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Abstract: This article is devoted to studying a new class of nonlinear coupled systems of fractional
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by infinite delay. We first transform the boundary value problem into a fixed-point problem, and, with
the aid of the theory of infinite delay, we assume an appropriate phase space to deal with the obtained
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of the main results.
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1. Introduction

Differential equations of fractional order have constituted in recent years a significant field of
applied research due to their ability to describe many real-world phenomena more accurately than
those of integer order. As many processes and changes in nature are affected by delays when they occur,
differential equations with finite and infinite delay attracted the scholars to model many applications as
delayed differential equations, for example, co-infection of malaria and HIV/AIDS [1, 2], predator and
prey models [3,4], output feedback controller systems [5], BAM neural networks [6], neural networks
with Lévy noise network-based control systems [7], HFMD model [8], etc.
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The coupled systems of different types of fractional differential equations that are associated with
different types of initial and boundary conditions play an important role in mathematical modeling,
as such systems occur in various problems of applied sciences such as engineering and physical
applications. Therefore, there are many applications and studies dealing with coupled systems; for
instance, Hu and Zhang [9] investigated the existence of solutions for a coupled system of p-Laplacian
fractional differential equations with infinite-point boundary conditions by applying coincidence
degree theory. In [10], the authors derive the existence and uniqueness results for a class of coupled
systems involving implicit fractional differential equations with periodic boundary conditions. The
existence and uniqueness of integrable solutions for a nonlinear coupled system of fractional differ-
integral equations with weighted initial conditions were established in [11]. Ahmad et al. [12] obtained,
with the aid of Schaefer’s and Banach fixed point theorems, the existence results for a nonlinear
coupled system involving different orders of both Riemann-Liouville and Caputo generalized fractional
derivatives and equipped with Riemann Stieltjes type integral boundary conditions. Aljodi [13] studied
a new class of coupled systems of Caputo-Fabrizio differential equations equipped with nonlocal
coupled boundary conditions and established the existence and uniqueness results based on Banach
and Krasnoselskii fixed point theorems. Zhao [14] discussed the existence criteria for the solutions
of a class of coupled systems involving Atangana-Baleanu fractional order differential equations with
(p1, p1)-Laplacian operators and proved the stability of the obtained system by means of generalized
Ulam-Hyers stability. In [15], the authors investigated a new class of coupled implicit systems
involving p-fractional derivatives of different orders and anti-periodic boundary conditions. Zhao [16]
established important results related to the stability, existence, and uniqueness of the solutions of a
coupled system involving Atangana-Baleanu-Caputo fractional differential equations with a Laplacian
operator and impulses using generalized Ulam-Hyers for the stability and by an F-contractive operator
and a fixed-point theorem on metric space for the uniqueness.

The theory of differential equations with infinite delay has gained much attention since the
early 1970s, and has developed rapidly since that time. General axioms and theorems were established
to deal with this kind of equation. The appropriate selection of the phase space ¥ was very important
in the study of differential equations with infinite delay, which was identified by specific axioms,
see [17-19]. For more details on the theoretical aspects of differential equations with unbounded
delay, we refer the reader to the works [17,20-23]. Although there has recently been considerable
work on fractional differential equations with infinite delay; see, for instance [24-31], the studies
on coupled systems of delayed differential equations, especially with infinite delay, are limited; for
instance, see [3,32-34].

Recently, Liu and Zhao [33] investigated the existence results in a Banach space for a coupled
system involving neutral integro-functional differential equations of fractional order between 0 and 1,
with infinite delay, by applying standard fixed-point theorems.

Our goal in this work is to extend the previous studies on coupled systems with infinite delay by
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introducing a new class of the form:

CD3+ul(t) = f(t’ Uyy,s uZl), re Q = [Oa 1]7
ul(t) = nl(t)a re (_007 O]a

CDg+u2(t) = g(ta Uiy, MZt), re Q = [O’ 1]9 (11)
uy = mp(t), 1€ (-0,0],

0| ()
(1) =4 f up(s)ds, ux(1l) = ﬂzf ui(s)ds, o,0 € (0, 1),
0 0

where CDgH CDg+ are the Caputo derivatives of fractional order ¢,y € (1, 2], respectively, and 4;, A, are
constants. f, g : QX T — R are continuous functions and n; € T such that n;(0) = 0, fori = 1, 2, where
T is denoted as a phase space that is specified in Section 2. The functions u;, : (—co0,0] — R, which are
elements in T, are defined as u;(7) = u;(t +7), T<0,fort e Qand u; : (—o0,1] > R, i=1,2.

