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Abstract: The concept of “topological index” refers to a numerical value determined by the structure 
of a chemical network. It serves to determine the physicochemical and biological properties of diverse 
medications, offering a more precise depiction of the theoretical properties of organic materials, this 
is achieved through the utilization of degree-based topological indices. Because of the development of 
resistance to existing treatments and the unpleasant side effects associated with some current drugs, 
the hunt for new drugs remains a priority. In drug discovery, QSPR approaches are widely used to 
predict, from a chemical structure, the biological activity of potential novel drugs. Researchers can 
prioritize compounds for synthesis and optimize them to improve potency, preference, and other 
desired attributes by establishing a correlation between chemical features and biological activity. 
Rational drug design approaches incorporate research methodologies such as quantitative structure-
activity relationships (QSAR) and quantitative structure-property relationships (QSPR), along with 
decision-making strategies. The goal of these strategies is to improve the biological activity and 
physicochemical qualities of existing leads. This research includes mathematical modeling of drug 
mechanisms utilizing multiple-criteria decision analysis and QSPR analysis. Furthermore, using 
decision-making techniques, I can determine the order of production for various drugs used to treat 
bone cancer based on their examination using QSPR analysis and topological indices. 
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1. Introduction 

Bone is a highly active, continually changing kind of connective tissue that helps in mobility, 
mechanical support, and protecting important organs, and skeletal structure [5]. Although bone has a 
high functional stability and regeneration capacity, critical-sized defects caused by trauma, tumors, or 
infections can prohibit bone tissue from rebuilding on its own in some cases [1,15]. Primary bone 
cancer is a type of cancer that originates from cells within bones. Osteosarcoma (Malignant cells in 
this tumor form abnormal bone and have a propensity to spread), Ewing sarcoma (bone or soft tissue 
surrounding the bones developing malignancy), malignant fibrous histiocytoma (a specific kind of cancer 
that typically develops in soft tissue but can also develop in bone), and chondrosarcoma (collection of 
bone tumors formed comprised of cells that produce excessive amounts of cartilage) are a few 
examples of primary bone cancers. Pain and swelling in bones, weight loss, fever, reduction in 
movement flexibility, bones that are easily broken, and fatigue are the common symptoms of bone 
cancer. Cancer that has progressed from another region of the body to the bone is referred to as 
secondary bone cancer. Treatment of primary and secondary bone tumors is difficult because of 
difficulties with conventional therapies like medication resistance and disease recurrence [19]. Due to 
their complexity, heterogeneity, aggressive activity, and lack of considerable advancement in their 
treatment protocols throughout the years, bone tumors provide a medical challenge. Scientists and 
medical professionals have paid close attention to the therapy of bone cancer [6]. Making a decision 
is selecting a strategy from a set of feasible possibilities to solve a particular problem. In operations 
research, multiple-criteria decision analysis (MCDA) explicitly considers multiple, conflicting criteria. 
When difficult topics are adequately organized and numerous factors are openly considered, more 
knowledgeable and better conclusions are made. MCDM approaches are used in a variety of areas. For 
example, the superiority and inferiority ranking method (SIR method) is an MCDA that can handle 
real data and provides the system user with six possible preference structures. Multi-criteria decision-
making (MCDM), a subfield of operations research, explicitly evaluates numerous conflicting criteria 
in decision-making in both ordinary life and in contexts like corporate, governmental, and 
pharmaceutical. In 1981, Ching-Lai Hwang and Yoon developed the Technique for Order of Preference 
by Similarity to Ideal Solution (TOPSIS), also referred to as the multi-criteria decision analysis 
technique (MCDM) [14]. TOPSIS is based on the premise that the chosen option should be the closest 
to the positive ideal solution (PIS) and the furthest away from the negative ideal solution (NIS). The 
VIKOR technique is a multi-criteria decision-making (MCDM) or decision-analysis method. This 
method was created with the idea that, in situations when decisions must be made based on competing 
and incommensurable requirements, comp romise is appropriate for resolving conflicts. Because the 
decision-maker desires the outcome that is closest to the ideal, the alternatives are evaluated using all 
preset criteria. After assessing the alternatives, VIKOR selects the compromise option that is closest 
to the ideal. Po-Lung Yu brought VIKORE into MCDM in 1973 [36]. It has been recognized that 
important aspects affecting a drug molecule’s quality include the enthalpic and entropic contributions 
to the binding affinity of drug candidates. This measurement offers a quick evaluation of the forces 
that promote ligand binding and is typically incorporated into the thermodynamic signature. The 
correlation between the melting point and dose of poorly soluble medicines and the fraction absorbed 
was given in [4]. To choose the best drug candidates, it will be crucial to have access to the 
thermodynamic signature early on in the drug discovery process [24]. 
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2. Materials and methods 

