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Abstract: This article presents an analytical and numerical investigation on the quasi-steady, slow
flow generated by the movement of a micropolar fluid drop sphere of at a concentrical position within
another immiscible viscous fluid inside a spherical slip cavity. Additionally, the effect of a cavity with
slip friction along with the change in the micropolarity parameter on the movement of the fluid sphere
is introduced. When Reynolds numbers are low, the droplet moves along a diameter that connects
their centres. The governing and constitutive differential equations are reduced to a computationally
convenient form using appropriate transformations. By using the resulting linear partial differential
equations for the stream functions and using the method of separation variables, we can obtain their
solutions. General solutions for velocity fields are found using spherical coordinate systems, which
are based on the concentric point of the cavity; this allows to obtain solutions to the Navier-Stokes
equations internal and external to the spherical droplet. The vorticity-microrotation boundary condition
is used in regard to the micropolar droplet case in a viscous fluid. The normalised drag forces acted
upon the micropolar drop are illustrated via graphs and tables for diverse values of the viscosity ratio
and drop-to-wall radius ratio, with the change of the spin parameter that attaches the microrotation
to vorticity. The correction wall factor is shown to increase with an increase in the drop-to-wall
radius ratio, when moving from the gas bubble case to the solid sphere case, with an increase in the
micropolarity parameter, and with an increase in the slip frictional resistance. This study is relevant due
to its potential uses in a variety of biological, natural, and industrial processes, including the creation of
raindrops, the investigation of blood flow, fluid-fluid extraction, the forecasting of weather conditions,
the rheology of emulsions, and sedimentation phenomena.
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Nomenclature

~u the fluid velocity vector (m/s)
p the fluid pressure at any point (Kg.m s−2)
m the couple stress tensor
I the unit dyadic
~w the fluid vorticity vector
E2 the axially symmetric Stokesian operator
In(·) the modified Bessel function of order, n, of the first kind
Kn(·) the modified Bessel function of order, n, of the second kind
Gn(·) the Gegenbauer polynomial of the first kind of order, n, and degree −1

2
a radius of the spherical drop
b radius of the spherical cavity
t(1)
rθ the tangential stress component for micropolar flow

t(2)
rθ the tangential stress component for viscous flow

A, B,C,D, E,M,N unknowns in the system of the equations (4.20) - (4.26)
Â, B̂, Ĉ, D̂, Ê, M̂, N̂ unknowns in the system of the equations (5.2) - (5.8)
W the correction wall factor for the slip cavity case
Ŵ the correction wall factor for the no-slip cavity case
Greek Letters
Π the stress tensor (Kg.m s−2)
~ν the fluid micro-rotation vector (s−1)
εεε the alternating tensor
k the micropolar vortex viscosity coefficient (Kg.m−1 s−1)
(α, β, γ) the micropolar gyro-viscosity coefficients (Kg.m s−1)
(r, θ, φ) the spherical coordinate systems
(~er, ~eθ, ~eφ) the unit vectors
ψ(1) the stream function for the viscous flow in the cavity and out the drop
ψ(2) the stream function of the micropolar flow in the drop
µ1 the viscous fluid’s viscosity coefficient
µ2 the micropolar fluid’s viscosity coefficient
η the slip frictional resistance coefficient for velocity vector

1. Introduction

Nature is abundant in drops and bubbles. Physically, these fluid particles may, in almost every
circumstance, be found in a continuum of other fluids and have a critical impact on the system’s
behaviour. Natural cloud formations made up of little water droplets are what trigger rainfall.
Additionally, bubbles and drops frequently appear in industrial systems as transporters of both products
and reactants, as well as in various chemical processes [1]. On the other hand, fluids employed
in cooling or heating processes are mentioned as heat transfer fluids, which appear in industrial
applications such as stream generators, die temperature controls, printing, presses, synthesis, extrusion,
and catalysis [2–4]. Mass and heat transfer for the flow of Maxwell and Williams nanofluids are
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discussed by [5, 6].
Stokes [7] introduced the earliest study on low Reynolds numbers, discussing the movement of a

rigid sphere in viscous fluid phase. One significant parameter assessed was the force exerted by the
surrounding fluid on the sphere. Stokes’ solution led the study of the movement of particles with
different shapes and fluid spheres. After Stokes, Rybczynski [8] and, independently, Hadamard [9],
made traditional advancements in solving the steady, slow movement of the fluid sphere. They found
that the drag force acted on the nondeformable fluid sphere by the surrounding fluid phase, based on the
notion that, at the interface, both the velocity and tangential stress components were continuous. The
extension of the works of Rybcznski [8] and Hadamard [9] to fluids with a micropolar microstructure
was studied by both Kaloni and Niefer [10]. At the drop surface, the interface tensions tend to deform
it. For instance, Taylor and Andreas [11] discussed the distortion of a droplet’s spherical shape.

