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Abstract: In this paper, we introduce a novel stochastic prey-predator model under random small
immigration. Mainly, we prove boundedness for the solution of the model using probabilistic and
analytic types of inequalities. Furthermore, possible conditions on the immigration for achieving
stochastic square stability are obtained. The immigration of both prey and predator is assumed to
be either constant and stochastically perturbed or proportional to the population and stochastically
perturbed. In all cases, we arrived at the fact that stability can only be achieved if the immigration is
small enough. We also show that as random immigration increases, the dynamic becomes destabilized
and could lead to chaos. Lastly, we perform a computational analysis in order to verify the obtained
theoretical results.
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1. Introduction

Mathematicians have been very motivated to contribute to the study of theoretical ecology, from
both theoretical and applied points of view. Theoretical ecology problems are first mathematically
modeled, and the resulting models are then solved and described from an ecological standpoint. One
of the main topics in the theoretical ecology is the prey-predator interactions, which were first
developed independently in the 1920s by Lotka [1] and Voltera [2]. Since then, seeking more realistic
results, researchers have been highly involved in studying and developing the so-called Lotka-Voltera
model [3–7].
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Modifications that took place in the literature are mainly in the model construction, such as the
logistic and exponential forms that describe the growth in a better way. Further consideration in this
direction are functional and numerical responses, see [8–10]. Various external effects have been
investigated to simulate real-life effects on prey predator models [11–17]. However, many unexpected
factors affect ecosystems, which makes the use of random noise in the mathematical model necessary,
see [18–20] for general account. In [21], the authors address the asymptotic behavior of stochastic
version of Lotka-Voltera model. The existence, uniqueness and positivity of global solution are
obtained for different stochastic models with slight variations on the models’ types [22, 23]. The
work [24] investigates numerical results on two-predator one-prey stochastic model.

Recently, immigration have been considered as one of the most important external effects. The
importance of examining the immigration element in prey-predator systems arises from the fact that
immigration may aid in the survival of species that are on the verge of extinction, as well as in achieving
ecological stability. Results obtained by this means are only focused on investigating immigration with
deterministic models such as [25,26]. In 2018,Tahara et al. [27] studied the Lotka Voltera model when
affected by small deterministic immigration.

As far as we know, random immigration on prey-predator models has not been considered. The
aim of this paper is to initiate such an investigation, namely we study boundedness and stochastic
mean square stability for a prey-predator model with small stochastic immigration. Our results are
numerically verified.

2. Problem setting

In this section, we are going to present a new modification to intraspecific competition in prey
predator systems that has been thoroughly examined in the work of the first author [28]. He studied
persistence, extinction, local and global asymptotic stability and established that the system is
unconditionally stable. More recently, in [29], a novel mechanism for measuring predator inference
for this model was obtained. Our modification, which accounts for small stochastic fluctuations in
immigration using a dimensionless model, is as follows:

dN1 = rN1

(
1 −

N1

k

)
dt − αN1N2dt + σ1(t,N1)N1dW1

dN2 = −mN2dt + bN1N2dt − cN2
2dt + σ2(t,N2)N2dW2

N1(0) = N10 , N2(0) = N20 ,

(2.1)

(2.2)

where

• N1 is the density of the prey.
• N2 is the density of the predator.
• r is the growth rate of the prey.
• k is the systems carrying capacity.
• α is the catching rate of the prey by a predator.
• m is the rate of natural death of a predator.
• b is the efficiency of converting consumed prey into predatory birth.
• c is the intraspesific competition inside the predator.
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• W1 and W2 represent a one-dimensional real-valued Wiener processes.

The immigration terms for the prey and predator σ1(t,N1) and σ2(t,N2) take the following possibilities:

σ1(t,N1) = ϵ or σ1(t,N1) =
ϵ

N1
, (2.3)

here ϵ ≥ 0 is a natural number representing immigrants in the prey and ϵ
N1

is a ratio that representing
immigrants proportion of the prey. In similar way, we have

σ2(t,N2) = δ or σ2(t,N2) =
δ

N2
, (2.4)

where δ ≥ 0 is a natural number representing immigrants in the predator and δ
N2

is a ratio representing
immigrants proportion of the predator.

Stochastic immigration (constant or proportional to population) is known to be one of the ecological
management for population. As a real life example, ship-ballast water could represent a stochastic
immigration, see [29] for more details.

