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Abstract: In seismic data processing, both in inversion (Inverse Processing) and modeling (Direct 

Processing), it is essential to consider anisotropy to unravel the geological structure of the subsoil. 

Besides, in most cases, the macroscopic model of anisotropy in 2D seismic surveys is elliptical and 

weak, with ratios of anisotropy close to one. Therefore, it is crucial to have at disposal the analytical 

formulas for acoustic wave propagation in elliptical anisotropic media. We presented the generalization 

of the Snell’s Law for the case of acoustic wave propagation in elliptically anisotropic media. The 

generalization of the Snell’s Law for acoustic anisotropic media had different applications in digital 

processing, raytracing, and acoustic inversion to properly consider elliptical anisotropy. 
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1. Introduction 

Seismic anisotropy is a topic treated in many research articles [1–5]. During the last decades, the 

separation between sources and receivers of seismic data has increased, and the quality and processing 

capacity of such seismic data has improved considerably. Thus, it is necessary to rethink its treatment. 

Although the subject is extensive and the mathematics describing its behavior is, in general, complex, 

this work intends to advance in facilitating the incorporation of anisotropy in the representation, 

processing, and inversion of seismic data, improving in this way the efficiency of exploration 

techniques. 
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The generalization of the Snell’s Law to acoustic anisotropic media has different applications in 

digital processing, raytracing, and inversion. For instance, the transmission tomographic inverse 

problem could be solved in a discretized medium where the velocity field has a local anisotropic 

behavior. Using this formula, it is possible to solve both the forward and inverse problems to infer the 

major acoustic elliptical anisotropic parameters of the geological medium. 

In exploration seismology, a medium is defined as showing seismic anisotropy if the seismic 

velocity varies when the direction of propagation varies. When the velocity does not vary as a function 

of direction, the medium is called isotropic, thus being a particular case of anisotropy. Heterogeneity 

describes the variations in physical properties between two points. Although heterogeneity and 

anisotropy are not the same thing, they generally coexist by mimicking their dynamic effects. An 

anisotropic and homogeneous model is valid for seismic data coming from environments with great 

structural geological complexity as well as for long distances between sources and receivers [6]. 

Nevertheless, it has been shown that most of the geological media show a macroscopic elliptical 

anisotropy, and in most of the cases, this anisotropy is weak, that is, the anisotropy ratio, which is the 

quotient between the minimum and the maximum acoustic velocity of the medium, is close to 1 (0.95–

0.99). This is because of fine stratifications, fluid content, and organic matter [7–8]. This fact outlines 

the importance of the elliptical anisotropic model in geophysical exploration. 

Besides, this research is circumscribed to the field of acoustic media. We are aware of the 

importance of wave propagation in elastic media, but there is no free lunch in modelling, that is, every 

mathematical model is suited for a particular purpose. Also, due to the importance of Snell’s law and 

eikonal equation in raytracing, digital processing, and in inversion, we have adopted the Fermat’s 

principle as the simplest method to deduce this law as shown in Berryman [9]. 

Snell’s Law models the refraction that occurs in the path followed by an acoustic beam between 

two contiguous regions with homogeneous isotropic slowness s1 and s2. This law states that this is the 

transition between these two media, so we have: 

𝑠1   ·  𝑠𝑖𝑛 𝜃1  = 𝑠2   ·  𝑠𝑖𝑛 𝜃2  (1) 

where 
1  and 

2  are the respective angles of incidence and refraction (see Figure 1). 

Snell’s Law can be deduced as a corollary of the Fermat’s principle, Berryman [9], that states: 

The ray between points A and B will follow the path of minimum travel time, that is, acoustic 

propagation follows variational principles. Snell’s Law can be also deduced in elastic media via 

continuity principles [10]. 

Our purpose is to generalize the expression (1) for the case of acoustic wave propagation between 

two elliptically anisotropic media and to find the analytical expression that governs this situation. 

The velocity models of each of the media exhibit in this case a weak elliptical anisotropy (see 

Figure 2) described by the following parameters: 

maxV : The maximum velocity, 

 : The direction of anisotropy, 

min

max

V

V
 = : The anisotropy ratio. 

Let us point out that this elliptic anisotropic velocity model includes the isotropic case (for 1 = ). 



14999 

AIMS Mathematics  Volume 9, Issue 6, 14997–15007. 

Most cases of geophysical media show a weak elliptical anisotropy with an anisotropy ratio in 

the interval (0.95, 1) [11,12]. 

 

Figure 1. Snell’s Law. A consequence of Fermat's principle stating that the path followed 

by a beam between a source (A) located in a medium and a receiver and (B) located in 

another medium is that one taking the minimum traveling time. 