Since drops do not exist in isolation under low Reynolds numbers, it is essential to find out if the
presence of adjacent nondeformable drops and/or their boundaries notably affect a droplet’s navigation.
These interplayed dynamics of drop behaviour have been studied extensively by exact, asymptotic, and
numerical methods [12–26]. In [27], the behaviour of raindrops, water, and oil slicks was represented
by a study model, characterized by linked spherical pores comprising an oil-containing formation
rock. Rehman et al. [28] studied the fluid flow inside an extending cylindrical surface without any slip
condition, with the relative velocity of the particles in the cylindrical surface and the Carreau fluid equal
to zero. Asghar et al. [29] studied non-Newtonian fluid flow in a micro-channel passage in response
to peristalsis under magnetic and electric fields. Additionally, a drop moving in a viscous/micropolar
fluid along the midline of an impermeable tube results in a quasi-steady flow, as stated by Salem et
al. [30].

The of Navier-Stokes equations presume that an internal structure is absent from fluid particles. In
reality, fluid particles may exhibit many microscopic behaviours, such as protraction, constriction, or
turnover, as in turbulent blood flow or polymer solutions, for instance. As a result, internal structure
of fluid particles must be considered, specially when particles within the fluid can take on different
forms. The micropolar fluid theory, initiated by Eringen [31–33], is an extensively recognised classical
theory that considers such inner microstructure. According to this theory, particles can rotate and
move independently from the general rotation and mobility of the fluid. Because of recent concerns,
there is a new variable symbolising the fluid particles’ angular velocity; hence, the classical model
needs to include a new equation controlling that variable. Ferrofluids [34] are regarded as a micropolar
phase, as they consist of Brownian magnetic particles in a colloidal fluid that have stabilised within
a non-magnetic liquid host. Additionally, the granular flow can be regarded as a micropolar flow
due to its rotation and particle microstructure. According to Hayakawa [35], the theoretical research
on certain boundary value problems is consistent with pertinent experimental findings about granular
flows. Recently, Walelign [36] used a mathematical model to study the effects of several thermo-
physical influences on the transport rates of micropolar nanofluids near an inclined, exponentially
stretched surface.

Early on in the development of fluid dynamics, it was common to apply the no-slip condition.
Hence, for fluid flow, the Navier-Stokes equations were usually applied. As a result, the experimental
observations appeared to confirm the validity of applying the non-splip condition in a range of
situations. Nonetheless, recent discussions have demonstrated that fluid slippage can occur at the solid
barrier, and that this criterion is not always met [37–41]. In fact, Navier [42] proposed the phenomenon
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of frictional slippage at a stiff border approximately 200 years ago. Although the Stokesian movement
equations under slip friction circumstances are of considerable importance for gases, slip conditions
have recently been found to be significant for fluids as well, particularly when considering microscopic
details. To estimate slip for fluids, Barrat et al. [43] made use of molecular dynamics. An excellent
overview of experimental research on the slip phenomena of Newtonian fluid phases at a rigid surface
was provided by Neto et al. [44]. The authors pay close attention to factors including wettability,
surface roughness, and the presence of gaseous layers that influence fluid sliding at a rigid barrier.
More attention has recently been paid to the application of the slip friction concept for Newtonian
viscous fluid phases [45–51].

Recently, numerous articles have discussed several aspects of the flow of micropolar fluids using
no-slip frictional circumstances for velocity and microrotation; examples in [52,53]. In true situations,
this boundary condition (no-slip) is not always satisfied. Often, there is sliding to some extent between
the surfaces of the solid and the fluid. For the purpose of this study, we opted to discuss a micropolar
movement problem where the velocity and microrotation present slip frictional circumstances. We
propose a slip frictional framework for the microrotation based on the assumption that the component
of the tangential couple stress at a given place on the fluid’s surface is proportional to the component
of tangential stress associated with the fluid’s microrotation relative to the solid.

Numerous researchers [54, 55] have employed the slip-frictional phenomenon for the component
of velocity but not for the microrotation. Since both microrotation and velocity occur at the same
surface, applying the slip friction phenomenon to both components is more physically appropriate;
its applicability is relevant due to the surface and fluid’s properties. The axisymmetrical movement
is inherently common in fluid dynamics as it naturally arises from the movement of any solid-fluid
rotation.

The goal of this research is to determine the boundary effect on the quasi-steady movement of a
micropolar fluid drop that is spheroidally shaped at a concentrical point within another immiscible
viscous fluid in a spherical slip cavity. This paper extends the problem of Happel [56] to a micropolar
fluid phase, allowing for the slipping condition for microrotation along with velocity. The problem is
solved analytically and numerically. Also, at the droplet’s surface, the spin-vorticity and microrotation
relations are used.

2. Governing and constitutive equations

When body forces and couplings are absent, the governing equations for the slow, steady motion of
a micropolar incompressible fluid, as mentioned by Eringen [32, 57], under the circumstances of low
Reynolds numbers, are as follows:

∇ · ~u = 0, (2.1)
∇p = k∇ ∧ ~ν + (µ + k)∇ ∧ ∇ ∧ ~u, (2.2)
k∇ ∧ ~u = 2k~ν + γ∇ ∧ ∇ ∧ ~ν − (α + β + γ)∇∇ · ~ν, (2.3)

where ~u represents the velocity vector; ~ν represents the micro-rotation vector; and p is the fluid
pressure. µ represents the dynamic viscosity coefficient. k represents the vortex viscosity coefficient.
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Also, (α, β, γ) represent the gyro-viscosity coefficients. These constants follow the standard inequality
formulas:

k ≥ 0; 2µ + k ≥ 0; γ ≥ 0; γ ≥ |β|; 3α + β + γ ≥ 0.

