonlinearities. In addition, we have provided an example to illustrate the effectiveness and rationality
of the uniqueness and finite-time stability numerically.
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