The remaining content of this article is presented as follows: Some basic materials related to our
work are presented, and the integral equation that is equivalent to the solution for the linear variant
of problem (1.1) is derived in Section 2. In Section 3, we establish our main results with the aid of
Schaefer’s theorem and the contraction mapping principle, and we provide some examples to illustrate

the obtained results. Finally, the conclusion is presented in Section 4.
2. Preliminaries

For this paper, we define the phase space (3, ||.|[z) as a seminormed linear space of functions that
map (—oo, 0] into R and satisfy the following fundamental axioms, see [22]:

(Ny) For a function x that maps (—oo, 1] into R, such that x, € T, and for each ¢ € [0, 1], the following
conditions hold:

(1) x,1s an element in T,
2) |Ixllz < q(t) supf|x(s)| : O < s < t}+ p(?)||x0l|z, where g, p : [0, 00) — [0, c0) are two functions
independent of x(.) such that g is a continuous, p is a locally bounded, and

g" =sup{lg()| : t € [0,11}, p* = sup{lp(n)|:t€[0,1]},

3) |x(| < L||x4|x, where L > O be a constant.

(N,) For x(.) satisfies (V;), x; is a continuous I— valued function on [0, 1],
(N3) T is a complete space.

Next, we define the space T, = {x : (=00,1] = R : X|—wo) € T and xlpp,;; € C(Q,R)} with a
seminorm ||.||z, defined by |[x||z, = [[7llx + sup,q 1x(s)], x € T, and x(7) = n(¢) for t € (—o0,0].

Definition 2.1. [35] The Riemann-Liouville fractional integral for a function h : [0, 00) — R, of order
B > 0 is defined by

te Bl
I h(t) = j; %f(s)ds, t>0.
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Definition 2.2. [35] The Caputo fractional derivative of order B for a function h : [0, 0] — R with
h(t) € AC"[0, o) is defined by

1 T hO(s) _
cpp = = ["Ppm -1
S Yy fo (s = o hT®, 1> 0,n =1 <f<n,

where n = (5] + 1.
Lemma 2.1. [35] Let 8 > 0 and h(t) € AC"[0, 00) or C"[0, 00). Then

(k)
(15, CDBh)(t)—h(t)—Z kf )tk t>0, n—-1<B8<n. 2.1)
k=0

In the following, we prove an auxiliary lemma that is associated with the linear variant of
problem (1.1).

Lemma 2.2. Let hy, h, € C(0,1) and u;,u, € AC(Q,R) N T, and

PO Noxtons
Alzl—%;eo. (2.2)

Then, the unique solution to the problem is:
D (1) = by (1), “Dy.uy(t) = hy(1), 1€Q:=10,1],
M](t) = nl(t)a MZ(t) = nQ(t)’ re (_OO’ O]’ (23)

T | T2
u1(1)=/11f uy(s)ds, uz(1)=/12f u(s)ds, oy,07€(0,1),
0 0

is given by:
(@), t€ (—o0,0],
1 !
— | (t—s)" lhl(s)ds+—{— f (s — 1) hy(1)drds
INGS )f L(y)
" f(l s + 22T UZf( " (r)drd oY
F( ) S 1(s)ds Q) K 1(D)dtds
21%1) f (1= sy~ lhz(s)ds} te0.1].
(1), t € (—00,0],
TGy )f(t—s)v Yhy(s)ds + — {F(g) O—zf(S—T)c 'hy(t)drds
w0 f(l—)“h()d+ e
1:1() S »(8)ds Ty S—T »(T)dtds
2;?-2)f(1—s)§ lhl(s)ds} teo.1].
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Proof. Applying I, and I, to the first and second differential equations in (2.3), respectively, and then
in view of Lemma 2.1, for ¢ € [0, 1], we find

u () = % fo (t — )5 hy(s)ds + | + cat, (2.6)

w(t) = %y) fo (t — $) ' ha(5)ds + c3 + cat, (2.7)

where ¢y, ¢, c3,c4 € R. Using the first boundary conditions: #;(0) = 1;(0) = 0,i = 1,2 in (2.6)
and (2.7), respectively, we get ¢; = ¢3 = 0. Consequently, (2.6) and (2.7) have the form:

u(f) = % fo (t — )5 hy(s)ds + cat, (2.8)

ur(1) %y) fo (t — $) ha(s)ds + cat. (2.9)

From the second boundary conditions: u;(1) = A4 fom u(s)ds, ur(1) = A, fom ui(s)ds, together
with (2.8) and (2.9), it implies that

2
o - Ao = f f (s — 1) 'hy(T)drds — —f (1= 5" hy(s)ds,
2 I() I

2
c4— /1220'2C2 = F(g‘) f (s — 1) 'y (v)drds — _f (1 = 5)" " hy(s)ds.