3. Boundedness of solution

This section is concerned with the boundedness of the solutions to systems (2.1) and (2.2). For this,
we write the system as follows:

dNt = µ(t,Nt)dt + σ(t,Nt)dW (3.1)
Nt(0) = N0,

where µ : [(0,T ) × R+]2 → R and σ : [(0,T ) × R+]2 → R such that

µ(t,Nt) =
rN1

(
1 − N1

k

)
− αN1N2

−mN2 + bN1N2 − cN2
2

 , σ(t,Nt) =
[
σ1(t,N1).N1

σ2(t,N2).N2

]
,

Nt =

[
N1t

N2t

]
, and dW =

[
dW1

dW2

]
.

The following lemma will be helpful in proving the boundedness of the solution to problem (3.1).

Lemma 3.1. µ and σ in problem (3.1) satisfy the linear growth condition

E∥σ(t,Nt)∥2 + E∥µ(t,Nt)∥2 ≤ K(1 + E∥Nt∥
2),

where K is some positive constant.

Proof. We begin with (2.1), in which we take the sup and expectation to get

E sup
s∈[0,t]
|N1(s)| ≤ N10 + rE sup

s∈[0,t]

∫ s

0
|N1|ds + E sup

s∈[0,t]

∣∣∣∣∣∫ s

0
σ1(s,N1)N1dW1

∣∣∣∣∣ . (3.2)
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As for the stochastic integral, we use Burkholder-Davis-Gundy’s (BDG) inequality and (2.3), then
we get

E sup
s∈[0,t]
|N1(s)| ≤ N10 + rE sup

s∈[0,t]

∫ s

0
|N1|ds + σ1C1E

(∫ t

0
|N1|

2ds
) 1

2

≤ N10 + rE sup
s∈[0,t]

∫ s

0
|N1|ds + σ1C1

√
TE sup

s∈[0,t]
|N1(s)|, (3.3)

where C1 is BDG’s constant. Now for σ1 small enough, we obtain

E sup
s∈[0,t]
|N1(s)| ≤ C2 +C3E sup

s∈[0,t]

∫ s

0
|N1|ds. (3.4)

Applying Gronwall’s inequality to (3.4), we get

E|N1(t)| ≤ C4. (3.5)

Now,

E∥σ(t,N)∥2 = E∥σ1(t,N1)∥2 + E∥σ2(t,N2)∥2

≤ ϵE∥N1∥
2 + δE∥N2∥

2, (3.6)

and

E∥µ(t,N)∥2 ≤ r2E∥N1∥
2 + b2E∥N1∥

2∥N2∥
2

≤ C5E∥N1∥
2(1 + ∥N2∥

2). (3.7)

The proof is concluded based on (3.5)–(3.7). □

Theorem 3.2. Suppose that Nt is any solution of (3.1), then for p ≥ 2 and some positive constant C,
we have

E sup
s∈[0,t]
|Ns|

p ≤ C.

Proof. The solution of (3.1) satisfies

Nt = N0 +

∫ t

0
µ(s,Ns)ds +

∫ t

0
σ(s,Ns)dWs.

We use the following inequality, see [30] m∑
k=1

ak

n

≤ mn−1
m∑

k=1

an
k , (3.8)

followed by taking the supermom and the expectation, we obtain

E sup
s∈[0,t]
|Ns|

p ≤ 3p−1
(
|N0|

p + E sup
s∈[0,t]

∣∣∣∣∣∫ s

0
µ(s,Ns)ds

∣∣∣∣∣p + E sup
s∈[0,t]

∣∣∣∣∣∫ s

0
σ(s,Ns)dWs

∣∣∣∣∣p) . (3.9)

AIMS Mathematics Volume 9, Issue 6, 14982–14996.



14986

Now, we estimate the last two terms in the R-H-S of (3.9). We start with the stochastic term, in which
we apply BDG’s inequality, followed by the Hölder inequality for 1

p/2 +
1

p/(p−2) = 1 to get

E sup
s∈[0,t]

∣∣∣∣∣∫ s

0
σ(s,Ns)dWs

∣∣∣∣∣p ≤ C6E

(∫ t

0
|σ(s,Ns)|2 ds

) p
2

≤ C6E

(∫ t

0

(
|σ(s,Ns)|2

) p
2 ds

) p
2×

2
p

.