 

Figure 2. Elliptic anisotropic velocity model, involved variables: the anisotropy direction, 

anisotropy ratio, and the maximum velocity. 

2. Deduction of Snell’s Law in anisotropic media 

Without any loss of generality, we can consider an elliptically anisotropic medium, consisting of 

two regions separated by a plane boundary, as well as a beam connecting two points A and B located 

on either side of the boundary (Figure 1). Each of the media, homogeneous and elliptically anisotropic 

respectively, will be characterized by a set of three parameters ( )max , ,V   . If we call ( ),x yv v v  =  

the propagation velocity in the direction forming an angle   with respect to the direction of 

maximum velocity   we obtain the following relation: 
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2 2

max min

1
yx

vv

V V


+ =  (2) 

and since 

min

max

V

V
 = . (3) 

Then, we can express v  in terms of anisotropy parameters: 

max

2

2

2

max
tan

1

tan1
V

λ

β

β
Vaν λββ

+

+
== . (4) 

The time a beam takes to go from source A to receiver B is: 

1 2

2 22 2

1 2

( )
( )

d L xc x
t x AO s OB s

V V 

+ −+
=  +  = + . (5) 

Since Fermat’s path minimizes travel time, the following conditions must be fulfilled: 

0
dt

dx
= . (6) 

Notice that this condition in isotropic media leads us to the well-known Snell’s Law. Let us see what 

this condition leads us to if applied to Eq (5). If we call: 

( )
1

2 2

1( )
c x

t x
V

+
= , (7) 

( )( )
2

22

2 ( )

d L x

t x
V

+ −

= , (8) 

then 

1 2
1 2( ) ( ) ( )

dt dtdt
t x t x t x

dx dx dx
= +  = + . (9) 

Let us start calculating 1dt

dx
. From expression (7): 
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2 2 1 2 2 1
2 21 1

11

2 2

1 1

  

dVx dV
V c x V sin c x

dxdt c x dx

dx V V







 

− + − +
+

= = , 
(10) 

and calling 

1 1max
1

V a V = , (11) 

where 

2

1
1 2

1

2

1

1 tan

tan
1

a






+
=

+

, 
(12) 

then we obtain: 

1 1
1max

dV da
V

dx dx


= . (13) 

Besides, 1da

dx
 is given by: 

𝑑𝑎1

𝑑𝑥
=

1

2
√
1+𝑡𝑎𝑛2 𝛽1

1+
𝑡𝑎𝑛2 𝛽1

𝜆1
2

⋅
2 𝑡𝑎𝑛 𝛽1·(1+𝑡𝑎𝑛

2𝛽1)·(1+
𝑡𝑎𝑛2 𝛽1

𝜆1
2 )−(1+𝑡𝑎𝑛2𝛽1)⋅

𝑡𝑎𝑛𝛽1

𝜆1
2 (1+𝑡𝑎𝑛2𝛽1)

(1+
𝑡𝑎𝑛2 𝛽1

𝜆1
2 )

2 ⋅
𝑑𝛽1

𝑑𝑥
, 

(14) 

which can also be expressed as follows: 

2
31 1 1 1 1

1 1 1 1 12 2

1 1

tan
tan tan 1

da d a d
a a a

dx dx dx

  
 

 

    
=  −   =   −      
    

. (15) 

Moreover (see Figure 3): 

𝛽1 = 𝜃1 + 90º − 𝛼, (16) 

22

22

2
22

22

222

1

111

cx

cx

x
cx

cx

xcx

x
arcsin

dx

d

dx

dθ

dx

dβ

+

+

−+



+

−

=














+

== , (17) 

that can also be expressed in reduced form, as: 

1 1

2 2

d d c

dx dx x c

 
= =

+
. (18) 
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Figure 3. Angles definitions. 

Consequently, merging the above, we could come back to expression (10), incorporating the 

result of (13), obtaining: 

2 2 2 21 1
1 1 1max

1 11

2 2

1 1

 
dV da

V sin c x V sin c x V
dt dx dx

dx V V



 

 

 − + − +  

= = , 
(19) 

Considering (15), we have: 

2
2 2 1 1

1 1 1 1max21
11

2

1

tan 1
a d

V sin c x a V
dxdt

dx V






 



  
− +    −    

  = . 
(20) 

Finally, including the result of (18), we arrive at the expression: 

2

1 1 1 1
1 2

1
1 1

tan 1
dt sin cos a

dx V V 

 




 
= −   − 

 
. (21) 

Let us now find the derivative of expression (8), 2dt

dx
: 

( )

( )
( )

2 2 2

22 2

2

2

2

2
 

2

dVL x
V L x d

dxL x ddt

dx V







− −
− − +

− +
= . 