The stress tensor equation, Π, and the couple stress tensor equation, m, are called the two
constitutive equations:

Π = −pI + (2µ + k)4 + kεεε·(~w − ~ν), (2.4)
m = αI · ∇~ν + β∇~ν + γ∇T~ν, (2.5)

here, I refers to the unit dyadic; εεε refers to the alternating tensor, and (~w = 1
2∇ ∧ ~q) represents the

vorticity vector with 4 = 1
2 (∇~q +∇T~q) representing the deformation tensor rate; and (·)T represents the

transpose of a tensor.

3. Differential equations describe viscous and micropolar fluids

Refer to spherical coordinate systems by (r, θ, φ) with increasing directions and corresponding
(~er, ~eθ, ~eφ) unit vectors. For an arbitrary axisymmetric droplet translating steadily along the centre
line of the motion, in a micropolar incompressible fluid, the velocity and microrotation vectors are of
the form:

~u = ur(r, θ)~er + uθ(r, θ)~eθ, (3.1)
~ν = νφ(r, θ)~eφ. (3.2)

From (2.1), we can write the velocity components with respect to the Stokesian stream function, ψ,
as follows:

ur = −
1

r2 sin θ
∂ψ

∂θ
, uθ =

1
r sin θ

∂ψ

∂r
. (3.3)

Substituting in the Eqs (2.2) and (2.3), we obtain

∂ p
∂ r

+

(
µ + k

r2 sin θ

)
∂

∂θ
[E2ψ] −

( k
r sin θ

)
∂

∂θ
[νφ sin θ] = 0, (3.4)

∂ p
∂θ
−

(
µ + k
sin θ

)
∂

∂ r
[E2ψ] + k

∂

∂ r
[rνφ] = 0, (3.5)

γ [E2νφ] +

( k
r sin θ

)
[E2ψ] − 2k[νφ] = 0, (3.6)

where the axially symmetric Stokesian operator, E2, is defined by

E2 =
∂2

∂ r2 +
1 − ζ2

r2

∂2

∂ζ2 , ζ = cos θ.

In the absence of the microrotation ν and the pressure p from Eqs (3.4)–(3.6), we obtain

E4(E2 − `2)ψ = 0, (3.7)
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ν =
1

2r sin θ
(
E2ψ +

2µ + k
`2k

E4ψ
)
, (3.8)

where `2 = a2(2µ + k)k/(µ + k)γ.
Consider that ψ = ψ1 + ψ2,

where

E4ψ1 = 0, (3.9)
(E2 − `2)ψ2 = 0. (3.10)

Using the separation of variables, the general solutions of the Eqs (3.9) and (3.10) are:

ψ1 =

∞∑
n=2

(
Anrn + Bnr2+n + Cnr1−n + Dnr3−n)Gn(ζ), (3.11)

ψ2 =

∞∑
n=2

√
r
(
EnIn− 1

2
(` r) + FnKn− 1

2
(` r)

)
Gn(ζ), (3.12)

where In(·) represents the modified Bessel function of order, n, of the first kind; Kn(·) represents the
modified Bessel function of order, n, of the second kind; Gn(·) represents the Gegenbauer polynomial
of the first kind of order, n, and degree −1

2 ; [An, Bn,Cn,Dn, En, Fn, n ≥ 2] are unknown constants.

4. Description and formulation of concentric spheres geometrically and analytically

In this section, we consider that the quasi-steady, slow flow of a nondeformable drop at the moment
it passes the cavity’s center is of great importance to discuss the slip cavity effects on a single droplet.
Cunningham [58] has given an early analysis of Newtonian fluids for the slow-steady quasi-steady
movement of a spherical rigid particle in a concentric cavity filled by Newtonian fluid. A similar
solution was provided by Haberman et al. [59]. In both instances, the external cavity shape is supposed
to be stiff, and a fluid sticks to it.

Assume a quasi-steady, slow flow generated by the movement of a drop of micropolar fluid, with
radius a, that is spheroidally shaped at a concentrical point within another immiscible viscous fluid
inside a spherical slip cavity, with radius b(b > a). This drop sphere is moving with a constant velocity,
( ~U = U~ez), at a concentrical point, which is at rest, as demonstrated in Figure 1. Internal and external
motions should be distinguished from one another. Suppose that ψ(2) represents the stream function of
the micropolar flow in the drop, (r ≤ a), and ψ(1) represents the stream function for the viscous flow
inside the slip cavity and outside the drop, (a ≤ r ≤ b). There is no miscibility between the two fluid
phases. As a consequence, the differential equations below are satisfied by the two stream functions:

E4(E2 − `2)ψ(2) = 0, r ≤ a, (4.1)
E4ψ(1) = 0, a ≤ r ≤ b. (4.2)

The boundary circumstances at the inner slip cavity’s surface and at the boundary between the
micropolar droplet and the viscous fluid in the slip cavity must be given in order to complete this
model.
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Figure 1. Sketching of a concentric sphere in geometric form.