A graph is defined as a pair Ω = (Ⅴ, Έ), where Ⅴ is a set, whose elements are known as vertices 
and Έ is a set of paired vertices whose components are known as edges. A graph’s order is determined 
by its vertex count, or |Ⅴ|. The number of edges, |Έ|, in a graph determines its size. The number of 
vertices adjacent to vertex ꞷ is used to represent the degree of a vertex ꞷ, which is represented by the 
symbol dꞷ. The terms “degree” and “valence” have some similarity in the field of chemistry. A 
molecular graph is a graph-theoretical depiction of the chemical compound’s structural formula, where 
the atoms in the compound serve as the vertices and the chemical bonds that connect them as the edges. 
A topological index is a kind of molecular descriptor that is computed from the molecular graph of a 
chemical substance. A subfield of graph theory called chemical graph theory integrates mathematical 
modeling of chemicals. It places a focus on topological parameters that are closely related to the 
characteristics of molecular compounds. Quantitative structure-property/structure-activity 
relationship (QSPR/QSAR) modeling frequently uses topological indices to predict a molecule’s 
physicochemical and bioactivity attributes [7]. Much research that aims to quantify and predict the 
physicochemical and biological properties of molecules continues to center on quantitative structure-
property connections (QSPR), instead of expensive biological tests or studies, estimated descriptors 
of a certain physicochemical feature can be used to predict the reactions of interest for novel 
molecules [17]. QSPR models with linear regression between drug physicochemical parameters and 
several topological indices for Cardiac disease medications are given in [2]. S Nasir provided a QSPR 
analysis for Anti-cancer medications [20] whereas a QSPR analysis of drugs used to treat breast cancer 
was provided by S. Bokhary, [3]. The premise behind this study is that new drug structures may be 
identified, and their superiority can be assessed by examining them for various variables while keeping 
chemical indices in mind. This research includes mathematical modeling of pharmacological 
mechanisms. I can solve the obstacles of picking the most effective chemical compounds to employ in 
the development of new medications by applying QSPR analysis and the Vikor method. This 
integration is a novel approach that uses chemical indices produced from QSPR modeling in 
conjunction with operations research techniques to make informed medication prioritization decisions 
based on a variety of parameters including boiling point, complexity, and molar volume. In addition, 
the application of this integrated method extends beyond traditional chemical and pharmaceutical 
sectors into the world of biomedicine, where it gives a systematic framework for categorizing 
structures pertinent to biological and chemical sciences. The QSPR modeling is founded on nine 
topological indices, that are described in definitions 2.1–2.8. 
Definition 2.1. ABC index [9] of Ω is given as: 

𝐴𝐵𝐶(Ω) = ∑ ∈ ( ) . 

Definition 2.2. Randic index [21] is given as: 

𝑅𝐴(Ω) = ∑ ∈ ( ) . 

Definition 2.3. Sum connectivity index [37] of the graph Ω is given as: 

𝑆(Ω) = ∑ ∈ ( ) . 
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Definition 2.4. GA index [34] is defined as: 

𝐺𝐴(Ω) = ∑ ∈ ( ) . 

Definition 2.5. First and second Zagreb indices [12] are defined as: 

𝑀 (Ω) = ∑ (𝑑 + 𝑑 )∈ ( ) . 

𝑀 (Ω) = ∑ (𝑑 𝑑 )∈ ( ) . 

Definition 2.6. Harmonic index [10] of a graph Ω is given as: 

𝐻(Ω) = ∑ ∈ ( ) . 

Definition 2.7. Hyper Zagreb index is defined [29] as: 

𝐻𝑀(Ω) = ∑ (𝑑 + 𝑑 )∈ ( ) . 

Definition 2.8. Forgotten index denoted by F[11] can be defined as: 

𝐹(Ω) = ∑ [(𝑑 ) + (𝑑 ) ]∈ ( ) . 

Shang, Y. provided Estrada index of dynamic random graphs In [28], readers are directed to refer [25,26,27] 
for interesting material regarding Topological indices. 