(22) 

Let us now call similar to (11): 

2 2max
2

V a V = , (23) 

where 
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2
2 2

2

2

2

1 tan

tan
1

a






+
=

+

. 
(24) 

Then, we have 

2 2
2max

dV da
V

dx dx


= , (25) 

where 2da

dx
 is given by the expression: 

2
32 2 2 2 2

2 2 2 2 22 2

2 2

tan
tan tan 1

da d a d
a a a

dx dx dx

  
 

 

    
=  −   =   −      
    

. (26) 

Therefore 

 𝑑𝑉𝜃2

𝑑𝑥
=

 𝑑𝑎2

𝑑𝑥
𝑉 (𝑡𝑎𝑛 𝛽2 · 𝑎2 · (1 −

𝑎2
2

𝜆2
2))

 𝑑𝛽2

𝑑𝑥 2𝑚𝑎𝑥
2𝑚𝑎𝑥

. (27) 

Since 

𝛽2 = (𝜃2 + 270º − 𝛼), (28) 

then 

 𝑑𝛽2

𝑑𝑥
=

 𝑑𝜃2

𝑑𝑥
=

𝑑

𝑑𝑥
(𝑎𝑟𝑐𝑠𝑖𝑛

𝐿−𝑥

√(𝐿−𝑥)2+𝑑2
) =

1

√1−
(𝐿−𝑥)2

(𝐿−𝑥)2+𝑑2

⋅
−√(𝐿−𝑥)2+𝑑2−(𝐿−𝑥)

−2(𝐿−𝑥)

2√(𝐿−𝑥)2+𝑑2

(𝐿−𝑥)2+𝑑2
, (29) 

that can be expressed in reduced form as: 

( )
2 2

2 2

d d d

dx dx L x d

  −
= =

− +
. (30) 

Now, merging what has been shown above we can re-formulate expression (22) as follows: 

 𝑑𝑡2

𝑑𝑥
=

𝑉𝜃2 ⋅(−𝑠𝑖𝑛𝜃2)−√(𝐿−𝑥)
2+𝑑2⋅

 𝑑𝑉𝜃2
𝑑𝑥

𝑉𝜃2
2 =

−𝑉𝜃2𝑠𝑖𝑛𝜃1−√(𝐿−𝑥)
2+𝑑2⋅

 𝑑𝑎2
𝑑𝑥

⋅𝑉2𝑚𝑎𝑥

𝑉𝜃2
2 , (31) 

that is: 
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( )
2

2 2 2 2
2 2 2 2max22

22

2

2

tan 1
a d

V sin L x d a V
dxdt

dx V






 



  
− + − +    −    

  = . 
(32) 

Finally, we conclude: 

2

2 2 2 2
2 2

2
2 2

tan 1
dt sin cos a

dx V V 

 




 −
= +   − 

 
. (33) 

Considering expressions (9), (21), and (33), we have: 

2 2

1 1 1 2 2 2
1 22 2

1 2
1 1 2 2

 tan 1 tan 1
sin cos a sin cos adt

dx V V V V   

   
 

 

      −
   = −   − + +   −   
         

. (34) 

Finally, imposing the stationary condition, that the Fermat’s ray paths should correspond to the 

minimum travel time: 

 0    
dt

dx
=   

2 2

1 1 1 2 2 2
1 22 2

1 2
1 1 2 2

  tan 1 tan 1
sin cos a sin cos a

V V V V   

   
 

 

      
    −   − = −   −   
         

, 
(35) 

we arrive at: 

2

1
1 1 1 2

11

2

22
2 2 2 2

2

tan 1

 

tan 1

a
sin cos

V

V a
sin cos





  


  


 
−  − 

 
=

 
−  − 

 

. (36) 

In the case of isotropic media, this expression simplifies to the well-known Snell’s Law. 

Therefore, Eq (36) shall be called Generalized Snell’s Law for elliptically anisotropic media. 