By solving these two equations together, we get

— 1 B 1 _ 1 1 el
2 = Al/l20. {r‘(,y) f(s T)y hZ(T)deS (g)j(;(l S)g hl(S)dS
4
/11/120'1 > el _ 1
2F(§) 0 L(S O h 2T (y )f(l )" hZ(S)dS}
1
tTAeie {r@) f (s =) lhl(f)dfds—m f (1= 8 ha(s)ds
1
+/ll/120_§ o1 fs(s —T)y_lh (t)dtds — f (1- S)g lh (S)dS}
2 (y) Jo Jo : 2r( ) 1

By replacing the values of ¢; and ¢4 in (2.8) and (2.9), respectively, we obtain solutions (2.4) and (2.5).
The converse of the lemma can be proved by direct computation. O
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3. Existence and uniqueness results

To establish our main results for problem (1.1), in view of Lemma 2.2, let us transform problem (1.1)
into a fixed-point problem by introducing an operator J := (J;, 3,) : [ = Il as

M), te(=e0,0],

(t— )" y-1
f r( ) f(S Uis, l/lzs)dS + ~ ﬁ’y) f (S T) g(T Ulr, MZT)des
S1(uy, w)(t) = (1= s)s! /l 1207 .
f F( ) ————f(s,uy5, up)ds + T f(s—T)g f(@, ue, up)drds
2F( )f( —5)" g(s, M]S,I/tgs)ds} te[0,1],
and
n2(2), t € (—00,0],
(l S)y 1 ) -
f 1—~( ) g(s Uy, MZY)dS + _{m f (S - T) f(T Uiz, I/lg.,-)deS
Sa(ug, up)(t) = (1- 1/12 (o 1
f F( ) g(s Uy, Ups)ds + ) f(s—T)y 8(t, Uy, uar)drds
Lo 2 ¢-1
2F( )f(l — 8 f(s, uyg, ung)ds ¢, t€[0,1],

where I1 = T, X T, is a seminormed space endowed with the seminorm
1, u)llm = lluallz, + lluallz,, for (up,uz) € I

For ¢ € [0, 1], let us assume the solution (i, u,) € 11, that satisfies (2.4) and (2.5), to be a decomposition
of two functions (vy,v;) and (W, w»), such that (uy, ux)(t) = (vi,v2)(#) + (W, wy)(#), which implies

(U1r, uz) = (Vig, V2r) + (Wip, Woy).
The function (v;, v,)(.) : (=00, 1] X (=00, 1] — R? is defined by

(771» 772)(0, te (—OO, 0]9
(vi,v2)(@) = (3.1
0,0), re(0,1],

which yield (vio, v29) = (171,772). Also, the function (W}, w,)(.) : (=0, 1] X (-0, 1] — R? is defined by

(0,0), t € (—00,0],

(W1, wa)(1) = { (3.2)
(W15 WZ)(I)’ re (09 1]’

where the function (w, w,)(.) satisfies
1 !
wi(®) = m f (t — $)57 f(5, V15 + Wi, Vog + Wog)ds

A 71
{r(;/) f (S - T)y_lg(T’ Vie + Wig, Vor + WZT)deS
0
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f ( - S)g lf(s Vis t lea Vos + WZS)dS

T
/11/120'1
zr( ) f f (S - T)g f(T Vir t+ Wl‘r» Vor + WZT)deS
S
/110'1 1
2F(y) f (1 - S)y g(s Vis + le’ Vos + WZs)dS (33)
and
wa(t) = e )f(t— $) ' 8(s, Vis + Wiy, vag + Way)ds

{F(g) f f (s = T f (T, Vir + Wig, Vor + Wor)dTds

f ( - S)y lg(s Vis + Wlsa Vos + WZS)dS

“T(y)
+/l /120-2 f(S_T)y_l (T, Viz + Wig, Vor + Wor)dTds
ZF()/) 0 8(T, Vit 175 V21 27
1
T 9 f 51+ 1 vy + 20)ds 3.4)
2F(g) o s Vs 1ss V2s 2s . .

Thus, for every (wy, w») € I1, (wy, wy)(0) = (0, 0).
Now, set ', = {w € T, such that wy = 0} and introduce a seminorm ||.||z-, on T’, by

IWllz, = lIwollx + sup [w(@)| = sup [w(®)l, we T,
t€[0,1] te[0,1]

which means that ||.||z, is indeed a norm in T’, and consequently, the space (¥',,[.|lz,) is a Banach
space. Furthermore, consider the Banach space IT" = ', X T, with the norm

low, w)llr = [willx, + [wallv,,
for (wy,w,) € I, and define the operator S = (S, S,) : II" — I’ by
S(w1(1), wa(0) 1= (S1(w1(1), wa(1)), S2(w1(1), wa(1))), (3.5)

where

1 !
Si(wi (@), wr(1)) = ) f (t = 8) f(5,Vig + Wi, vog + Wog)ds

{F(V) fo f S lg(T Vi + Wir, Var + Wor)dtds

e )f( — )5 (8, Vig + Wiy, Vo + Wag)ds

/1 /120'1 02

2F(§)

f (S - T)gilf(T’ Vir + l’T}I‘r, Vor + WZT)deS

2F( ) f (1-s)" 1g(s Vis + Wi, Vog + Wzy)ds} te(0,1], (3.6)
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and