4.1. At the droplet’s surface (r = a)

At the interface, fluids both outside and inside the micropolar droplet are non-miscible, and the
droplet’s interface does not allow for mass transfer. As a result, the normal velocity component is zero
on both sides of the drop. Furthermore, the component of tangential velocity is supposedly continuous
across the interface. Assuming that the interfacial tension equilibrium theory applies to the current
model, the interfacial tension only creates an interruption to the normal stress through the droplet’s
surface. Therefore, the tangential stress at the interface is not affected by interfacial tension; thus, the
components of the tangential stress (t(1)

rθ , t
(2)
rθ ) must be continuous at the droplet’s surface. Furthermore,

under the aforementioned conditions, the component of microrotation of the micropolar fluid should be
assigned as a boundary condition. Physically, in these circumstances, the most appropriate model is one
in which the component of the vorticity for the viscous fluid outside the drop varies in direct proportion
to the micropolar fluid’s microrotation within it [60]. As a result, the spin coefficient between these two
quantities is denoted by the parameter s; it varies from zero to one and simply relies on the nature of
both fluid phases. There are two important conditions the microelements close to the droplet’s surface
are unable to rotate when s = 0, and the vorticity of the classical fluid is equal to the microrotation at
the droplet’s surface when s = 1. Also, the components of velocity must exist at the drop center. The
following mathematical structure applies to the above-mentioned physical conditions:

u(1)
r = u(2)

r = U cos θ, (4.3)
u(1)
θ = u(2)

θ , (4.4)
t(1)
rθ = t(2)

rθ , (4.5)
sw(1) = ν(2)

φ , (4.6)

lim
r→0

u(2)
r , lim

r→0
u(2)
θ , lim

r→0
ν(2)
φ , exist. (4.7)
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4.2. At the slip cavity’s surface (r = b)

Owing to the slip cavity’s impermeability, we assume

u(1)
r = 0. (4.8)

Assume the condition at the cavity’s inner slip surface is as follows:

u(1)
θ = 1

η
t(1)
rθ , (4.9)

where η is a slip frictional resistance. The rate of tangential slip between the imposed fluid and the
inner wall of a rigid cavity is measured by the slip frictional resistance. Supposedly, the slip frictional
resistance depends only on the characteristics of the imposed fluid and the inner rigid wall. There are
two conditions; the first is a perfect slip at the cavity’s internal surface when η = 0, in which case
we have a spherical gas bubble inside the cavity, whereas the second is the no-slip condition, which is
recovered when η→ ∞.

Using the differential equations (4.1) and (4.2) and the compliant boundary conditions, along with
the support of the solutions (4.11) and (4.12), the appropriate solutions are given by

ψ(1) = 1
2

(
Ar2 + Br4 + Cr−1 + Dr

)
sin2 θ, (4.10)

ψ(2) = 1
2

(
Mr2 + Nr4 +

√
rEI 3

2
(` r)

)
sin2 θ. (4.11)

To satisfy the boundary conditions, the following hydrodynamical expressions must be used:

u(1)
r = −

(
A + Br2 + Cr−3 + Dr−1) cos θ, (4.12)

u(1)
θ = 1

2

(
2A + 4Br2 −Cr−3 + Dr−1) sin θ, (4.13)

w(1)
φ = 1

2

(
2Ar−1 + 7Br + 2Cr−4 + Dr−2) sin θ, (4.14)

t(1)
rθ = 3µ1

(
Br + Cr−4) sin θ, (4.15)

u(2)
r = −

(
M + Nr2 + Er−

3
2 I 3

2
(` r)

)
cos θ, (4.16)

u(2)
θ =

(
M + 2Nr2 − 1

2 Er−
3
2
[
I 3

2
(` r) − ` rI 1

2
(` r)

])
sin θ, (4.17)

ν(2)
φ = 1

2

(
5Nr + m`2r−

1
2 EI 3

2
(` r)

)
sin θ, (4.18)

t(2)
rθ = 1

2 (2µ2 + k)
(
3Nr − Er−

5
2
[
` rI 1

2
(` r) − 3I 3

2
(` r)

])
sin θ, (4.19)

here, m = [µ2 + k]/k, µ1 denotes the viscous fluid’s viscosity coefficient, and µ2 denotes the micropolar
fluid’s viscosity coefficient.

Using the expressions (4.12)–(4.19) along with the conditions (4.3)–(4.6), (4.8), and (4.9) to
determine the seven unknown coefficients [A, B,C,D, E,M,N], we derive the following system of
linear equations:

Ab3 + Bb5 + C + Db2 = 0, (4.20)

A + Bb2(2 − 3δ−1
1 ) −Cb−3( 1

2 + 3δ−1
1 ) + 1

2 Db−1 = 0, (4.21)
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A + Ba2 + Ca−3 + Da−1 − Ea−
3
2 I 3

2
(` a) − M − Na2 = 0, (4.22)

A + 2Ba2 − 1
2Ca−3 + 1

2 Da−1 + 1
2 Ea−

3
2
(
I 3

2
(` a) − ` aI 1

2
(` a)

)
− M − 2Na2 = 0, (4.23)

A + Ba2 + Ca−3 + Da−1 = −U, (4.24)