(∫ t

0
(1)

p
p−2 ds

) p
2×

p−2
p

≤ C6T
P−2

2 E

∫ t

0
|σ(s,Ns)|p ds. (3.10)

We now use the linear growth condition proved in Lemma 3.1, and (3.8) for power n = p
2 to obtain

E sup
s∈[0,t]

∣∣∣∣∣∫ s

0
σ(s,Ns)dWs

∣∣∣∣∣p ≤ C6T
P−2

2 K
p
2 .2

p
2−1E

∫ t

0
(1 + |Ns|

p) ds

≤ C6T
P−2

2 K
p
2 .2

p
2−1

[
T + E

∫ t

0
∥Ns|

pds
]

= C6T
P
2 K

p
2 .2

p
2−1 +C6T

P−2
2 K

p
2 .2

p
2−1E

∫ t

0
|Ns|

pds. (3.11)

In order to estimate the second term on the R-H-S of (3.9), we use the Hölder inequality for 1
p+

1
p/(p−1) =

1, we have

E sup
s∈[0,t]

∣∣∣∣∣∫ s

0
µ(s,Ns)ds

∣∣∣∣∣p ≤ E sup
s∈[0,t]

(∫ s

0
|µ(s,Ns)|ds

)p

≤ E

(∫ t

0
|µ(s,Ns)|pds

)p× 1
p

.

(∫ t

0
(1)

p
p−1 ds

)p× p−1
p

≤ T p−1E

(∫ t

0
|µ(s,Ns)|pds

)
. (3.12)

We now use Lemma 3.1, and (3.8) for power n = p
2 , we have

E

∫ t

0

(
|µ(s,Ns)|2

) p
2 ds ≤ K

p
2

∫ t

0

(
1 + |Ns|

2
) p

2 ds

≤ K
p
2 2

p
2−1E

∫ t

0
(1 + |Ns|

p) ds

≤ K
p
2 2

p
2−1

[
T + E

∫ t

0
|Ns|

pds
]

= K
p
2 2

p
2−1T + K

p
2 2

p
2−1E

∫ t

0
|Ns|

pds. (3.13)

Using (3.13) into (3.12), we have

E sup
s∈[0,t]

∣∣∣∣∣∫ s

0
µ(s,Ns)ds

∣∣∣∣∣p ≤ K
p
2 2

p
2−1T p + K

p
2 2

p
2−1T p−1E

∫ t

0
|Ns|

pds. (3.14)
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From (3.9), (3.11) and (3.14), we obtain

E sup
s∈[0,t]
|Ns|

p ≤ C7 +C8E

∫ t

0
|Ns|

pds. (3.15)

This and Gronwall’s inequality complete the proof. □

4. Stochastic mean square stability

We are now interested in studying stochastic stability in our system around its deterministic
equilibrium. Let us emphasize that our system has non-negative equilibrium points:

(1) P0 = (0, 0).
(2) P1 = (k, 0).

(3) P∗ = (N∗1 ,N
∗
2), where N∗1 =

k(br + m)
b(r + kα)

and N∗2 =
r(kb − m)
b(r + kα)

.

The following theorem states the feasibility of the equilibrium point P∗ = (N∗1 ,N
∗
2).

Theorem 4.1. If kb > m, then P∗ = (N∗1 ,N
∗
2) is feasible.

We shall study the mean square stochastic stability of systems (2.1) and (2.2) around their positive
equilibrium.

[le f t = {]dN1 = rN1

(
1 −

N1

k

)
dt − αN1N2dt + σ1(t,N1)(N1 − N∗1)dW1 (4.1)

dN2 = −mN2dt + bN1N2dt − cN2
2dt + σ2(t,N2)(N2 − N∗2)dW2 (4.2)

N1(0) = N10 , N2(0) = N20 .

For this, we use the change of variables

U1 = N1 − N∗1 , and U2 = N2 − N∗2 .

With this, we obtain the linearized stochastic differential equation around the point P∗ = (N∗1 ,N
∗
2) as

follows:

dUt = F(Ut)dt +G(Ut)dW, (4.3)

where

Ut =

[
U1t

U2t

]
,

F(Ut) =

N∗1∂H1(N∗1 ,N
∗
2 )

∂N1
+ H1

N∗1∂H1(N∗1 ,N
∗
2 )

∂N2
N∗2∂H2(N∗1 ,N

∗
2 )

∂N1

N∗2∂H2(N∗1 ,N
∗
2 )

∂N2
+ H2

 [U1t

U2t

]
,

where

H1(N∗1 ,N
∗
2) = r

(
1 −

N1

k

)
− aN2.

H2(N∗1 ,N
∗
2) = −m + bN1 − cN2.
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Thus,

F(Ut) =
[
−rN∗1

k −aN∗1
bN∗2 −cN∗2

] [
U1t

U2t

]
,

and

G(Ut) =
[
σ1(U1t)U1t 0

0 σ2(U2t)U2t

] [
U1t

U2t

]
.