3. Results 

For medical and environmental chemistry, it is crucial to predict physical qualities like melting 
and boiling temperatures, enthalpy of vaporization, etc. To calculate a chemical compound’s solubility, 
several physical factors are crucial. Researchers have conducted a significant amount of research on 
the accuracy of these physicochemical property predictions [33] as well as the connection between 
melting point and drug absorption [32]. Quantitative structure-property relationship (QSPR) modeling 
is a highly useful tool in cheminformatics. This strategy is founded on the notion that the variance in 
a chemical’s physicochemical qualities is governed by its structural variation. Thus, in the lack of 
experimental data within a specific set, one can forecast the missing data using a proper mathematical 
model and designated molecular descriptors generated for each chemical in the set [30,31]. Rauf A. 
conducted a QSPR study on the medications used to treat breast cancer [22]. Rojas et al. used phase 
change contrast compounds with low boiling points [23] for in vivo molecular imaging. Using the 
Vikor technique, many researchers rank medications based on their physical features [13,16]. 
Considering the three physio-compound features of BP (boiling point), Molar volume, and Complexity, 
I intend to investigate the findings of the QSPR study into drugs used in the treatment of bone cancer. 

Next, I looked at the significant outcomes of the QSPR modeling for bone cancer drugs. For this 
research, nine medications namely Doxorubicine, Ifosfamide, Gemcitabine, Etoposide, Methotrexate, 
Cisplatin, Zoledronic, Sunitinib, Regorafenib are being considered. I specifically analyze r (the 
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correlation coefficient) and SE (Standard Error) values for Boiling Point, Molar volume, and 
Complexity features concerning all chemical indices. In this case, the goal is to thoroughly examine 
every numerical component that represents a correlation value, are indicated in Table 1 correlation 
coefficient is closer to one and a smaller standard error suggests that the relevant chemical indices 
have a strong prediction potential concerning the desired qualities. This notion suggests that the desired 
results (r and SE) from QSPR are taken into consideration, Considering their significant roles in this 
in the account that both play a significant role in understanding how well-targeted chemical indices 
may predict the physicochemical features of targeted medicines. This notion suggests that the desired 
outcomes (r and SE) from QSPR are taken into consideration, recognizing their significant roles in 
determining the level to which particular chemical indices can accurately predict the physicochemical 
properties of individual drug. Furthermore, The standard error serves as both beneficial and non-
beneficial criteria for each case presented in Table 2, corresponding to every drug and its chemical 
indices. 

Table 1. Standard error and correlation coefficient between physical properties of bone cancer drugs. 

Chemical 
indices 

Boiling point Complexity Molar volume 
Correlation 
coefficient 

Standard 
error 

Correlation 
coefficient 

Standard 
error 

Correlation 
coefficient 

Standard 
Error 

ABC(Ω) 0.633 155.0455 0.987 48.471 0.920 40.668 
RA(Ω) 0.600 160.136 0.981 59.125 0.940 35.448 
M1(Ω) 0.645 152.973 0.992 37.777 0.901 45.059 
M2(Ω) 0.648 152.440 0.991 40.255 0.881 49.200 
HM(Ω) 0.668 148.924 0.992 38.260 0.870 51.247 
H(Ω) 0.584 162.593 0.977 64.742 0.946 33.636 
S(Ω) 0.602 159.862 0.982 56.941 0.936 36.552 
F(Ω) 0.686 145.609 0.991 41.127 0.857 53.437 
GA(Ω) 0.605 159.446 0.984 53.979 0.930 38.056 

Table 2. B (beneficial) and NB (non-beneficial) requirements for boiling point, complexity 
and Molar volume. 

 

Topological indices Boiling point Complexity Molar volume 

ABC( 𝛀) 155.046 48.471 40.668 
RA( 𝛀) 160.136 59.125 35.448 
M1( 𝛀) 152.973 37.777 45.059 
M2( 𝛀) 152.440 40.255 49.200 
HM( 𝛀) 148.924 38.260 51.242 
H( 𝛀) 162.593 64.742 33.636 
S( 𝛀) 159.862 56.941 36.552 
F( 𝛀) 145.609 41.127 53.437 
GA( 𝛀) 159.446 53.979 38.056 
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3.1. Steps for weight calculation by CRITIC method 

The CRITIC (Criteria Importance Through Intercriteria Correlation) method is a weighting 
technique employed to establish weights based on objective criteria. First presented in [8], it is centered 
on evaluating the levels of contrast and conflict in choice-making frameworks. To achieve this, the 
method utilizes correlation analysis to identify distinctions among criteria, as highlighted in [35]. In 
practice, the CRITIC method involves an evaluation of the decision matrix. It calculates the columns’ 
standard deviation of the normalized criteria values and determines Coefficients of correlation to measure 
the contrast of the criterion for each pair of columns, as outlined by Madić and Radovanović [18]. 