3λ Ba + 3λCa−4 + Ea−
5
2
(
` aI 1

2
(` a) − 3I 3

2
(` a)

)
− 3Na = 0, (4.25)

2sAa−1 + 7sBa + 2sCa−4 + sDa−2 − m`2 a−
1
2 EI 3

2
(` a) − 5Na = 0, (4.26)

where λ = 2µ1/(2µ2 + k) = 2µ/(2 + k/µ2), µ = µ1/µ2 and δ1 = bη/µ1.
The drag force acting on a micropolar drop is given by [61]

Wz = 4πµD. (4.27)

The above form (4.27) just relies on the unknown D and may be found using the Gaussian
elimination method from the system solutions of the linear equations (4.20)–(4.26), which have a
unique solution. We only need to record the value of D here, as follows:

D = Ua
Ω1

Ω
, (4.28)

where

Ω1 = 3
2

(
m`2a2(1 − σ3) − σ3

)((
2λ + 3

)
σ7σ

3 + 2σ2
(
1 + 2δ−1

1
))

+1
2σ3σ7

(
15σ3 − 4s

(
1 − σ3)) − 3σ3σ5

(
1 + 2δ−1

1
)
,

Ω =
(
m`2a2(1 − σ3) − σ3

)(
σ2σ6 − σ1σ7

)
+ σ3

(
σ4σ7 − σ5σ6

)
,

in which σ = b/a and σi, i = 1, 2, ..., 7 are defined in the following form:

σ1 =
[3

2

((
1 − σ3) − 3(1 − σ)σ2) − 3(1 − σ)σ2λ

]
, (4.29)

σ2 =
[
− 3

2

(
2
(
1 − σ3) − 3

(
1 − σ2)σ3) + 3

(
1 − σ5)λ], (4.30)

σ3 = 5
2

(
1 − σ3)(` a`1 − 3), (4.31)

σ4 =
[ 15

2 (1 − σ)σ2 − ( 5
2 − s)

(
1 − σ3)], (4.32)

σ5 =
[
5(1 − s)

(
1 − σ3) − 15

2

(
1 − σ2)σ3], (4.33)

σ6 =
[(
σ−1 − 2

)(
1 − σ3) +

((
1 + 6δ−1

1
)
σ−3 + 2

)
(1 − σ)σ2)], (4.34)

σ7 =
[
2
((

2 − 3δ−1
1

)
σ2 − 1

)(
1 − σ3) − ((

1 + 6δ−1
1

)
σ−3 + 2

)(
1 − σ2)σ3)], (4.35)

where `1 =
I 1

2
(` a)

I 3
2

(` a) .

For the purpose of comparison, the formula for the drag force W∞ acting on a micropolar drop
translating on an unbounded viscous fluid phase, is given by [10]

Wz∞ = −4πµ1 aU ×
`2a2(2λ + 3)(k + µ1)(` a + Ω2) + 15kΩ2(λ − 1)

2`2a2(λ + 1)(k + µ1)(` a + Ω2) − 5kΩ2(s − 3λ + 2)
, (4.36)

where Ω2 = 3
tanh(` a) −

3
` a − ` a.

The correction wall factor W = Wz/Wz∞, is given by:

W = −
2`2a2(λ + 1)(µ1 + k)(` a + Ω2) − 5kΩ2(s − 3λ + 2)
`2a2(2λ + 3)(µ1 + k)(` a + Ω2) + 15kΩ2(λ − 1)

Ω1

Ω
. (4.37)
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5. The no-slip frictional cavity case

Here, the condition (4.9), when slip frictional resistance is absent, has the following form:

uθ = 0, r = b. (5.1)

Here, again, using (4.12)–(4.19) with the conditions (4.3)–(4.6), (4.8), and (5.1) to find the seven
unknowns [Â, B̂, Ĉ, D̂, Ê, M̂, N̂], we solve the following system:

Âb3 + B̂b5 + Ĉ + D̂b2 = 0, (5.2)

Â + 2B̂b2 − 1
2Ĉb−3 + 1

2 D̂b−1 = 0, (5.3)

Â + B̂a2 + Ĉa−3 + D̂a−1 − Êa−
3
2 I 3

2
(` a) − M̂ − N̂a2 = 0, (5.4)

Â + 2B̂a2 − 1
2Ĉa−3 + 1

2 D̂a−1 + 1
2 Êa−

3
2
(
I 3

2
(` a) − ` aI 1

2
(` a)

)
− M̂ − 2N̂a2 = 0, (5.5)

Â + B̂a2 + Ĉa−3 + D̂a−1 = −U, (5.6)

3λ B̂a + 3λ Ĉa−4 − Êa−
5
2
(
` aI 1

2
(` a) − 3I 3

2
(` a)

)
− 3N̂a = 0, (5.7)

2sÂa−1 + 7sB̂a + 2sĈa−4 + sD̂a−2 − m`2 a−
1
2 ÊI 3

2
(` a) − 5N̂a = 0. (5.8)

Again, the drag force here just relies on the unknown D̂, which is found using the Gaussian
elimination method from the system solutions of the linear equations (5.2)–(5.8), which have a unique
solution. We only need to record the value of D̂ here, as follows:

D̂ = Ua
Ω3

Ω̂
, (5.9)

where

Ω3 = 3
2

(
m`2a2(1 − σ3) − σ3

)(
(2λ + 3)σ3σ9 + 2σ2

)
+ 1

2σ3σ9
(
15σ3 − 4s

(
1 − σ3)) − 3σ3σ5,

Ω̂ = m`2a2(1 − σ3)(σ2σ8 − σ1σ9) + σ3(σ4σ9 − σ5σ8) − σ3(σ2σ8 − σ1σ9),

in which σ8 and σ9 are defined in the following form:

σ8 =
[(
σ−1 − 2

)(
1 − σ3) +

(
σ−3 + 2

)
(1 − σ)σ2], (5.10)

σ9 =
[
2
(
2σ2 − 1

)(
1 − σ3) − (

σ−3 + 2
)(

1 − σ2)σ3]. (5.11)

The correction wall factor Ŵ is given by:

Ŵ = −
2`2a2(λ + 1)(µ1 + k)(` a + Ω2) − 5kΩ2(s − 3λ + 2)
`2a2(2λ + 3)(µ1 + k)(` a + Ω2) + 15kΩ2(λ − 1)

Ω3

Ω̂
. (5.12)

Newtonian fluid’s expression (5.12) is simplified to the following result recorded by Happel and
Brenner [56]:

W̄ =
σ
[
σ5 −

[ 1−µ
1+ 2

3µ

]]
σ6 − 9

4

[ 1+ 2
3µ

1+µ

]
σ5 + 5

2

[ 1
1+µ

]
σ3 − 9

4

[ 1− 2
3µ

1+µ

]
σ +

[ 1−µ
1+µ

] . (5.13)

A few cases of (5.13):
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(1) Solid sphere (µ→ 0):

W̄ =
σ(σ5 − 1)

σ6 − 9
4σ

5 + 5
2σ

3 − 9
4σ + 1

. (5.14)

(2) Coalescence (µ = 1):

W̄ =
1

σ5 − 15
8 σ

4 + 5
4σ

2 − 3
8

. (5.15)

(3) Gas bubble (µ→ ∞):

W̄ =
σ(σ5 + 3

2 )

σ6 − 3
2σ

5 + 3
2σ − 1

. (5.16)

6. Discussion of the numerical results

The numerical findings of the two wall factors W and Ŵ appling to the nondeformable micropolar
drop are shown in Figures 2–7 and Tables 1–4 for various parameters: The relative viscosity µ, the
micropolarity parameter k/µ1, the relative spacing a/b, the parameters (γ/µ1a2, δ1).

As k, α, β, and γ are equal to zero, the issue is minimised by the movement of a viscous drop
immersed in another viscous fluid phase. Moreover, Table 1 confirms that our numerical findings for
the correction wall factor are in strong agreement with Happel’s solutions [56].

Table 1. The correction wall factor that affects the Newtonian viscous droplet immersed in
another viscous fluid phase.

Ŵ W̄ [56]
a/b µ→ 0 µ = 1 µ→ ∞ µ→ 0 µ = 1 µ→ ∞

0.1 1.28620 1.22891 1.17647 1.286 1.229 1.176
0.3 1.57264 2.12613 2.81519 2.573 2.126 1.815
0.5 7.29412 4.83019 3.72222 7.294 4.831 3.722
0.7 37.8296 18.7886 14.8255 37.830 18.762 14.826
0.9 1209.78 431.732 439.156 1209.778 431.779 439.156

Figure 2 shows that the correction factor Ŵ is increasing with the increase of a/b for several values
of µ with γ/µ1a2 = 0.3, s = 0.4, and k/µ1 → 0 with no-slip. Also, Ŵ decreases as the µ viscosity ratio
increases, leaving the other parameters unaltered; if a/b = 1 is reached for each other parameter at any
given value, it will eventually become limitless. As expected, Figure 2 displays that as µ → 0, a solid
sphere case, Ŵ takes a larger value compared to a gas bubble case µ→ ∞. Also, Table 2 confirms that
the correction factor Ŵ decreases as µ increases; on the other hand, Ŵ increases as k/µ1 increases.
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Table 2. The correction wall factor Ŵ acting on a nondeformable drop for several values of
µ, k/µ1, a/b with γ/µ1a2 = 0.2 and s = 0.3.

Ŵ
k/µ1 a/b µ = 0 µ = 1 µ = 10 µ→ ∞

0.000001 0.0 1.00000 1.00000 1.00000 1.00000
0.1 1.28620 1.22891 1.18567 1.17647
0.2 1.75584 1.57513 1.45299 1.42841
0.3 2.57262 2.12618 1.86439 1.81519
0.4 4.10587 3.06606 2.55698 2.46888
0.5 7.29394 4.83032 3.87179 3.72222
0.6 14.9476 8.63285 6.81464 6.56909
0.7 37.8274 18.7891 15.1986 14.8255
0.8 138.210 58.4127 51.0054 50.7734
0.9 1209.52 431.739 430.354 439.156
0.99 1317160 403018 472295 492642

