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1. Introduction

A novel mathematical tool for characterizing non-local structures is fractional calculus (FC).
Mathematical explanations of many physical problems using fractional derivatives have proved
successful in recent generations when applied to situations close to reality. Many authors, including
Hadamard, Riemann-Liouville, Coimbra, Grunwald-Letnikov, Riesz, Weyl, Liouville Caputo,
Atangana-Baleanu, and Caputo-Fabrizio, have offered crucial definitions of fractional operators [1–4].
The underlying principle of these traditional differential equations is their reliance on integer-order
derivatives, which give the order an integer numerical value indicating the number of times that
a function is differentiated. As opposed to fractional partial differential equations (FPDEs), these
concepts are expanded by the addition of fractional derivatives. This kind of model is necessary for the
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description of delayed or dependent responses, non-local interactions, and anomalous diffusion. These
relationships not only have the power to explain the complex phenomena of physics, biology, finance,
and engineering, but they also can predict special events. The solution of FPDEs is based on a series of
special numerical methods and analytical techniques, all adapted to face the scale-free and non-integer
properties of fractional derivatives. Often, the systems required for modeling real-world phenomena
follow interrelated processes that can be described using systems of partial differential equations [5–9].
Such systems have multiple differential equations, with each one describing how the value of a specific
physical quantity or any of the interacting systemic components changes with time as they progress.

Computational models often include partial differential equations (PDEs), which are important in
applications such as fluid flow, electromagnetics, population dynamics, and quantized mechanics.
By studying the behavior of the components, their interactions, and their relationships with each
other, one can understand how patterns and dynamics are formed and how the system stabilizes.
Studying PDE systems with coupled terms is extremely complex and requires advanced mathematics,
such as numerical simulations, perturbation methods, and symmetry analysis, to discern a solution
[10–14]. The Hermite colocation method [15], the optimal homotopy asymptotic technique [16],
the Adomian decomposition method [17], the homotopy perturbation transform method [18], the
Pade approximation and homotopy-Pade technique [19], the invariant subspace method [20], the q-
homotopy analysis transform method [21], the homotopy analysis Sumudu transform method [22],
and the Sumudu transform series expansion method [23] are some of the sophisticated approaches
developed for finding exact solutions to nonlinear FPDE models [24–26]. If perturbation methods
are not used, the homotopy analysis method breaks a problem into an endless series of linear
problems. This method employs the concept of homotopy from topology to derive a convergent
series solution [27, 28]. An approach to homotopy analysis proposed by Liao [29], and the Laplace
transform [30] are combined in the Laplace homotopy perturbation method.

A gradient of chemical molecules guides the movement of cells, a process known as chemotaxis,
which is essential for cell population self-organization and developmental biology in general. In 1970,
Lee Segel and Evelyn Keller presented the first mathematical model of chemotaxis. To further
understand how the mould aggregation process works in the chemical-attraction-based cellular slime,
they used parabolic approaches [31]. Here, we take a look at the fractional-order system of a KS model
that goes like this:

Dp
ϕβ1(ψ, ϕ) − a

∂2β1(ψ, ϕ)
∂ψ2 +

∂

∂ψ

(
β1(ψ, ϕ)

∂$(β2)
∂ψ

)
= 0,

Dp
ϕβ2(ψ, ϕ) − b

∂2β2(ψ, ϕ)
∂ψ2 − cβ1(ψ, ϕ) + dβ2(ψ, ϕ) = 0, where 0 < p ≤ 1,

(1.1)

having IC’s:

β1(ψ, 0) = β10(ψ),
β2(ψ, 0) = β20(ψ).

(1.2)

The concentration of amoebae are indicated by the unknown term β1(ψ, ϕ), while the chemical
substance of concentration is expressed by β2(ψ, ϕ); ∂

∂ψ

(
β1(ψ, ϕ)∂$(β2)

∂ψ

)
; stands for the chemotactic

word, indicating that the chemicals are attractive to and sensitive to the cells. The sensitivity function
is denoted by $(β2), and a, b, c, and d are positive constants. The parameter 0 < p ≤ 1 represents
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the order of the fractional derivative. Much recent research has focused on the KS model. For
example, to solve the KS model, Atangana used a combination of methods, including a modified
homotopy perturbation, the homotopy decomposition, and the Laplace transform approach [32–34].
Zayernouri established a fractional class of implicit Adams-Moulton and explicit Adams-Bashforth
methods in [35] and so on [36–38].

According to [39], the residual power series method (RPSM) was developed in 2013 by a Jordanian
mathematician named Omar Abu Arqub. The RPSM is a semi-analytical approach that uses Taylor’s
series to integrate the residual error function. It finds convergence series solutions for differential
equations. In 2013, RPSM was first used to resolve fuzzy differential equations. A new RPSM method
was created by Arqub et al. [40] to quickly get power series solutions for ordinary differential equations
(DEs). A new and attractive RPSM approach for fractional DEs problems was developed by Arqub
et al. [41]. A novel iterative technique to estimate fractional KdV-burgers equations was presented
by El-Ajou et al. [42] utilizing RPSM. A unique method was developed by Xu et al. [43] for solving
Boussinesq DEs with fractional power series. Zhang et al. [44] stated that a trustworthy numerical
approach was developed. More readings on RPSM may be found in [45–47].

To resolve fractional-order differential equations (FODEs), the research team used two separate
approaches. One approach to solving the updated equation is to project it into the space generated
by the Aboodh transform. Next, the original equation may be solved by using the inverse Aboodh
transform [48]. This novel methodology combines the Sumudu transform with the homotopy
perturbation method. Without discretization, linearization, or perturbation, this novel approach may
solve PDEs as power series expansions, irrespective of their linearity or nonlinearity. There is a
significant reduction in the computations needed to find the coefficients compared to RPSM, which
requires several repetitions of calculating distinct fractional derivatives throughout the solution phases.
The proposed approach has the potential to provide an accurate and closed-form approximation
solution.

The Aboodh transform iterative technique (ATIM) is a significant mathematical achievement for
fractional partial differential equations. Complexity and convergence issues may develop when using
traditional techniques to solve partial differential equations with fractional derivatives. Keeping a
steady computational economy while continually improving approximations allows our new strategy
to improve accuracy continuously, avoiding these limits. Due to this discovery, we can tackle difficult
problems in applied mathematics, engineering, and physics, which enhances our capacity to identify
and understand complex systems governed by fractional partial differential equations [49–51].