The steps in the procedure for applying the CRITIC method are outlined in a study by Madić 
and Radovanović [18]. Initially, the method assumes the presence of a collection of m workable 
alternatives, denoted as Ai (where i = 1, 2, ..., p), whereas q Criteria for assessment, represented as 
𝐶  (where j = 1, 2, ..., q), under the specified problem context. 

In first step a decision matrix, denoted as 𝑀, is created, depicting the performance of various 
alternatives in relation to different criteria. 

𝑀 = 𝑀
×

⎣
⎢
⎢
⎡
𝑚 𝑚 ⋯ 𝑚

𝑚 𝑚 ⋯ 𝑚

⋮
𝑚

⋮
𝑚

⋱
⋯

𝑚
⎦
⎥
⎥
⎤
  i = 1, 2, ..., p and j = 1, 2, ..., q , 

𝑚  represents the conduct measurement for the ith Substitute regarding the jth criterion. 
Second step involves normalizing the decision-matrix by applying The rule that follows.  

𝑚∗ =  
 ( )

 ( )
     i = 1, 2, ..., p and j = 1, 2, ..., q .  

The value represented by 𝑚∗  represents the normalized outcome of the ith alternative in relation to 

the jth criterion. In Step 3, when calculating the weights for criteria, the process takes into account 
both the criterion’s standard deviation and correlation with other criteria. So, the weight assigned to 
the criterion (𝑊   ), which is derived as follows: 

𝑊       ∑
. 

Here, 𝐶   represents the information content associated with the jth criterion and is determined as 
follows: 

𝐶 = 𝜎 ∑ (1 − 𝑟 ). 

Where  𝜎   represents the standard deviation of the jth criterion, and 𝑟  indicates the correlation 

coefficient between these two criteria. 
Hower there are some complexities of CRITIC method such as pairwise correlation coefficients 

then normalizing the correlation matrix which become more complicated while handling large data. 
These complexities, increase the overall processing effort necessary to effectively apply the CRITIC 
technique. Nevertheless, the CRITIC approach is still computationally realistic for the majority of real-
world scenarios and moderately sized decision-making problems. 
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3.2. Methodology for VIKOR and its implementation 

The Bone cancer disease medications that are being examined as alternatives are evaluated in 
accordance with the predetermined criteria that I took into account within quantitative structure-
property relationships (QSPR) are derived through observations in the case study in order to produce 
the best result for well-informed decision-making. Vikor ranks cancer disease medications and 
oversees the compromise treatment that is closest to the best. In 1973, Zeleny and Yu [36] introduced 
the compromise solution concept of MCDM. 
Step 1. Identifying the optimal best 𝑡 and optimal worst 𝑡 values for {𝑖 =  𝑃 , 𝑖 =  1, . . . , 6} for 
every criterion function that I took into account when predicting attributes. 

𝑡  ={maximum{ 𝑡  : j=1,2,...,j}, minimum { 𝑡  : j=1,2,...,j}:if the ith function proves to be 

favorable}, 
𝑡  ={minimum{ 𝑡  : j=1,2,...,j}, maximum { 𝑡  : j=1,2,...,j}:if the ith function proves to be 

favorable}. 
Step 2. Calculating the values of the weighted normalized Chebyshev distance (𝑅 ) and the weighted 
normalized Manhattan distance (𝑆 ).with 𝑗 = {1, . . . , 𝐽}. The following equalities are available. 

𝑆 = ∑ [𝑤 ×
( )

( )
], 

𝑅 = 𝑀𝑎𝑥[𝑤 ×
( )

( )
]. 

Step 3. Determination of values 𝑄 , 𝑗 = 1, . . . , 𝐽, utilizing the subsequent equality 

𝑄 =[𝑣 ×
( )

( )
]+[(1 − 𝑣) ×

( )

( )
]. 

In contrast, the weight of each individual regret is (1-v). This tactic might be compromised with v 0.5. 
Step 4. Ranking the possibilities by the values S, R, and Q from the lowest to the highest. 

4. Discussion 

In the investigation of BP, I acquired the stepwise calculations for steps 1 and 2 from Table 1(a) 
and Table 1(b) (available in suplimetry files), respectively, as well as the final computations 
for steps 3 and 4 in Table 3. 