5 0.0 1.02946 1.02630 1.01337 1.00000
0.1 1.31603 1.29514 1.22756 1.17647
0.2 1.78006 1.72007 1.54434 1.42841
0.3 2.57337 2.42635 2.03896 1.81519
0.4 4.03060 3.68141 2.87146 2.46888
0.5 6.97729 6.12183 4.42647 3.72223
0.6 13.7928 11.5107 7.79780 6.56910
0.7 33.1046 25.9699 16.9743 14.8256
0.8 110.752 80.6724 54.0087 50.7734
0.9 800.997 545.952 421.482 439.155
0.99 435115 382757 426290 492641

7 0.0 1.02838 1.02590 1.01451 1.00000
0.1 1.31494 1.29789 1.23456 1.17647
0.2 1.77917 1.72977 1.56216 1.42841
0.3 2.57329 2.45136 2.07621 1.81519
0.4 4.03311 3.74118 2.94366 2.46888
0.5 7.98780 6.26547 4.56331 3.72223
0.6 13.8299 11.8779 8.06103 6.56911
0.7 33.2479 27.0381 17.5075 14.8256
0.8 111.498 84.6662 55.1836 50.7734
0.9 809.399 573.044 423.056 439.155
0.99 4388325 384632 418233 492641
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Figure 2. Plot of the correction wall factor Ŵ as opposed to the relative spacing a/b; for
several values of µ, with γ/µ1a2 = 0.3, s = 0.4, and k/µ1 → 0.

Figure 3 shows the correction wall factor W as opposed to the relative spacing a/b; for several
values of the ratio δ1 and µ. Predictably, W is increasing with the increase of a/b. Regarding any value
that is specified of a/b, W increases with the increase of the ratio δ1. Also, W increases along with the
decrease of the ratio µ. Besides, Table 4 confirms that the correction factor W decreases as µ increases;
on the other hand, W increases as the ratio δ1 increases. As expected, Figure 3 and Table 4 show that
the no-slip case δ1 → ∞ gives us a greater value for W compared to the case of partial slip δ1 → 0;
therefore, the fluid sphere is affected by the presence of friction on the inner surface of the cavity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

 

 

µ = 0

µ = 1

µ = 7

a/b

W δ1 → ∞

δ1 = 1

Figure 3. Plot of the correction wall factor W as opposed to the relative spacing a/b; for
several values of δ1 and µ with k/µ1 = 3, s = 0.2, and γ/µ1a2 = 0.3.

Figure 4 demonstrates the correction wall factor Ŵ when µ = 7, and Figure 5 demonstrates the
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correction wall factor W at µ = 7 with the ratio δ1 → ∞; both opposed to the ratio a/b; for
different values of the ratio k/µ1. The plots demonstrate that, the correction wall factors W and Ŵ
are monotonically increasing along with the relative spacing a/b. Ŵ maintains approximately the
same values when the micropolarity parameter increases; W is also the same. Thus, as expected, the
wall correction factor is affected by the increase of the micropolarity parameter. Clearly, in the case of
no slip δ1 → ∞, Figure 5 matches Figure 4. In addition, the findings in Table 3 match those listed in
Table 2.
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Figure 4. Plot of the correction wall factor Ŵ as opposed to the relative spacing a/b; for
several values of the parameter k/µ1 with γ/µ1a2 = 0.3, s = 0.4, and µ = 7.
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Figure 5. Plot of the correction wall factor W as opposed to the relative spacing a/b; for
several values of k/µ1 with δ1 → ∞, γ/µ1a2 = 0.3, s = 0.4, and µ = 7.
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Table 3. The correction wall factor W acting on a nondeformable drop for several values of
µ, k/µ1, a/b with δ1 → ∞, γ/µ1a2 = 0.2 and s = 0.3.

W
k/µ1 a/b µ = 0 µ = 1 µ = 10 µ→ ∞

0.000001 0.0 1.00000 1.00000 1.00000 1.00000
0.1 1.28620 1.22891 1.18567 1.17647
0.2 1.75584 1.57513 1.45299 1.42841
0.3 2.57262 2.12618 1.86439 1.81519
0.4 4.10587 3.06606 2.55698 2.46888
0.5 7.29394 4.83032 3.87179 3.72222
0.6 14.9476 8.63285 6.81464 6.56909
0.7 37.8274 18.7891 15.1986 14.8255
0.8 138.210 58.4127 51.0054 50.7734
0.9 1209.52 431.739 430.354 439.156
0.99 1317160 403018 472295 492642

5 0.0 1.02946 1.02630 1.01337 1.00000
0.1 1.31603 1.29514 1.22756 1.17647
0.2 1.78006 1.72007 1.54434 1.42841
0.3 2.57337 2.42635 2.03896 1.81519
0.4 4.03060 3.68141 2.87146 2.46888
0.5 6.97729 6.12183 4.42647 3.72223
0.6 13.7928 11.5107 7.79780 6.56910
0.7 33.1046 25.9699 16.9743 14.8256
0.8 110.752 80.6724 54.0087 50.7734
0.9 800.997 545.952 421.482 439.155
0.99 435115 382757 426290 492641

7 0.0 1.02838 1.02590 1.01451 1.00000
0.1 1.31494 1.29789 1.23456 1.17647
0.2 1.77917 1.72977 1.56216 1.42841
0.3 2.57329 2.45136 2.07621 1.81519
0.4 4.03311 3.74118 2.94366 2.46888
0.5 7.98780 6.26547 4.56331 3.72223
0.6 13.8299 11.8779 8.06103 6.56911
0.7 33.2479 27.0381 17.5075 14.8256
0.8 111.498 84.6662 55.1836 50.7734
0.9 809.399 573.044 423.056 439.155
0.99 4388325 384632 418233 492641
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Table 4. The correction wall factor W acting on a nondeformable drop for several values of
δ1, a/b and µ with γ/µ1a2 = 0.2, k/µ1 = 3 and s = 0.3.