The two most basic approaches to solving fractional differential equations are the Aboodh
transform iterative technique (ATIM) and the Aboodh residual power series method (ARPSM) [49–53],
respectively. These techniques not only provide numerical solutions to PDEs that do not need
discretization or linearization but also make the symbolic terms in analytical solutions instantly and
visible. The primary objective of this study is to compare and contrast the performance of ARPSM and
ATIM in solving the Keller-Segel (KS) model. It is worth mentioning that several linear and nonlinear
fractional differential problems have been solved using these two approaches.
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2. Basic concepts

Definition 2.1. [54] Let us assume that the function β1(ψ, ϕ) is piecewise continuous with exponential
order. The Aboodh transform (AT) is defined as follows, assuming τ ≥ 0 for β1(ψ, ϕ),

A[β1(ψ, ϕ)] = Ψ(ψ, ξ) =
1
ξ

∫ ∞

0
β1(ψ, ϕ)e−ϕξdϕ, r1 ≤ ξ ≤ r2.

The Aboodh inverse transform (AIT) is specifically described as follows:

A−1[Ψ(ψ, ξ)] = β1(ψ, ϕ) =
1

2πi

∫ u+i∞

u−i∞
Ψ(ψ, ϕ)ξeϕξdϕ,

where ψ = (ψ1, ψ2, · · · , ψp) ∈ R and p ∈ N.

Lemma 2.2. Let [55,56] β11(ψ, ϕ) and β12(ψ, ϕ) are two functions. It is assumed that they are piecewise
continuous on [0,∞[ and exponentially ordered. Let A[β11(ψ, ϕ)] = Ψ1(ψ, ϕ), A[β12(ψ, ϕ)] = Ψ2(ψ, ϕ)
and χ1, χ2 are constants. Thus, the following characteristics are true:

(1) A[χ1β11(ψ, ϕ) + χ2β12(ψ, ϕ)] = χ1Ψ1(ψ, ξ) + χ2Ψ2(ψ, ϕ),
(2) A−1[χ1Ψ1(ψ, ϕ) + χ2Ψ2(ψ, ϕ)] = χ1β11(ψ, ξ) + χ2β12(ψ, ϕ),
(3) A[Jp

ϕβ1(ψ, ϕ)] =
Ψ(ψ,ξ)
ξp ,

(4) A[Dp
ϕβ1(ψ, ϕ)] = ξpΨ(ψ, ξ) −

∑r−1
K=0

β1
K (ψ,0)
ξK−p+2 , r − 1 < p ≤ r, r ∈ N.

Definition 2.3. [57] In terms of order p, the Caputo defines the fractional derivative of the function
β1(ψ, ϕ) as:

Dp
ϕβ1(ψ, ϕ) = Jm−p

ϕ β1
(m)(ψ, ϕ), r ≥ 0, m − 1 < p ≤ m,

where ψ = (ψ1, ψ2, · · · , ψp) ∈ Rp and m, p ∈ R, Jm−p
ϕ is the R-L integral of β1(ψ, ϕ).

Definition 2.4. [58] Following is the structure of the power series notation:

∞∑
r=0

~r(ψ)(ϕ − ϕ0)rp = ~0(ϕ − ϕ0)0 + ~1(ϕ − ϕ0)p + ~2(ϕ − ϕ0)2p + · · · ,

where ψ = (ψ1, ψ2, · · · , ψp) ∈ Rp and p ∈ N. The series concerning ϕ0 is referred to as a multiple
fractional power series (MFPS), where the series coefficients are ~r(ψ)′s and ϕ is variable.

Lemma 2.5. Let us suppose that the exponential order function is β1(ψ, ϕ). In this case, the AT is
defined as: A[β1(ψ, ϕ)] = Ψ(ψ, ξ). Hence,

A[Drp
ϕ β1(ψ, ϕ)] = ξrpΨ(ψ, ξ) −

r−1∑
j=0

ξp(r− j)−2D jp
ϕ β1(ψ, 0), 0 < p ≤ 1, (2.1)

where ψ = (ψ1, ψ2, · · · , ψp) ∈ Rp and p ∈ N and Drp
ϕ = Dp

ϕ.D
p
ϕ. · · · .D

p
ϕ(r − times).

Proof. By induction, we are able to illustrate Eq (2.5). When r = 1 is used in Eq (2.5), the following
results are obtained:

A[D2p
ϕ β1(ψ, ϕ)] = ξ2pΨ(ψ, ξ) − ξ2p−2β1(ψ, 0) − ξp−2Dp

ϕβ1(ψ, 0).
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Equation (2.5) is true for r = 1, according to Lemma 2.2, part (4). After substituting r = 2 in Eq (2.5),
we get:

A[D2p
r β1(ψ, ϕ)] = ξ2pΨ(ψ, ξ) − ξ2p−2β1(ψ, 0) − ξp−2Dp

ϕβ1(ψ, 0). (2.2)

Equation (2.2) L.H.S. enables us to determine

L.H.S = A[D2p
ϕ β1(ψ, ϕ)]. (2.3)

The following way is used to express Eq (2.3):

L.H.S = A[Dp
ϕβ1(ψ, ϕ)]. (2.4)

Assume
z(ψ, ϕ) = Dp

ϕβ1(ψ, ϕ). (2.5)

Thus, Eq (2.4) becomes
L.H.S = A[Dp

ϕz(ψ, ϕ)]. (2.6)

Implementing the Caputo derivative led to a modification in Eq (2.6).