Sr(wi (D), wa(1)) = e )f(f— ) g(s,Vig + Wi, Vg + Wa,)dss

{F(g) f f (s = O f(T, Vir + Wie, vir + War)drds

r( )f( _S)y g(s V1€+le,v2v+w23)ds

/1 /120'2

2F(7)
— /12 2

2I'(s)

f (s = 1) g(T, Vir + Wir, Vo + Wor)dTds
0

1
(1 - S)g_lf(sa Vis + Wlsa Vos + WZS)dS}’ re (0’ 1] (37)
0

Clearly, if the operator S has a fixed point, then J has a fixed point, and vice versa.
Further, to establish our main results, we introduce the following hypotheses:

(C) There exist continuous nonnegative functions «;, ¢; € C([0, 1],R"),i = 1,2, 3, such that
|f @ ur, )l < a1(t) + axDlluillx + a3Dllully,  Y(ur,up) € T, Ve € Q,

lg(t, ur, ux)l < @1() + e2(Mllurllx + 3Dluallz,  V(ui,ur) € T, Vt € Q.
(C,) There exist constants €; > 0, y; > 0,i = 1, 2, such that

|f(t7 Uy, MZ) - f(t’ MT’ u;)l < g]”l/t] - MT”Z + €2||M2 - u;”z’ V(ul, MZ), (MT, M;) € ("I’ Vl‘ € Qa

|g(ta up, MZ) - g(t’ I/[]k’ M;)' S/\/lllul - MT”I +X2||I/l2 - u;”z’ V(ul, u2)9 (I/[]k’ Ll;) € za Vt € Q

In the following, for brevity, we use the notations:

1 1 Ao Pl 0'ngl Ao
A, = N N [2]075 N | 2] [ | 4] 1], (3.8)
I'c+1) [AMl(c+1) 2IMI(c+1)  [AI(s+2) 2
1 1 Ao Al Ao
Ay = N N |i]oy . |i]omy [ | 5] 2]’ (3.9)
Lly+1D) My +1)  2IAMIGy+1) ATy +2) 2

and
® = min {1 - q*(dzAg + (p_zA3), 1- q*(Cf3A2 + (,0_3A3)},

where @; = sup{|a;(?)| : t € Q} and ¢; = sup{lpi(t)| : t € Q}, i =1,2,3.
The aim of our first result is to provide sufficient criteria that ensure the existence of solutions for
problem (1.1) in view of Schaefer’s theorem [36].

Lemma 3.1. (Schaefer) [36] . For a Banach space B, assume that P : B — B is a continuous and
compact mapping on B. Then P has a fixed point u € B, if the set of all solutions of the equation
u = pPu, for 0 < p < 1, is bounded.

AIMS Mathematics Volume 9, Issue 6, 15040-15059.
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Theorem 3.1. Let f,g : QX T — R be continuous functions, and condition (C;) holds true. Then
problem (1.1) has at least one solution on (—oo, 1], if the following inequalities are satisfied:

g (@A + 4A3) < 1 and g (a3Ay + @3A3) < 1, (3.10)

where N, A3 are respectively introduced by (3.8) and (3.9).

Proof. We start the proof by showing that the operator © : II"” — II” defined by (3.5) is continuous
and maps any bounded subset of II" into a relatively compact subset of II’; that is, S is completely
continuous. Clearly, the continuity of the operator S : I1" — I1” follows the continuity of the functions
f and g. Now, let us consider the bounded set B; = {(w;,w») : |[[(w;,w,)|| < 7} € IT". Then, positive
constants My and M, can be found such that

(5, V15 + Wi, vay + W) < @1+ @ [vis + Wigllx + @ [Ivag + Wyl
< a +ax (g sup wi()| + prlimllz) + @z (¢" sup wa ()] + p*linallx)
sEQ sEQ

< ay+ pi(a@ lmllz + @ linllz) + ¢ (@ lwillz, + as lwallx,)
< a+ pl(@lmllz + aslinallz) + ¢ F = M;.

Simmilarly

|g(s, Vig+ Wi Vag + Wag)| < @1+ pi(@limll + @3 limallz) + ¢"q'F = M,,

where

Vis + wislly < visllz + [IWislly < ¢ sup{lwi(9)] = s € Q} + p*limillx = ¢lwilly, + p*limllx,

vas + Waslly < vasllz + [Waslle < g* sup{lwa(s)l : s € Q} + p*llmills = ¢ lwally, + p*linallz,

and o* = max{@», @z}, ¢* = max{ps, &s}.
Then, for any (w;, w,) € B;, t € Q, we have