Let QT = [t0,∞]×R2, where t0 ≥ 0 and let C2
0(QT ) be the set of all functions Z : (t, v) ∈ QT 7→ Z(t, v) ∈

R+ that are continuously differentiable in time and twice continuously differentiable with respect to the
second variable. Now, following [31] the Markov process generator of (4.3) is given by

LZ(t,U) =
∂Z(t,Ut)
∂t

+ FT (Ut)
∂Z(t,Ut)
∂Ut

+
1
2

Tr
[
GT (Ut)

∂2Z(t,Ut)
∂U2

t
G(Ut)

]
, (4.4)

where Tr[A] is the trace of matrix A and AT is the transposition of matrix A. The following theorem
for mean-square stability is collected from [31].

Theorem 4.2. Assume that Ut is a solution of (4.3) and that Z(t,U) ∈ C2
0(QT ) such that

K1|Ut|
2 ≤ Z(t,Ut) ≤ k2|Ut|

2

LZ(t,U) ≤ −k3|Ut|
2, k1, k2, k3 > 0.

Then, the trivial solution of (4.3) is asymptotically mean-square stable.

Next, we have

Theorem 4.3. Suppose that

σ2
1 <

2rN∗1
k

(4.5)

and

σ2
2 < 2cN∗2 . (4.6)

Then, the trivial solution of (4.3) is asymptotically mean-square stable.

Proof. Let us consider a Markov process generator

Z(t,U) =
1
2

[
α1U2

1 + α2U2
2

]
, (4.7)

where αi, i = 1, 2 to be determined shortly.

∂Z
∂t
= 0, (4.8)

∂Z
∂U
=

(
α1U1 α2U2,

)
AIMS Mathematics Volume 9, Issue 6, 14982–14996.
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FT (Ut)
∂Z
∂U
= α1

(
−rN∗1

k

)
U2

1 − α1aN∗1U1U2 + α2bN∗2U1U2 − α2cN∗2U2
2 , (4.9)

1
2

Tr
[
GT (Ut)

∂2Z(t,Ut)
∂U2

t
G(Ut)

]
=

1
2
α1σ

2
1U2

1 +
1
2
α2σ

2
2U2

2 . (4.10)

Using (4.8)–(4.10) into (4.4), we get

−α1

(
−rN∗1

k
−

1
2
σ2

1

)
U2

1 − α2

(
cN∗2 −

1
2
σ2

)
U2

2 −
(
α1aN∗1 − α2bN∗2

)
U1U2. (4.11)

Choosing α1aN∗1 = α2bN∗2 in (4.11), we get

LZ(t,U) = −α1

(
rN∗1

k
−

1
2
σ2

1

)
U2

1 − α2

(
cN∗2 −

1
2
σ2

)
U2

2 .

This, together with the assumptions in the theorems completes the proof. □

Corollary 4.4. The system is unstable if conditions (4.5) or (4.6) are not met.

Remark 4.5. Let us note that the effect of the stochastic immigration in the prey depends on both
growth rate of the prey and carrying capacity of the system, and that of the predator depends on the
intraspesific competition inside predator.

5. Numerical simulations and discussion

In this section, we aim to investigate the random effects of immigration on the stability of prey
predator dynamics (2.1) and (2.2) numerically taking into account Theorem 4.3. We use the command
“StochasticRungeKuttaScalarNoise” in the MATHEMATICA 11.3 program as a method to execute the
numerical simulations, according to the Wolfram website [33]. The parameters and initial conditions
are given with the following values:

r = 1.5, k = 3, α = 2.5,m = 0.65, c = 0.75, b = 1.25,N1(0) = 2,N2(0) = 2.

Remark 5.1. The choice of the parameters and initial conditions values is due to the fact that our
model is dimensionless, so we only concern ourselves with values that satisfy the theoretical results,
see Theorems 4.3 and Corollary 4.4.

As regards to the intensity noise, the values of ϵ and δ are taken for three possible situations. These
situations are applied to each of the following cases:

Case I σ1(t,N1) = ϵ σ2(t,N2) = δ
Case II σ1(t,N1) = ϵ σ2(t,N2) = δ

N2

Case III σ1(t,N1) = ϵ
N1

σ2(t,N2) = δ
N2

Case IV σ1(t,N1) = ϵ
N1

σ2(t,N2) = δ

AIMS Mathematics Volume 9, Issue 6, 14982–14996.
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where

• Case I represents the number of constant immigrants in the prey as well as in the predator.
• Case II represents the number of constant immigrants in the prey, with immigration proportional

to the population in the predator.
• Case III represents immigration that proportional to the population of the prey of immigration

that is proportional to the population of the predator.
• Case IV represents immigration that is proportional to the population of the prey with constant

immigrants in the predator.