L.H.S = A[J1−pz
′

(ψ, ϕ)]. (2.7)

Equation (2.7) provides the R-L integral for AT, which allows us to deduce the following:

L.H.S =
A[z

′

(ψ, ϕ)]
ξ1−p . (2.8)

Equation (2.8) is changed into the following form by using the differential characteristic of the AT:

L.H.S = ξpZ(ψ, ξ) −
z(ψ, 0)
ξ2−p , (2.9)

from Eq (2.5), we obtain:

Z(ψ, ξ) = ξpΨ(ψ, ξ) −
β1(ψ, 0)
ξ2−p ,

where A[z(ψ, ϕ)] = Z(ψ, ξ). Therefore, Eq (2.9) is transformed to

L.H.S = ξ2pΨ(ψ, ξ) −
β1(ψ, 0)
ξ2−2p −

Dp
ϕβ1(ψ, 0)
ξ2−p , (2.10)

when r = K. Equations (2.5) and (2.10) are compatible. For r = K, let’s assume that Eq (2.5) holds.
Therefore, we substitute r = K into Eq (2.5):

A[DK p
ϕ β1(ψ, ϕ)] = ξK pΨ(ψ, ξ) −

K−1∑
j=0

ξp(K− j)−2D jp
ϕ D jp

ϕ β1(ψ, 0), 0 < p ≤ 1. (2.11)

Next, we will show how to solve Eq (2.5) for r = K + 1. Based on Eq (2.5), we may express

A[D(K+1)p
ϕ β1(ψ, ϕ)] = ξ(K+1)pΨ(ψ, ξ) −

K∑
j=0

ξp((K+1)− j)−2D jp
ϕ β1(ψ, 0). (2.12)
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After examining the left side of Eq (2.12), we get

L.H.S = A[DK p
ϕ (DK p

ϕ )], (2.13)

let
DK p
ϕ = g(ψ, ϕ),

by Eq (2.13), we drive
L.H.S = A[Dp

ϕg(ψ, ϕ)]. (2.14)

Equation (2.14) is modified to provide the following result by using the R-L integral and Caputo
derivative:

L.H.S = ξpA[DK p
ϕ β1(ψ, ϕ)] −

g(ψ, 0)
ξ2−p . (2.15)

Equation (2.15) is derived from Eq (2.11),

L.H.S = ξrpΨ(ψ, ξ) −
r−1∑
j=0

ξp(r− j)−2D jp
ϕ β1(ψ, 0). (2.16)

In addition, the outcome that follows is obtained from Eq (2.16):

L.H.S = A[Drp
ϕ β1(ψ, 0)].

Thus, for r = K + 1, the Eq (2.5) is valid. Equation (2.5) is valid for all positive integers according to
the mathematical induction method. �

Here, we find another novel way of looking to MFTS, or multiple fractional Taylor’s series. The
ARPSM, which will be discussed in more depth later on, will benefit from this formula.

Lemma 2.6. Assume that β1(ψ, ϕ) represents the exponential order function. The expression
A[β1(ψ, ϕ)] = Ψ(ψ, ξ) is the AT of β1(ψ, ϕ). The AT MFTS notation looks like this:

Ψ(ψ, ξ) =

∞∑
r=0

~r(ψ)
ξrp+2 , ξ > 0, (2.17)

where, ψ = (s1, ψ2, · · · , ψp) ∈ Rp, p ∈ N.

Proof. Let us investigate Taylor’s series’ fractional order expression:

β1(ψ, ϕ) = ~0(ψ) + ~1(ψ)
ϕp

Γ[p + 1]
+ +~2(ψ)

ϕ2p

Γ[2p + 1]
+ · · · . (2.18)

The following equality is obtained by applying the AT to Eq (2.18):

A
[
β1(ψ, ϕ)

]
= A

[
~0(ψ)

]
+ A

[
~1(ψ)

ϕp

Γ[p + 1]

]
+ A

[
~1(ψ)

ϕ2p

Γ[2p + 1]

]
+ · · ·

This is accomplished by using the AT’s characteristics.

A
[
β1(ψ, ϕ)

]
= ~0(ψ)

1
ξ2 + ~1(ψ)

Γ[p + 1]
Γ[p + 1]

1
ξp+2 + ~2(ψ)

Γ[2p + 1]
Γ[2p + 1]

1
ξ2p+2 · · ·

A distinct variant of Taylor’s series in the AT is therefore obtained. �
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Lemma 2.7. As stated in the new form of Taylor’s series 2.17, the MFPS may be represented as
A[β1(ψ, ϕ)] = Ψ(ψ, ξ).

~0(ψ) = lim
ξ→∞

ξ2Ψ(ψ, ξ) = β1(ψ, 0). (2.19)

Proof. This can be determined from the revised version of Taylor’s series:

~0(ψ) = ξ2Ψ(ψ, ξ) −
~1(ψ)
ξp −

~2(ψ)
ξ2p − · · · (2.20)

As shown in Eq (2.20), the necessary solution may be obtained by evaluating limξ→∞ into Eq (2.19)
and doing a quick computation. �

Theorem 2.8. The function A[β1(ψ, ϕ)] = Ψ(ψ, ξ) may be expressed in MFPS form as follows:

Ψ(ψ, ξ) =

∞∑
0

~r(ψ)
ξrp+2 , ξ > 0,

where ψ = (ψ1, ψ2, · · · , ψp) ∈ Rp and p ∈ N. Then we have

~r(ψ) = Drp
r β1(ψ, 0),

where, Drp
ϕ = Dp

ϕ.D
p
ϕ. · · · .D

p
ϕ(r − times).

Proof. The new Taylor’s series is as follows:

~1(ψ) = ξp+2Ψ(ψ, ξ) − ξp~0(ψ) −
~2(ψ)
ξp −

~3(ψ)
ξ2p − · · · (2.21)

limξ→∞, is applied to (2.21), we get

~1(ψ) = lim
ξ→∞

(ξp+2Ψ(ψ, ξ) − ξp~0(ψ)) − lim
ξ→∞

~2(ψ)
ξp − lim

ξ→∞

~3(ψ)
ξ2p − · · ·

After calculating the limit, we have the following equality:

~1(ψ) = lim
ξ→∞

(ξp+2Ψ(ψ, ξ) − ξp~0(ψ)). (2.22)

The result of inserting Lemma 2.5 into Eq (2.22) is as follows:

~1(ψ) = lim
ξ→∞

(ξ2A[Dp
ϕβ1(ψ, ϕ)](ξ)). (2.23)

Furthermore, it is transformed into by using Lemma 2.6 to Eq (2.23),

~1(ψ) = Dp
ϕβ1(ψ, 0).

Again, applying limit ξ → ∞ and using the new form of Taylor’s series, we obtain:

~2(ψ) = ξ2p+2Ψ(ψ, ξ) − ξ2p~0(ψ) − ξp~1(ψ) −
~3(ψ)
ξp − · · ·
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We get the result from Lemma 2.6.