3. Applications 

3.1. Application in raytracing 

When this formula is used in tracing programs is used, the determination of angle 
2  should be 

solved numerically according to: 

2

2
2 2 2 21

2

22
1

1 1 1 2

1

tan 1

 

tan 1

a
V sin cos

V
a

sin cos





  


  


  
 −  −  

  =
 

−  − 
 

. (37) 
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Considering that K is a constant: 

𝐾 =
𝑉𝜃1

𝑠𝑖𝑛𝜃1−𝑐𝑜𝑠𝜃1 𝑡𝑎𝑛 𝛽1·(1−
𝑎1
2

𝜆1
2)

, 
(38) 

we can express (37) as: 

2

2

2
2 2max 2 2 2 2

2

cos tan 1
a

V a V K sin   


  
= =  −  −   

  
, (39) 

or: 

2

2
2 2 2 2 2

2max 2

 a tan 1
aK

sin cos
V

  


  
=  −  −   

  
, (40) 

that can be solved numerically. 

3.2. Application in transmission tomography 

The simplest use of this model in inversion consists in finding the anisotropic parameters from 

transmision traveltime data in a medium composed by two homgeneous elliptical anisotropic 

suddomains separated by an interface. In this case, we have at disposal m traveltime data between m 

pairs of sources and receivers, and the dimension of the model space is 6. The solution has to be 

iterative to guess the direction of the different rays between sources and receivers. Besides, the inverse 

problem is nonlinear due to the dependence of Snell’s Law on the anisotropic paramerters. This 

provides an example of a simple application in inversion. 

4. Conclusions and discussion 

Wave propagation in geophysical acoustic media is particularly important in several fields of 

geophysics: 

• In seismic exploration of natural resources such as oil, gas, and minerals. 

• In earthquake studies to provide valuable insights into the earth’s internal structure and the 

dynamics of seismic events. 

• In volcanic monitoring to study the acoustic waves induced by magma movement and 

volcanic eruptions. 

• In subsurface imaging and reservoir characterization to optimize hydrocarbon exploration and 

recovery. 

• In geothermal exploration and environmental monitoring, among others. 

Besides, some degree of anisotropy is commonly observed in geological media. Anisotropy is a 

kind of geological heterogeneity, which is usually the target in geophysical exploration. Particularly, 

elliptical anisotropy refers to a type of anisotropy in which the velocities of propagation vary in 

different directions, forming the ellipse of anisotropy that in 2D is characterized by the direction of the 

anisotropy, the maximum velocity and the ratio of anisotropy, that is a real parameter between 0 and 
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1. Nevertheless, the manifestation of elliptical anisotropy in geological media tends to be relatively 

weak, that is, the anisotropy ratio is close to one (the isotropic case) due to the complex interplay of 

geological processes, material heterogeneity, and structural deformation. 

Geological processes such as sedimentation, compaction, and metamorphism often lead to the 

alignment of geological features in preferred orientations. This preferred orientation of foliation or 

bedding (fine layering) can introduce some degree of anisotropy in the rock’s properties, resulting in 

weaker elliptical anisotropy. Besides, geological media typically exhibit significant heterogeneity in 

their composition and structure. The presence of multiple mineral phases with different orientations 

can average out any directional variations, leading to weak overall anisotropy. Also, rocks experience 

a wide range of pressure and temperature conditions during their formation and deformation. These 

conditions can influence the mechanical and elastic properties of the rock, potentially reducing the 

degree of elliptical anisotropy. High pressures and temperatures may lead to recrystallization or 

mineral reorientation, which can diminish the effects of any pre-existing anisotropy. This includes the 

effect of organic matter. Besides rocks undergo various forms of deformation, including folding, 

faulting, and shearing, which can modify their internal structure and properties. These deformation 

processes can disrupt any pre-existing anisotropic fabric or alignment, resulting in a weakening of 

elliptical anisotropy. Finally, the measurement scale of the seismic surveys is as source of weak 

anisotropy due to the challenge of the detection and characterization of the elliptical anisotropy of the 

geological media, causing the macroscopic geophysical model to be weak. This fact provokes the 

elliptical anisotropy identification from travel time data to be challenging (ill-posed problem). 

In this paper, we have deduced the analytical expressions of the Snell’s Law for the propagation 

of acoustic waves in elliptically anisotropic media. These formulas will be of great use in the study of 

the geological structure of the subsoil by means of seismic data, either in inversion (Inverse Processing) 

or in Raytracing (Direct Processing), and will allow the estimation of the elliptic anisotropy model 

from experimental travel time data. This knowledge is very important since elliptic anisotropy is a 

common feature in real practice [13–15]. 

This article remains a theoretical deduction of this law using Fermat’s principle of ray propagation. 

To avoid increasing its length and difficulty, possible practical cases have been omitted, since in the 

different fields each researcher develops specific software for solving inverse problems in acoustic 

media. The generalization of Snell’s Law to weak anisotropic media allows its use in digital processing, 

forward propagation, and inversion. We outline some potential applications of this formula. 
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