In each of the above cases, we check three different consideration for ϵ and δ. These are:

(1) The conditions (4.5) and (4.6) of theorem 4.3 are satisfied.
(2) Condition (4.5) holds true, and condition (4.6) does not.
(3) Both conditions (4.5) and (4.6) are not satisfied.

Note that conditions (4.5) and (4.6) tell us that the stability of the systems (2.1) and (2.2) can only
beachieved if the immigration is small enough for both prey and predator.

Figure 1 is taken to represent the dynamic with free immigration, which shows stability as it is
known that the corresponding deterministic model is always stable [28]. The rest of the figures are
categorized into three sets. The first set (i.e. Figures 2, 5, 8 and 11) represents the small intensities
of immigration at ϵ = 0.25 and δ = 0.12 for all cases are mentioned in the table above. Let us note
that conditions 4.5 and 4.6 of Theorem 4.3 are always met in this set of consideration, which means
that from biological point of view the system is stable. We also note that when the intensities are small
enough, stochastic immigration has less effect with full stability of the system.

The second set (i.e. Figures 3, 6, 9 and 12) represent the case in which the intensities are taken
in such a way that only one of the two conditions of Theorem 4.3 satisfied. Therefore, by Corollary
4.4 the system is unstable. We also note that the increase in stochastic immigration has a clear impact
(oscillation) on the system.

The last set (i.e. Figures 4, 7, 10 and 13) represents the case in which the intensities are taken to be
large enough so that the two conditions of Theorem 4.3 are not satisfied. Therefore Corollary 4.4 says
that the system is not stable, and the increase in stochastic immigration, in addition to the instability,
high oscillation.

10 20 30 40 50
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1.0

1.5

2.0

Population

N1(t)

N2(t)

(a) Time series

0.0 0.5 1.0 1.5 2.0
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1.0

1.5

2.0
Y

(b) Phase plane

Figure 1. Time series and phase plane with free immigration when ϵ = δ = 0.
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Figure 2. Time series and phase plane of case I when ϵ = 0.25 and δ = 0.12.
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Figure 3. Time series and phase plane of case I when ϵ = 1.5 and δ = 0.5.
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Figure 4. Time series and phase plane of case I when ϵ = 1.9 and δ = 0.9.
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Figure 5. Time series and phase plane of case II when ϵ = 0.25 and δ = 0.12.
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Figure 6. Time series and phase plane of case II when ϵ = 1.5 and δ = 0.5.
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Figure 7. Time series and phase plane of case II when ϵ = 1.9 and δ = 0.9.
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Figure 8. Time series and phase plane of case III when ϵ = 0.25 and δ = 0.12.
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Figure 9. Time series and phase plane of case III when ϵ = 1.5 and δ = 0.5.
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Figure 10. Time series and phase plane of case III when ϵ = 1.9 and δ = 0.9.
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Figure 11. Time series and phase plane of case IV when ϵ = 0.25 and δ = 0.12.
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Figure 12. Time series and phase plane of case IV when ϵ = 1.5 and δ = 0.5.
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Figure 13. Time series and phase plane of case IV when ϵ = 1.9 and δ = 0.9.
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6. Conclusions

• If the random immigration is constant or proportional to the population and small enough, the
system is always stable.
• The numerical results are in total agreement with the theoretical results.
• In contrast to the deterministic version of this model, which is always stable, random immigration

increases the dynamical behavior of the model by giving stability and instability cases.
• As the random immigration increases, the dynamic is destabilized with higher oscillations, which

leads to chaos.
• In the usual sense, immigration makes the prey-predator system more stable, see, for

example, [27]. Surprisingly in our study, the random immigration increases caused
destabilization of the system, this could be interpreted by the paradox of enrichment
phenomena [32].
• As future work, we suggest more studies on the influence of stochastic immigration on more

complicated prey-predator models, especially on functional and numerical responses, such as
Holloing type II, Beddington–DeAngelis and Crowley-Martin functional responses.We believe
that tiny stochastic immigration could stabilize unstable deterministic models, however the
outcome remains uncertain.
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