~2(ψ) = lim
ξ→∞

ξ2(ξ2pΨ(ψ, ξ) − ξ2p−2~0(ψ) − ξp−2~1(ψ)). (2.24)

Using Lemmas 2.5 and 2.7, we convert Eq (2.24) into

~2(ψ) = D2p
ϕ β1(ψ, 0),

when the new Taylor’s series is put through the same process, the following results are obtained:

~3(ψ) = lim
ξ→∞

ξ2(A[D2p
ϕ β1(ψ, p)](ξ)),

Lemma 2.7 is used to derive the final equation:

~3(ψ) = D3p
ϕ β1(ψ, 0),

in general
~r(ψ) = Drp

ϕ β1(ψ, 0).

Consequently, proof ends here. �

The principles regulating the convergence of Taylor’s series in its new form are explained and
proven in the following theorem.

Theorem 2.9. Presented in Lemma 2.6, the formula for multiple fractional Taylor’s series may be
represented in the following new form: A[β1(ψ, ϕ)] = Ψ(ψ, ξ). When |ξaA[D(K+1)p

ϕ β1(ψ, ϕ)]| ≤ T, for all
0 < ξ ≤ s and 0 < p ≤ 1, the following inequality satisfies the residual RK(ψ, ξ) of the new MFTS:

|RK(ψ, ξ)| ≤
T

ξ(K=1)p+2 , 0 < ξ ≤ s.

Proof. Let A[Drp
ϕ β1(ψ, ϕ)](ξ) is defined on 0 < ξ ≤ s for r = 0, 1, 2, · · · ,K + 1. Let us assume that

|ξ2A[Dpsi, ϕ]K+1β1
1]| ≤ T, on 0 < ξ ≤ s. Determine the following relation using the new Taylor’s

series:

RK(ψ, ξ) = Ψ(ψ, ξ) −
K∑

r=0

~r(ψ)
ξrp+2 . (2.25)

Equation (2.25) is converted using Theorem 2.8,

RK(ψ, ξ) = Ψ(ψ, ξ) −
K∑

r=0

Drp
ϕ β1(ψ, 0)
ξrp+2 . (2.26)

To solve Eq (2.26), multiply ξ(K+1)a+2 on both sides,

ξ(K+1)p+2RK(ψ, ξ) = ξ2(ξ(K+1)pΨ(ψ, ξ) −
K∑

r=0

ξ(K+1−r)p−2Drp
ϕ β1(ψ, 0)). (2.27)

AIMS Mathematics Volume 9, Issue 6, 14949–14981.



14957

Lemma 2.5 applied to Eq (2.27) yields

ξ(K+1)p+2RK(ψ, ξ) = ξ2A[D(K+1)p
ϕ β1(ψ, ϕ)]. (2.28)

Taking absolute of Eq (2.28), we get

|ξ(K+1)p+2RK(ψ, ξ)| = |ξ2A[D(K+1)p
ϕ β1(ψ, ϕ)]|. (2.29)

Applying the criteria listed in Eq (2.29) yields the following result:

−T
ξ(K+1)p+2 ≤ RK(ψ, ξ) ≤

T
ξ(K+1)p+2 . (2.30)

We use Eq (2.30) to get the necessary result,

|RK(ψ, ξ)| ≤
T

ξ(K+1)p+2 .

Thus, a new series convergence criteria is developed. �

3. Proposed methodologies

3.1. Aboodh residual power series method (ARPSM)

The ARPSM rules served as the foundation for our general model solution, which we describe
below.
Step 1. The general equation may be simplified to obtain:

Dp
ϕβ1(ψ, ϕ) + ϑ(ψ)N(β1) − δ(ψ, β1) = 0. (3.1)

Step 2. The two sides of Eq (3.1) are evaluated using the AT in order to get

A[Dp
ϕβ1(ψ, ϕ) + ϑ(ψ)N(β1) − δ(ψ, β1)] = 0, (3.2)

transformation of Eq (3.2) by using Lemma 2.5. Thus,

Ψ(ψ, s) =

q−1∑
j=0

D j
ϕβ1(ψ, 0)
sqp+2 −

ϑ(ψ)Y(s)
sqp +

F(ψ, s)
sqp , (3.3)

where, A[δ(ψ, β1)] = F(ψ, s), A[N(β1)] = Y(s).
Step 3. Examine the form that the solution to Eq (3.3) takes:

Ψ(ψ, s) =

∞∑
r=0

~r(ψ)
srp+2 , s > 0,

Step 4. To proceed, follow these steps:

~0(ψ) = lim
s→∞

s2Ψ(ψ, s) = β1(ψ, 0).

AIMS Mathematics Volume 9, Issue 6, 14949–14981.
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The following outcome by using Theorem 2.9:

~1(ψ) = Dp
ϕβ1(ψ, 0),

~2(ψ) = D2p
ϕ β1(ψ, 0),
...

~w(ψ) = Dwp
ϕ β1(ψ, 0).

Step 5. The Ψ(ψ, s) series that has been Kth truncated may be found using the formula below:

ΨK(ψ, s) =

K∑
r=0

~r(ψ)
srp+2 , s > 0,

ΨK(ψ, s) =
~0(ψ)

s2 +
~1(ψ)
sp+2 + · · · +

~w(ψ)
swp+2 +

K∑
r=w+1

~r(ψ)
srp+2 .

Step 6. Remember that, in order to derive the following, you must take into consideration both the Kth-
truncated Aboodh residual function and the Aboodh residual function (ARF) from (3.3) separately:

ARes(ψ, s) = Ψ(ψ, s) −
q−1∑
j=0

D j
ϕβ1(ψ, 0)
s jp+2 +

ϑ(ψ)Y(s)
s jp −

F(ψ, s)
s jp ,

and

AResK(ψ, s) = ΨK(ψ, s) −
q−1∑
j=0

D j
ϕβ1(ψ, 0)
s jp+2 +

ϑ(ψ)Y(s)
s jp −

F(ψ, s)
s jp . (3.4)

Step 7. Put ΨK(ψ, s) into Eq (3.4) rather than use its expansion form,

AResK(ψ, s) =
(~0(ψ)

s2 +
~1(ψ)
sp+2 + · · · +

~w(ψ)
swp+2 +

K∑
r=w+1

~r(ψ)
srp+2

)
−

q−1∑
j=0

D j
ϕβ1(ψ, 0)
s jp+2 +

ϑ(ψ)Y(s)
s jp −

F(ψ, s)
s jp .