W
δ1 a/b µ = 0 µ = 1 µ = 10 µ→ ∞

0.1 0.0 1.02982 1.02554 1.01115 1.00000
0.1 1.20343 1.18587 1.13816 1.10899
0.2 1.44793 1.40606 1.30186 1.24464
0.3 1.81545 1.72592 1.52082 1.41809
0.4 2.41466 2.22418 1.82802 1.64771
0.5 3.49950 3.07285 2.28748 1.96601
0.6 6.76475 4.70431 3.04034 2.43653
0.7 11.6031 8.45213 4.46283 3.20224
0.8 33.0109 20.0681 7.93096 4.66425
0.9 201.507 89.7226 23.2967 8.49491

100 0.0 1.02982 1.02554 1.01115 1.00000
0.1 1.32010 1.29230 1.22020 1.17861
0.2 1.79268 1.71301 1.52826 1.43474
0.3 2.60611 2.41117 2.00955 1.83041
0.4 4.11370 3.65147 2.82480 2.50521
0.5 7.19977 6.06914 4.36955 3.81606
0.6 14.4671 11.4510 7.80423 6.85247
0.7 35.6739 26.1920 17.5550 15.9435
0.8 126.079 85.0476 60.0498 58.0596
0.9 1099.46 696.135 582.582 611.145

∞ 0.0 1.02982 1.02554 1.01115 1.00000
0.1 1.31639 1.28894 1.21766 1.17647
0.2 1.78036 1.70221 1.52059 1.42841
0.3 2.57340 2.38359 1.99101 1.81519
0.4 4.02977 3.58385 2.78118 2.46888
0.5 6.97385 5.89631 4.26027 3.72223
0.6 13.7806 10.9563 7.48861 6.56910
0.7 33.0579 24.4285 16.3757 14.8255
0.8 110.510 75.2331 52.8055 50.7734
0.9 798.293 512.093 421.466 439.156

Figures 6 and 7 show the correction wall factors Ŵ and W as opposed to the relative viscosity µ
for several parameters. For the range (0 ≤ s ≤ 1), Ŵ and W decrease as the coefficient µ increases,
maintaining the other coefficients unchanged. For every value of the coefficient µ stated, Ŵ and W
increase as the parameter s decreases. This means that for s = 1, the microelements of the viscous
fluid phase surrounding a micropolar drop are in perfect spin and Ŵ and W have their minimum; for
s = 0, they have their maximum. Evidently, with values of the coefficient µ, the correction factor is
irrelevant in terms of the spin coefficient. Further, Ŵ and W increase with the increase of the coefficient
k/µ1.
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There are several solutions of the correction factor W for various values of the coefficients δ1 and
a/b, which are discussed in Table 4. Predictably, the findings in Table 4 demonstrate that the correction
factor W with slippage is increasing with the relative spacing a/b for any value of the parameter δ1.
Generally speaking, the correction wall factor increases along with the parameter δ1, holding a/b
unaltered.
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Figure 6. Plot of the correction wall factor Ŵ as opposed to the relative viscosity µ; for
several values of s with k/µ1 = 3, γ/µ1a2 = 0.3, and a/b = 0.4.
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Figure 7. Plot of the correction wall factor W as opposed to the relative viscosity ratio µ; for
several values of s with k/µ1 = 3, δ1 = 5, γ/µ1a2 = 0.4, and a/b = 0.3.
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7. Conclusions

This research studies the axisymmetric movement of a micropolar fluid drop that is spheroidally
shaped at a concentrical point within another immiscible viscous fluid inside a spherical slip cavity. At
the droplet’s surface, the vorticity-microrotation condition is applied. To find solutions to the Navier-
Stokes equations both internal and external to the spherical droplet, spherical coordinate systems are
used to find general solutions for velocity fields based on the concentric point within the cavity. This
study expands on the issue addressed by Happel [56] to contain the effect of slip friction. Our findings
agree with those by Happel [56]. Moreover, this study aims to determine the nondeformable droplet’s
response to the boundary. Finding expressions for the correction factors allows us to express the impact
of droplet and cavity interactions. Clearly, as the gap thickness between the cavity and the droplet
reaches zero, there is a strong interaction between them. These findings show that the correction wall
factor takes a large value in the solid sphere case compared with the gas bubble case and in the no-
slip case compared with the partial slip case. Also, it increases with the increase of the micropolarity
parameter, takes a large value in the no-spin case compared with the perfect spin case, and decreases
as the relative viscosity increases.
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