In the investigation of Complexity, I acquired the stepwise calculations for steps 1 and 2 from 
Table 2(a) and Table 2(b) (available in suplimetry files), respectively, as well as the final computations 
for steps 3 and 4 in Table 4. 

In the investigation of Molar Volume, I acquired the stepwise calculations for steps 1 and 2 from 
Table 3(a) and Table 3(b) (available in suplimetry files), respectively, as well as the final computations 
for steps 3 and 4 in Table 5. 
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Table 3. Outputs for 𝑆 , 𝑅 , 𝑄  and rank for Boiling point (BP). 

Drugs 𝑆  𝑅  𝑄  RANK 
Doxorubicine 0.245 0.074 0.067 2 
Ifosfamide 0.698 0.166 0.787 8 
Gemcitabine 0.591 0.130 0.562 6 
Etoposide 0.199 0.084 0.065 1 
Methotrexate 0.427 0.073 0.213 4 
Cisplatin 0.801 0.200 1.000 9 
Zoledronic 0.611 0.132 0.586 7 
Sunitinib 0.467 0.088 0.303 5 
Regorafenib 0.415 0.067 0.179 3 
S*, R* 0.199 0.067   
S_, R_ 0.801 0.200   

Table 4. Outputs for 𝑆 , 𝑅 , 𝑄  and rank for complexity. 

Drugs S R Q Rank 
Doxorubicine 0.597 0.155 0.722 8 
Ifosfamide 0.440 0.160 0.439 6 
Gemcitabine 0.461 0.131 0.341 2 
Etoposide 0.627 0.171 0.860 9 
Methotrexate 0.559 0.106 0.409 4 
Cisplatin 0.373 0.200 0.500 7 
Zoledronic 0.440 0.142 0.352 3 
Sunitinib 0.536 0.097 0.320 1 
Regorafenib 0.557 0.107 0.410 5 
S*, R* 0.373 0.097   
S_, R_ 0.627 0.200   

Table 5. Outputs for 𝑆 , 𝑅 , 𝑄  and rank for Molar volume. 

Drugs 𝑆  𝑅  𝑄  RANK 
Doxorubicine 0.409 0.077 0.130 4 
Ifosfamide 0.541 0.146 0.632 7 
Gemcitabine 0.541 0.131 0.578 6 
Etoposide 0.370 0.086 0.086 2 
Methotrexate 0.414 0.062 0.085 1 
Cisplatin 0.631 0.200 1.000 9 
Zoledronic 0.573 0.147 0.700 8 
Sunitinib 0.443 0.071 0.172 5 
Regorafenib 0.421 0.062 0.100 3 
S*, R* 0.370 0.062   
S_, R_ 0.631 0.200   
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The distribution of weights for boiling point, Complexity, and molar volume can be observed in 
Figures 1–3, respectively. Figure 4 gives a comparison between the ranks of all three physicochemical 
properties. 

 

Figure1. Weight allocation for Boiling point with beneficial values are highlighted in green color. 

 

Figure 2. Weight allocation for Complexity with beneficial values are highlighted in green color. 
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Figure 3. Weight allocation for Molar volume with beneficial values are highlighted in green color. 

 

Figure 4. Comparison between the rank of BP, Complexity and Molar volume. 

5. Conclusions 

Nine Bone cancer disease medications (Doxorubicin, Ifosfamide, Gemcitabine, Etoposide, 
Methotrexate, Cisplatin, Zoledronic, Sunitinib, Regorafenib) have been addressed in the extremely 
pertinent VIKOR Multiple Criteria Decision Making (MCDM) methodology. The background setting 
for VIKOR has been observed under QSPR modeling by taking three properties, namely the boiling 
point, Complexity, and Molar volume into consideration. This ideology welcomes an entirely novel 
phase that will be useful for classifying any structure connected to biological and chemical sciences as 
well as biomedicine when a high call has been generated by chemical indices using QSPR and 
operation research techniques (MCDA) for the desired attributes and to see the impact on the rank 
ordering when addressing various structures and under specific circumstances by the evaluations 
obtained from QSPR By utilizing mathematical methods, this work will significantly advance the 
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chemical and pharmaceutical industries. However, there are a few limitations to the VIKOR approach 
for QSPR analysis, including data availability and quality, molecular complexity, model validation, 
and computational complexity. Overall, while VIKOR might serve as a useful tool for pharmacological 
QSPR analysis, given the limits of the VIKOR method, In the future researchers can employ alternative 
decision-making techniques to rank medications for usage in the healthcare industry. 
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