(3.5)

Step 8. Equation (3.5) may be solved by multiplying both sides by sK p+2,

sK p+2AResK(ψ, s) =sK p+2
(~0(ψ)

s2 +
~1(ψ)
sp+2 + · · · +

~w(ψ)
swp+2 +

K∑
r=w+1

~r(ψ)
srp+2

−

q−1∑
j=0

D j
ϕβ1(ψ, 0)
s jp+2 +

ϑ(ψ)Y(s)
s jp −

F(ψ, s)
s jp

)
.

(3.6)

Step 9. After taking lims→∞, we calculate the solution to Eq (3.6), which is:

lim
s→∞

sK p+2AResK(ψ, s) = lim
s→∞

sK p+2
(~0(ψ)

s2 +
~1(ψ)
sp+2 + · · · +

~w(ψ)
swp+2 +

K∑
r=w+1

~r(ψ)
srp+2

−

q−1∑
j=0

D j
ϕβ1(ψ, 0)
s jp+2 +

ϑ(ψ)Y(s)
s jp −

F(ψ, s)
s jp

)
.
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Step 10. Solving the above equation will provide the value of ~K(ψ),

lim
s→∞

(sK p+2AResK(ψ, s)) = 0,

where K = w + 1,w + 2, · · · .
Step 11. Using a K-truncated series of Ψ(ψ, s), replace the values of ~K(ψ) to get the K-approximate
solution of Eq (3.3).
Step 12. Solve ΨK(ψ, s) using the AIT to get the K-approximate solution β1K(ψ, ϕ).

3.2. Aboodh transform iteration method (ATIM)

Consider the following PDE of space and time fractional order:

Dp
ϕβ1(ψ, ϕ) = Φ

(
β1(ψ, ϕ),Dϕ

ψβ1(ψ, ϕ),D2ϕ
ψ β1(ψ, ϕ),D3ϕ

ψ β1(ψ, ϕ)
)
, 0 < p, ϕ ≤ 1, (3.7)

having the IC’s
β1

(k)(ψ, 0) = hk, k = 0, 1, 2, · · · ,m − 1, (3.8)

the function β1(ψ, ϕ) is unknown, while Φ
(
β1(ψ, ϕ),Dϕ

ψβ1(ψ, ϕ),D2ϕ
ψ β1(ψ, ϕ),D3ϕ

ψ β1(ψ, ϕ)
)

may be a

nonlinear operator or linear of β1(ψ, ϕ),Dϕ
ψβ1(ψ, ϕ),D2ϕ

ψ β1(ψ, ϕ) and D3ϕ
ψ β1(ψ, ϕ). Applying the AT to

both sides of Eq (3.7) yields the following equation; for convenience, we will denote β1(ψ, ϕ) using the
symbol β1,

A[β1(ψ, ϕ)] =
1
sp

( m−1∑
k=0

β1
(k)(ψ, 0)
s2−p+k + A

[
Φ
(
β1(ψ, ϕ),Dϕ

ψβ1(ψ, ϕ),D2ϕ
ψ β1(ψ, ϕ),D3ϕ

ψ β1(ψ, ϕ)
)])
, (3.9)

as a result of using the AIT to solve this problem,

β1(ψ, ϕ) = A−1
[ 1
sp

( m−1∑
k=0

β1
(k)(ψ, 0)
s2−p+k + A

[
Φ
(
β1(ψ, ϕ),Dϕ

ψβ1(ψ, ϕ),D2ϕ
ψ β1(ψ, ϕ),D3ϕ

ψ β1(ψ, ϕ)
)])]

. (3.10)

The solution obtained by using the iterative Aboodh transform method is represented as an infinite
series,

β1(ψ, ϕ) =

∞∑
i=0

β1i. (3.11)

Since Φ
(
β1,D

ϕ
ψβ1,D

2ϕ
ψ β1,D

3ϕ
ψ β1

)
is either a nonlinear or linear operator, which can be decomposed as

follows:

Φ
(
β1,D

ϕ
ψβ1,D

2ϕ
ψ β1,D

3ϕ
ψ β1

)
=Φ

(
β10,D

ϕ
ψβ10,D

2ϕ
ψ β10,D

3ϕ
ψ β10

)
+

∞∑
i=0

Φ( i∑
k=0

(
β1k,D

ϕ
ψβ1k,D

2ϕ
ψ β1k,D

3ϕ
ψ β1k

))
− Φ

( i−1∑
k=1

(
β1k,D

ϕ
ψβ1k,D

2ϕ
ψ β1k,D

3ϕ
ψ β1k

)) .
(3.12)
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Equation (3.10) is changed to the following equation by substituting the values of (3.12) and (3.11).

∞∑
i=0

β1i(ψ, ϕ) =A−1
[ 1
sp

( m−1∑
k=0

β1
(k)(ψ, 0)
s2−p+k + A[Φ(β10,D

ϕ
ψβ10,D

2ϕ
ψ β10,D

3ϕ
ψ β10)]

)]
+ A−1

[ 1
sp

(
A
[ ∞∑

i=0

(
Φ

i∑
k=0

(β1k,D
ϕ
ψβ1k,D

2ϕ
ψ β1k,D

3ϕ
ψ β1k)

)])]
− A−1

[ 1
sp

(
A
[(

Φ

i−1∑
k=1

(β1k,D
ϕ
ψβ1k,D

2ϕ
ψ β1k,D

3ϕ
ψ β1k)

)])]
,

(3.13)

β10(ψ, ϕ) = A−1
[ 1
sp

( m−1∑
k=0

β1
(k)(ψ, 0)
s2−p+k

)]
,

β11(ψ, ϕ) = A−1
[ 1
sp

(
A[Φ(β10,D

ϕ
ψβ10,D

2ϕ
ψ β10,D

3ϕ
ψ β10)]

)]
,

...

β1m+1(ψ, ϕ) =A−1
[ 1
sp

(
A
[ ∞∑

i=0

(
Φ

i∑
k=0

(β1k,D
ϕ
ψβ1k,D

2ϕ
ψ β1k,D

3ϕ
ψ β1k)

)])]
− A−1

[ 1
sp

(
A
[(

Φ

i−1∑
k=1

(β1k,D
ϕ
ψβ1k,D

2ϕ
ψ β1k,D

3ϕ
ψ β1k)

)])]
, m = 1, 2, · · · .