1 !
[S1(wi (1), wa (D) < ) f (t = ) (s, vig + Wi, Vg + Wo)ldss

|4 fs -1 _ .
+ s —T) 7 g(T, Vie + Wi, Var + Wop)ldTd's
|A1|{F(y) ; ( g(t, vy 1> V2 27)
1
+m (1 = $) 7 f (s, Vis + Wi, Vg + Woy)lds
|/11||/12|0'1 fmf( ) 1If(‘r Vir + Wig, Vor + Woo)|dtds
2F(§) 1T 179 V271 2T
Mll 1]( — ) g(s, vis + Wi, Vo5 + Way)lds
zr( ) g 1s 1ss V2s 2s
< f(t— s l/\/( ds { ] f f (s —T)V_lMngds
O] |A T Jo Jo
+—f (1= 5)"Mds + Willdalery - fS(S—T)g_lM drds
) 4 &) Jo Jo !

|/11|0-1 1
zr(y)f(l—s)y Mds)

AIMS Mathematics Volume 9, Issue 6, 15040-15059.
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(-9 t f »
1-95)¥""d
= M {f Mo C A T
l‘|/11||/12|0'1 |
A, |r<g>f f (=2 des}
74 f 1 fAilo f 1 }
M — ) ' drds 1-9)"""d
g{|A1|r(y> (s =07 lduds + 5ones ), (97 ds
3 1 ||zl 20!
= MMre+n ” |A1|r(g+1)+ NG+ 2)

{ o7 e }
§ |A1|r(y+2> M Ty + 1)

In the same way,

S, (w1 (1), wa ()] < Mf{ Z 2|0'§+1 N |/12|o-% }
IAIT(s +2)  2|A|T(s + 1)
! 1 il oo
g{r()’ +1) * AT (y + 1) - ATy + 2) }

Therefore, for any (wy, w;) € B;, we get

1Sw1, wo)llw IS1(wi, wo)llr + [[S2(w1, wo)llre

MfAz + MgA3,

IA

which yields that the operator & is uniformly bounded.
Now, to prove that & is equicontinuous on IT’, take 0 < t; < #, < 1, and (wy, w;) € B;. Then

|S1(Wi(12), wa(12)) — S1(wi (1), wa(t))
= ‘% fl ((fz ) = - S)g_l)f(S, Vis + Wis, Vog + Wos)ds

r( ) f (t2 - s)g‘ lf(s Vis + Wlsa Vos + WZS)dS

h—1

+ r-1 rt s Vor + ‘rdd
1\1 {F(y)f f(s )" g(T, Vie + Wi, Vor + W )dTds

f( -5 1f(S Vis + Wi, Vag + Wa)ds

T(s)
Aoy (™ f (s =D f( ; v2r)drd
+ - T + T V2T + T
Q) Uy ; s — 1) f(T,Vir + Wir, Vor + Wp)dTds
ki f (1 s ; 72,d
- - K + ) s + s
TG s $) (s, Vis + Wi, Vag + Wag)ds

IA

1 1] o1 e s .
@fﬁlﬁz—s) (- 9) |Mfds+r()f|(tz 91| M, ds
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|f2—l1| |, -1 _f ol
™ (F()/)f f( -7)" M, drds + o (I -9 Msds
412 7 :
+—| 1l Azlory f(S—T)g_l M; des+| L f(l 5" M, ds)
0o Jo

Q) ()
A —n)r +15 =61 (1 -n)/|ulldle; .,
S M= A e r<g+1>)]

(l‘z—ll)( P Mllfr%)

Mo To+27 T

Likewise, we can find that

12 (w1 (12), walt2)) — Sa(wi (1), walty)|
2 -0 +16 -1 (h—-1),lulldlos y+1 1
S o I TN v LU vy
(tr—1), | +1 |/l2|0'2
A e T n)

+Mf

According to the above inequalities, we show that |S; (w (1), w2(£))—S (w1 (t)), wa(t1))| = Oasty — 1,
independently of (w;,w,) € B;. Hence, all the hypotheses of the Arzeld-Ascoli theorem are satisfied,
and consequently, we conclude that the operator S : I1" — I1” is completely continuous.

Finally, let us define the set ¥ by
¥ ={(w1,w2) € I'|(wi, w2) = ES(w1,w2),0 < & < 1}.

Then, we need to prove that ¥ is bounded. Let (w;,w,) € ¥, then (wi,w,) = ES(w,wy), 0 < & < 1.
For any 7 € Q, we get

wi(t) = ES1(wi(1), wa(1)), wa(t) = ES2 (w1 (1), wa(1)),

Wi = &S (wi (1), wa(D))]
1 !
< m f (t = ) f (s, vig + Wi, Vg + Wag)ldss
Ml' f f (s =77 g(x, Vi + Wir, Var + Woo)ldtds
|A1| I(y)
r( ) f (1 - S)g llf(s Vis + Wls» Vos + W2s)|ds
illalo} f (5 = T (T, Vig + Wigy var + Wpldrds
2F(g) s Vit 17s V2r 2t
2
|er|< | f (1= )71g(5. Vi + Wi, vay + 2, lds)
< ) f (t— S)g_][071 + (g lwille, + prlimllo)a: + (g lwallz, + P*||'72||1)073]d5
0
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A
|A1|{IL(;/|) fo f(s_T)y 1 @1+ (¢ lwilly, + prlimllx)ea

+<q hwallz; + p*llmallz) s [drds

f (1= 97| + (@ Iwillz; + P Il + (@ Iwallz, + pligallx)ds|ds

r(g)

4] Aalo

* 2r(g>1f f (s = + (@' Iwillyy + i)
@ Iwallz, + pllnalle)dds|drds

il

2F( ) f (I =29 1[901 + (g lwillz, + plimillo)éz + (g lwalle, + p ||772||;)903] }

IA

|1+ (@ Iwill, + Pl )@ + (g lIwallyy + plinallo)ds|

A L 1 +ml|mz|(rz “1)
T+ 1) [AIT(s+1)  2IAT(s +2)

+[90_1 + (¢ lwillx, + prlimillo)@ + (g lwalle, + P*||772||z)953]

( 4] o4 |Ailo} )
ATy +2) 1 2IA0(y + D

Analogously, we can obtain
w2 = ElS2(w1(2), wa(D))]
< [071 + (g lwillz, + prlimillo)a@ + (' lwallz, + P*||772||z)073]

( | 45| o 4 ol )
IAT(s +2) 72 2IM I (s + 1)

+[€01 + (g lwillz, + prlimillo)@z + (g Iwallx, + P*||772||iz)953]

A Azlo
X( 1 + 1 N |4l 2|0'2 0_y+1)
Fy+1D ATy +1)  2IATy +2)

In consequence, we have
willy, + [walle, < ai1Ar + @1A3 + P*||771||z[a721\2 + 952A3] + P*||772||z[a731\2 + 9531\3]
+q" willz, [szAz + S52/\3] +q [wallz, [0?3/\2 + 953A3]~
Hence, by definition of ® and the conditions (3.10), we get

@Ay + @1A; + P*(llﬂlllz[@/\z + 952/\3] + ||772||z[C?3A2 + 9531\3])
(D .

This shows that ||(w;, w,)|lr 1s bounded for r € Q, and, as a result, the set ¥ is bounded. Therefore,
in view of the conclusion of Lemma 3.1, we deduce that the operator S has at least one fixed point on
(—o0, 1], and hence there exists at least one solution to problem (1.1) on (—oo, 1]. O

The next result deals with the uniqueness of the solution for problem (1.1) by utilizing Banach’s
contraction mapping principle.

(w1, wo)llr <

AIMS Mathematics Volume 9, Issue 6, 15040-15059.
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Theorem 3.2. Let f,g : [0,1] X T — R be continuous functions satisfying the condition (C,). Then
there exists a unique solution to problem (1.1) on (—co, 1], if

G (CAs + YAs) < 1, 3.11)

where £ = max{{y, {»}, ¥ = max{x, x2} and A,, A3 are respectively given by (3.8) and (3.9).
Proof. Let us fix r to satisfy the following:

. M Ay + MyAs + p*(EA, + xAsz)(lmillz + Inallz)

I = g*(CAy + x\3)

where M; = SUP,c(o.1 |f(2,0,0), M, = SUP,c(0.1] lg(2,0,0)|, and consider the operator S : II' — IT’,
defined by (3.5). Then we show that &3, C *B,, where

PB,={well : l(w,w)llr <71}

For (wy, w;) € B,, we get

|61(W1(I) wa (1))l

< l"( ) f(t_ S)g l[lf(s Vis + W]sa Vog + W2s) - f(s 0 O)l + Ml]
A ) ] ]
|A |(l"(;,) f (S - T)7 1['8(7', Vie + Wi, Vor + W2T) - g(T, 0, O)l + Mz]des
1 0
+1"( ) f (1 - S)§71[|f(S, Vis + Wi, Vo + WZS) - f(S, O, 0)| + Ml]dS
|/11||/12|0'1 72 o1
2T(5) ( = S @ Vi + Wie Var + 20) = f(7,0,0)] + Myldds
| il
2F( ) f (1= )" " [1g(s, vis + Wiy vag + W2y) — 8(5,0,0)] + Mz]ds)
< T ) f(t — ) [ lvis + Willz + Gllvas + Wagllz + My 1dss
|/1 |
|A | r(ly) f f (s = O Dxilvie + Wiellx + xallvar + Worlly + Maldrds
1
+1—(§) f (1= ) ' [lllvig + Wislly + Gllvag + Wallx + Mi1ds
0
|/11||/12|0'% 72 S o i ]
2T () (S — D [Olvie + Wicllz + Gllvar + Worllx + M 1drdss
| flo
21—( ) f (1= ) ' Dxillvig + Wisllz + xallvay + Wasllz + Mz]ds)
< g Iwill, + plinll) + G Iwall, + plinall) + M |