(3.14)

The m-term of Eq (3.7) may be analytically approximated using the following expression:

β1(ψ, ϕ) =

m−1∑
i=0

β1i. (3.15)

4. Problem 1

4.1. Problem 1 with ARPSM

Examine the time-fractional KS model with sensitivity term $(β2) = 1, as shown in [23]. Then,
∂
∂ψ

(
β1(ψ, ϕ)∂$(β2)

∂ψ

)
= 0,

Dp
ϕβ1(ψ, ϕ) − a

∂2β1(ψ, ϕ)
∂ψ2 = 0,

Dp
ϕβ2(ψ, ϕ) − b

∂2β2(ψ, ϕ)
∂ψ2 − cβ1(ψ, ϕ) + dβ2(ψ, ϕ) = 0, where 0 < p ≤ 1,

(4.1)

having IC’s:

β1(ψ, 0) = l1e−ψ
2
,

β2(ψ, 0) = l2e−ψ
2
.

(4.2)
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Using Eq (4.2), AT is applied to Eq (4.1) in order to get

β1(ψ, s) −
l1e−ψ

2

s2 −
a
sp

[∂2β1(ψ, ϕ)
∂ψ2

]
= 0,

β2(ψ, s) −
l2e−ψ

2

s2 −
b
sp

[∂2β2(ψ, ϕ)
∂ψ2

]
−

c
sp

[
β1(ψ, ϕ)

]
+

d
sp

[
β2(ψ, ϕ)

]
= 0.

(4.3)

The kth-truncated term series are

β1(ψ, s) =
l1e−ψ

2

s2 +

k∑
r=1

fr(ψ, s)
srp+1 ,

β2(ψ, s) =
l2e−ψ

2

s2 +

k∑
r=1

jr(ψ, s)
srp+1 , r = 1, 2, 3, 4 · · ·

(4.4)

Aboodh residual functions (ARFs) are

AϕRes(ψ, s) = β1(ψ, s) −
l1e−ψ

2

s2 −
a
sp

[∂2β1(ψ, ϕ)
∂ψ2

]
= 0,

AϕRes(ψ, s) = β2(ψ, s) −
l2e−ψ

2

s2 −
b
sp

[∂2β2(ψ, ϕ)
∂ψ2

]
−

c
sp

[
β1(ψ, ϕ)

]
+

d
sp

[
β2(ψ, ϕ)

]
= 0,

(4.5)

and the kth-LRFs as:

AϕResk(ψ, s) = β1k(ψ, s) −
l1e−ψ

2

s2 −
a
sp

[∂2β1k(ψ, ϕ)
∂ψ2

]
= 0,

AϕResk(ψ, s) = β2k(ψ, s) −
l2e−ψ

2

s2 −
b
sp

[∂2β2k(ψ, ϕ)
∂ψ2

]
−

c
sp

[
β1k(ψ, ϕ)

]
+

d
sp

[
β2k(ψ, ϕ)

]
= 0,

(4.6)

To determine fr(ψ, s) and jr(ψ, s), for r = 1, 2, 3, .... Then, we iteratively solve lims→∞(srp+1) by
multiplying the resulting equation by srp+1, substituting the rth-Aboodh residual function Eq (4.6) for
the rth-truncated series Eq (4.4). AϕResβ1,r(ψ, s)) = 0 and AϕResβ2,r(ψ, s)) = 0, and r = 1, 2, 3, · · · .
Putting a = 0.5, b = 3, c = 1 and d = 0.8 and taking the values of l1 = 160 and l2 = 120, we find the
first few terms as:

f1(ψ, s) = e−ψ
2 (

320β2
2 − 160

)
,

j1(ψ, s) = e−ψ
2 (

1440ψ2 − 656
)
,

(4.7)

f2(ψ, s) = e−ψ
2 (

640ψ4 − 1920ψ2 + 480
)
,

j2(ψ, s) = e−ψ
2 (

17280ψ4 − 51904ψ2 + 12941
)
,

(4.8)

and so on.
Putting fr(ψ, s), for r = 1, 2, 3, · · · , in Eq (4.4), we get

β1(ψ, s) =
e−ψ

2
(
320ψ2 − 160

)
sp+1 +

e−ψ
2
(
640ψ4 − 1920ψ2 + 480

)
s2p+1 +

160e−ψ
2

s2 + · · · ,

β2(ψ, s) =
e−ψ

2
(
1440ψ2 − 656

)
sp+1 +

e−ψ
2
(
17280ψ4 − 51904ψ2 + 12941

)
s2p+1 +

120e−ψ
2

s2 + · · · .

(4.9)
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The AIT may be used to get

β1(ψ, ϕ) =
e−ψ

2
ϕp

(
320ψ2 − 160

)
Γ(p + 1)

+
e−ψ

2
ϕ2p

(
640ψ4 − 1920ψ2 + 480

)
Γ(2p + 1)

+ 160e−ψ
2
+ · · · ,

β2(ψ, s) =
e−ψ

2
ϕp

(
1440ψ2 − 656

)
Γ(p + 1)

+
e−ψ

2
ϕ2p

(
17280ψ4 − 51904ψ2 + 12941

)
Γ(2p + 1)

+ 120e−ψ
2
+ · · · .

(4.10)

4.2. Problem 1 with ATIM

Dp
ϕβ1(ψ, ϕ) = a

∂2β1(ψ, ϕ)
∂ψ2 ,

Dp
ϕβ2(ψ, ϕ) = b

∂2β2(ψ, ϕ)
∂ψ2 + cβ1(ψ, ϕ) − dβ2(ψ, ϕ), where 0 < p ≤ 1,

(4.11)

having IC’s:

β1(ψ, 0) = l1e−ψ
2
,

β2(ψ, 0) = l2e−ψ
2
,

(4.12)

By using the AT on each side of Eq (4.11), we are able to get the following result:

A[Dp
ϕβ1(ψ, ϕ)] =

1
sp

( m−1∑
k=0

β1
(k)(ψ, 0)
s2−p+k + A

[
a
∂2β1(ψ, ϕ)

∂ψ2

])
,

A[Dp
ϕβ2(ψ, ϕ)] =

1
sp

( m−1∑
k=0

β2
(k)(ψ, 0)
s2−p+k + A

[
b
∂2β2(ψ, ϕ)

∂ψ2 + cβ1(ψ, ϕ) − dβ2(ψ, ϕ)
])
,

(4.13)

using the AIT on each side of 4.13, we get the following result:

β1(ψ, ϕ) = A−1
[ 1
sp

( m−1∑
k=0

β1
(k)(ψ, 0)
s2−p+k + A

[
a
∂2β1(ψ, ϕ)

∂ψ2

])]
,

β2(ψ, ϕ) = A−1
[ 1
sp

( m−1∑
k=0

β2
(k)(ψ, 0)
s2−p+k + A

[
b
∂2β2(ψ, ϕ)

∂ψ2 + cβ1(ψ, ϕ) − dβ2(ψ, ϕ)
])]
.