Y L, 1 u]nﬂzkmf“)
e+ D AT+ D) " 2/A TG +2)
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+[X1(q*||W1||:c; + pilmille) + x2 (g lwally, + prlimalle) + Mz]

oy 4]0
x( + )
ATy +2)  2IA4TCy + 1)
which yields for t € Q

1 1 |1l Aalom} .
Sy(wy, . < 3L .
|| 1(W1 W2)||H { (F(g+ 1) + |A1|r(§+ 1) + 2|A1|F(g+2)0-2 )
A Ao
+)(( | 1| O_';/+l + | 1| 1 )
ATy +2) 2IMITCy + 1)

X{q*(llwlllz; +wallz,) + p*(lmllz + IIUzIIz)}

1 1 Ao
M]( " " | 1” 2|0-1 0_?_1)
I'c+1D)  [AT(c+1)  2IAMI(s+2)
( | o] \ilo} )
28T —, A~ - . - -
ATy +2) ! 2IMITCy + 1)

Similarly, one can find that

IA

1S (w1, wo)ll

{,( | 45| N oo )
IAIID(c +2) 2 2IM[C(s + 1)

1 1 \illalos ., }
+ + o )
Fy+D AT+ 2IAT(y +2)

+)((

X{(I*(”Wlﬂzg +[wallx) + P (lmillz + ||772||z)}

A Ao
1( | 45| 0_§+1 N |Ao]0 )
IAC(s +2) 2IN (g + 1)
1 1 A|1A]02
Mz( + + | 1” 2| 2 0_«1y+1).
Fy+1) ATy +1)  2[AC(y +2)

Consequently, for any (w;, w,) € B,, we have

1S (w1, wo)llr + [[S2(w1, wo)llr

(EA, +)(A3)[q*||(w1, w)llr + p*(Imllz, ||772||z)] + M Ay + MyAs
r.

1S(wi, wo)llr

IA

A

So, we conclude that S maps P8, into itself.
Next, to establish the contraction of the operator S, let (wy, w»), (wj,w3) € I, € [0, 1]. Then, by
(Cy), we get

1S1 (w1 (1), wa (1)) — Sy (W (1), Wi (D)

1 !
r(g) ‘fov (l - S)g_l [lf(sa Vis + Wlsa Vos + W2s) - f(s’ Vis + WTsa Vs + W;S)l]ds
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toflal » . ) B ]
+—IA |{_ (s -7) [Ig(T, Vie + Wig, Vor + War) — (T, Vir + Wi, Vor + WZT)I]des
1

I'(y)
o f (1= 9 1[|f<s Vs + Wi, Vag + W) = f(8, Vi + Wi, v, + W5l |ds
—|/11||/12|0'1 f(s—‘r)g_lhf(Tv + Wig, Vor + War) = f(T,Vie + Wi, Var + W5 )|]drds
zr(g) s Vit 175 V21 27 s Vit 172 V21 21
+Ml| Zf( s)yl[l (8, Vis + Wiy, Vog + Way) — g(8, vig + Wi, Vos + W, )I]
2F( ) 8 ls 1ss V2s 2s 4 ls 152 V2s 2
< m f (t = ) llwis = wi Iz + Gallwa, = w3 llx|ds
+— { a f (-0t Deilwie = wills + xallwar — wi,liz|dds
|A1| L(y) 0
+m f (1= )57 |ilwis = willx + Gallwas — w3l |ds
|l alo
e f f (s = 5| Cllwir = willx + Gollwar = i, Iz |deds
|Ailo]
30 f (1= 57" Prillwrs = willx + xallwa, — w3 I |ds
< mf(l—s)g_l [5161*||W1—WTHz;,+5261*||W2—W§||z;,]ds
T {“l' | ; | (5= 07 1w — Wil + xag°ws — Wil Jdeds
A T()
e )fa—s)“[flq i = will, + €ag”lIwa = whllx, |ds
|l alos _ . . . .
Tg)l L(S—T)g ! [flq w1 = willy, + €2q7lws —W2||z;]deS
iy boidIw = willz, + x2q"lbws — will ]ds}
() Jy 1 1 iz 2 2 oz
1 1 Al A]0?
< ol . . _Millblo o5
T+ 1) " IMIG+1) * 2AITGs +2)
|/11| y+1 |/11| 1 * *
Y| = + - 4 - ).
[| ATor20 * 3 Allmﬂ)]}(nwl Wil + lwa = w3llz;)

In a similar manner, we get

|S2(w1(1), wa (1) = Sa(wi (D), w5 ()]

< *{f[ |AZ| O_§+1 |/12|O'§ ]
- AT +2) 2 2IAT(s + 1)

+ + + y+l — Wl + — Wil ).
x[mﬂ) Ao+ TATe 250 JJiwr = willz, + 1lws = willz)
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Consequently, it follows from the foregoing inequalities that

1S(wi, w2) = Wi, Wl = [IS1(wi, wa) = Si(wi, wo)llr + 1S2(wi, wa) = Sa(wi, wh)ll

< g (EAs + xA)NI(wi, wa) — (Wi, W)l

A

which, together with the condition (3.11), implies that & is a contraction mapping. Therefore, we
deduce from the conclusion of the Banach fixed-point theorem that S has a unique fixed point. This
ensures the existence of a unique solution to problem (1.1) on (—oo, 1]. O

3.1. Examples

Consider the following coupled system:

CDYPun(®) = f(t,un, ), 1€ Q= [0, 1],
ul(t) = T]l(t), re (—OO, 0],

5/4 _ .
CD0+ l/tz(t) - g(t9 Uiy, u2t)9 re Q o [05 1]a (312)
U = n2(t)9 re (—OO’ O]»

2/5 1/3
u (1) = 1/2f ur(s)ds, ux(l) = f ui(s)ds,
0 0

where ¢ = 3/2, y =5/4, 4y = 1/2, 1, = 1, 0y = 2/5, 0o = 1/3, and f(t,u,, uz), g(t, uys, uz), 1m:1(2),
and n,(¢) will be fixed later.

We find by using the data given in (3.12) that A; = 0.9977778, A, = 1.568185488, A;
1.828971108, where A, A, and A3 are respectively given by (2.2), (3.8), and (3.9).

Let 6 > Oand set T; = {u € C((—00,0],R) : Tgmw ¢ u(t) exists in R}, with the norm ||ull; =

sup eTu(7)|. It is clear that the space ¥ satisfies the axioms of phase space, and p(t) = q(t) = L = 1,
—00<7<0

see [24]. Now, let us take the space I1; = T5 X Ts with the norm

1Ger, u)ll, = lluallz, + lluzllz,, forall (u;,us) € Ils.

e —1

One can take n(t) = and 1,(t) = € — 1, which are continuous functions such that 7,(0)
17:(0) = 0 and lim €”n,(f) < oo, lim e”n,(f) < co. Thus, 11,77, € Ts. Obviously, (171,7,) € Ils and
t——00 1——00

(71(0), 72(0)) = (0, 0).
In order to illustrate Theorem 3.2, we chose

42 e sinuy, e uy,|
AT + + : (3.13)
PT84 Nedrr V4900 (1 + Juy)
2t4 —6tt -1 -0t
gty tiy) = — + 0T ¢ (3.14)

+ .
5 16 +1)  r+12

Clearly,
412

| |
+ ———|luallx,,
8+ od+t1 VZ+o00
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21t 1 1
f, Uy, = — + ————|luylly, + — ,
(2, urs, ua,)| 5 " Tewr s 1)Iluullz(, = 12”“2:”15
and note that the assumption (C)) is satisfied with a;(?) = 8%3, ar(t) = 614+[, a3 = t2-1+—900 and ¢, =

26t _ 1 _ 1
5092 = T+ P33 = Ve

Moreover, we find

q* (@2 Ay + ¢ A3) ~ 0.3103338802 < 1,
g (@3A, + G3A3) ~ 0.5802513305 < 1.

Hence all the conditions of Theorem 3.1 are satisfied, and as a consequence, the problem (3.12)
with f(z, uy;, up) and g(t, uy;, up,) given by (3.13) and (3.14), respectively, has at least one solution
on (—oo, 1].
Next, to demonstrate the applicability of Theorem 3.2, let us assume
rsinug, e uyl

e
1 Uy, ) = 7. P
Sttt = = 5 T o

te™'uy, N e~ sin uy,

24 V2 +36

Clearly, f and g satisfy condition (C,) with ¢; = 1/25,¢, = 1/12,x1 = 1/24,x, = 1/6, and so
=1/12,x = 1/6. Also,

8(t, uyy, uny) = (3.16)

g (A5 + xA3) =~ 04355106420 < 1.

So, all the assumptions of Theorem 3.1 hold true, and, according to its conclusion, problem (3.12) with
f(t,uy;, uy) and g(t, uy,, uy,) given by (3.15) and (3.16), respectively, has a unique solution on (—oo, 1].

4. Conclusions

As coupled systems have gained intensive interest due to their important applications in real-world
phenomena, we have considered in this paper a new class of coupled systems involving nonlinear
fractional differential equations that are affected by infinite delay and complemented with nonlocal
integral boundary conditions. We have investigated the existence of solutions for problem (1.1) by
applying Schaefer’s fixed point theorem, while for the uniqueness result, the contraction mapping
principle has been employed. To deal with the differential equations with infinite delay, we needed to
select an appropriate phase space that satisfies the axioms given in [22]. To guarantee the applicability
of our results, illustrative examples have been constructed. The results presented in this paper take on
importance as a new contribution to the study of nonlinear coupled systems with infinite delay that
extends the literature on this subject. For further studies of the coupled systems with infinite delay,
by following the papers [14, 16,30], we can extend our work in this article by discussing the stability
and simulation results for the solutions of the obtained system. Also, the differential equations in
the problem at hand can be replaced by implicit differential equations of different types of fractional
derivatives with the p-Laplacian operator, and a variety of fixed-point theorems can be applied based
on our previous works [12, 15].
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