(4.14)

The equation that is produced as a consequence of applying the AT in an iterative manner is as follows:

β10(ψ, ϕ) =A−1
[ 1
sp

( m−1∑
k=0

β1
(k)(ψ, 0)
s2−p+k

)]
= A−1

[β1(ψ, 0)
s2

]
= l1e−ψ

2
,
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β20(ψ, ϕ) =A−1
[ 1
sp

( m−1∑
k=0

β2
(k)(ψ, 0)
s2−p+k

)]
= A−1

[β2(ψ, 0)
s2

]
= l2e−ψ

2
.

We replaced the RL integral in Eq (4.11) to get the equivalent variant.

β1(ψ, ϕ) = l1e−ψ
2
− A

[
a
∂2β1(ψ, ϕ)

∂ψ2

]
,

β2(ψ, ϕ) = l2e−ψ
2
− A

[
b
∂2β2(ψ, ϕ)

∂ψ2 + cβ1(ψ, ϕ) − dβ2(ψ, ϕ)
]
.

(4.15)

Putting a = 0.5, b = 3, c = 1, and d = 0.8 and taking the values of l1 = 160 and l2 = 120, the following
terms are then acquired by using the ATIM procedure:

β10(ψ, ϕ) = 160e−ψ
2
,

β20(ψ, ϕ) = 120e−ψ
2
,

β11(ψ, ϕ) =
e−ψ

2
(
320ψ2 − 160

)
ϕp

Γ(p + 1)
,

β21(ψ, ϕ) =
e−ψ

2
(
1440ψ2 − 656

)
ϕp

Γ(p + 1)
,

β12(ψ, ϕ) =
e−ψ

2
(
640ψ4 − 1920ψ2 + 478

)
ϕ2p

Γ(2p + 1)
,

β22(ψ, ϕ) =
e−ψ

2
zeta2p

((
364.8 − 832ψ2

)
Γ(p + 1) + p

(
17280ψ4 − 51072ψ2 + 12576

)
Γ(p)

)
Γ(p + 1)Γ(2p + 1)

.

(4.16)

The following is the final ATIM solution:

β1(ψ, ϕ) = β10(ψ, ϕ) + β11(ψ, ϕ) + β12(ψ, ϕ) + · · · ,

β2(ψ, ϕ) = β20(ψ, ϕ) + β21(ψ, ϕ) + β22(ψ, ϕ) + · · · .
(4.17)

β1(ψ, ϕ) =160e−ψ
2
+

e−ψ
2
(
320ψ2 − 160

)
ϕp

Γ(p + 1)
+

e−ψ
2
(
640ψ4 − 1920ψ2 + 478

)
ϕ2p

Γ(2p + 1)
+ · · · ,

β2(ψ, ϕ) =120e−ψ
2
+

e−ψ
2
(
1440ψ2 − 656

)
ϕp

Γ(p + 1)

+
e−ψ

2
zeta2p

((
364.8 − 832ψ2

)
Γ(p + 1) + p

(
17280ψ4 − 51072ψ2 + 12576

)
Γ(p)

)
Γ(p + 1)Γ(2p + 1)

+ · · · .

(4.18)
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5. Problem 2

5.1. Problem 2 with ARPSM

Examine the KS model of fractional order as stated in [23] with sensitivity term $(β2) = β2(ψ, ϕ).
Then, the function ∂

∂ψ

(
β1(ψ, ϕ)∂$(β2)

∂ψ

)
= β1(ψ, ϕ)∂

2β2(ψ,ϕ)
∂ψ2 +

∂β1(ψ,ϕ)
∂ψ

∂β2(ψ,ϕ)
∂ψ

,

Dp
ϕβ1(ψ, ϕ) − a

∂2β1(ψ, ϕ)
∂ψ2 + β1(ψ, ϕ)

∂2β2(ψ, ϕ)
∂ψ2 +

∂β1(ψ, ϕ)
∂ψ

∂β2(ψ, ϕ)
∂ψ

= 0,

Dp
ϕβ2(ψ, ϕ) − b

∂2β2(ψ, ϕ)
∂ψ2 − cβ1(ψ, ϕ) + dβ2(ψ, ϕ) = 0, where 0 < p ≤ 1,

(5.1)

having IC’s:

β1(ψ, 0) = l1e−ψ
2
,

β2(ψ, 0) = l2e−ψ
2
.

(5.2)

AT is applied to Eq (5.1), the following results are obtained using Eq (5.2):

β1(ψ, s) −
l1e−ψ

2

s2 −
a
sp

[∂2β1(ψ, ϕ)
∂ψ2

]
+

1
sp Aϕ

[
A−1
ϕ β1(ψ, ϕ) × A−1

ϕ

∂2β2(ψ, ϕ)
∂ψ2

]
+

1
sp Aϕ

[∂A−1
ϕ β1(ψ, ϕ)

∂ψ
×
∂A−1

ϕ β2(ψ, ϕ)

∂ψ

]
= 0,

β2(ψ, s) −
l2e−ψ

2

s2 −
b
sp

[∂2β2(ψ, ϕ)
∂ψ2

]
−

c
sp

[
β1(ψ, ϕ)

]
+

d
sp

[
β2(ψ, ϕ)

]
= 0.

(5.3)

The kth truncated term series are

β1(ψ, s) =
l1e−ψ

2

s2 +

k∑
r=1

fr(ψ, s)
srp+1 ,

β2(ψ, s) =
l2e−ψ

2

s2 +

k∑
r=1

jr(ψ, s)
srp+1 , r = 1, 2, 3, 4 · · · .

(5.4)

Aboodh residual functions (ARFs) are

AϕRes(ψ, s) =β1(ψ, s) −
l1e−ψ

2

s2 −
a
sp

[∂2β1(ψ, ϕ)
∂ψ2

]
+

1
sp Aϕ

[
A−1
ϕ β1(ψ, ϕ) × A−1

ϕ

∂2β2(ψ, ϕ)
∂ψ2

]
+

1
sp Aϕ

[∂A−1
ϕ β1(ψ, ϕ)

∂ψ
×
∂A−1

ϕ β2(ψ, ϕ)

∂ψ

]
= 0,

AϕRes(ψ, s) =β2(ψ, s) −
l2e−ψ

2

s2 −
b
sp

[∂2β2(ψ, ϕ)
∂ψ2

]
−

c
sp

[
β1(ψ, ϕ)

]
+

d
sp

[
β2(ψ, ϕ)

]
= 0,

(5.5)
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and the kth-LRFs as:

AϕResk(ψ, s) =β1k(ψ, s) +
l1e−ψ

2

s2 −
a
sp

[∂2β1k(ψ, ϕ)
∂ψ2

]
+

1
sp Aϕ

[
A−1
ϕ β1k(ψ, ϕ) × A−1

ϕ

∂2β2k(ψ, ϕ)
∂ψ2

]
+

1
sp Aϕ

[∂A−1
ϕ β1k(ψ, ϕ)

∂ψ
×
∂A−1

ϕ β2k(ψ, ϕ)

∂ψ

]
= 0,

AϕResk(ψ, s) =β2k(ψ, s) −
l2e−ψ

2

s2 −
b
sp

[∂2β2k(ψ, ϕ)
∂ψ2

]
−

c
sp

[
β1k(ψ, ϕ)

]
+

d
sp

[
β2k(ψ, ϕ)

]
= 0.

(5.6)

To determine fr(ψ, s) and jr(ψ, s), for r = 1, 2, 3, .... Then, we iteratively solve lims→∞(srp+1) by
multiplying the resulting equation by srp+1, substituting the rth-Aboodh residual function Eq (5.6) for
the rth-truncated series Eq (5.4). AϕResβ1,r(ψ, s)) = 0 and AϕResβ2,r(ψ, s)) = 0, and r = 1, 2, 3, · · · .
Putting a = 0.5, b = 3, c = 1, and d = 0.8 and taking the values of l1 = 160 and l2 = 120, we find the
first few terms as:

f1(ψ, s) = e−ψ
2 (

320ψ2 − 160
)
− 38400e−2ψ2

,

j1(ψ, s) = e−ψ
2 (

1440ψ2 − 656
)
,

(5.7)

f2(ψ, s) =e−3ψ2 (
18432000ψ2 + 9216000

)
+ e−2ψ2 (

785920 − 1612800ψ2
)

+ e−ψ
2 (

640ψ4 − 1920ψ2 + 480
)
,

j2(ψ, s) =e−ψ
2 (

17280ψ4 − 51904ψ2 + 12941
)
− 38400e−2ψ2

,

(5.8)

and so on.
Equation (5.4) is used to obtain fr(ψ, s) for r = 1, 2, 3, · · · ,

β1(ψ, s) =
160e−ψ

2

s2 +
e−ψ

2
(
320ψ2 − 160

)
− 38400e−2ψ2

sp+1

+
e−3ψ2

(
18432000ψ2 + 9216000

)
+ e−2ψ2

(
785920 − 1612800ψ2

)
+ e−ψ

2
(
640ψ4 − 1920ψ2 + 480

)
s2p+1 + · · · ,

β2(ψ, s) =
120e−ψ

2

s2 +
e−ψ

2
(
1440ψ2 − 656

)
sp+1 +

e−ψ
2
(
17280ψ4 − 51904ψ2 + 12941

)
− 38400e−2ψ2

s2p+1 + · · · .

(5.9)

AIT is applied to get

β1(ψ, ϕ) = 160e−ψ
2

+
e−ψ

2
ϕp

(
320ψ2 − 160

)
− 38400e−2ψ2

Γ(p + 1)

+
e−3ψ2

ϕ2p
(
18432000ψ2 + 9216000

)
+ e−2ψ2

(
785920 − 1612800ψ2

)
+ e−ψ

2
(
640ψ4 − 1920ψ2 + 480

)
Γ(2p + 1)

+ · · · ,

β2(ψ, ϕ) =
120e−ψ

2

s2 +
e−ψ

2
ϕp

(
1440ψ2 − 656

)
Γ(p + 1)

+
e−ψ

2
ϕ2p

(
17280ψ4 − 51904ψ2 + 12941

)
− 38400e−2ψ2

Γ(2p + 1)
+ · · · .

(5.10)
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5.2. Problem 2 with ATIM

Dp
ϕβ1(ψ, ϕ) = a

∂2β1(ψ, ϕ)
∂ψ2 − β1(ψ, ϕ)

∂2β2(ψ, ϕ)
∂ψ

−
∂β1(ψ, ϕ)

∂ψ

∂β2(ψ, ϕ)
∂ψ

,

Dp
ϕβ2(ψ, ϕ) = b

∂2β2(ψ, ϕ)
∂ψ2 + cβ1(ψ, ϕ) − dβ2(ψ, ϕ), where 0 < p ≤ 1,

(5.11)

having IC’s:

β1(ψ, 0) = l1e−ψ
2
,

β2(ψ, 0) = l2e−ψ
2
,

(5.12)

when applying the AT to both sides of Eq (5.11), we get the following result:

A[Dp
ϕβ1(ψ, ϕ)] =

1
sp

( m−1∑
k=0

β1
(k)(ψ, 0)
s2−p+k + A

[
a
∂2β1(ψ, ϕ)

∂ψ2 − β1(ψ, ϕ)
∂2β2(ψ, ϕ)

∂ψ
−
∂β1(ψ, ϕ)

∂ψ

∂β2(ψ, ϕ)
∂ψ

])
,

A[Dp
ϕβ2(ψ, ϕ)] =

1
sp

( m−1∑
k=0

β2
(k)(ψ, 0)
s2−p+k + A

[
b
∂2β2(ψ, ϕ)

∂ψ2 + cβ1(ψ, ϕ) − dβ2(ψ, ϕ)
])
,

(5.13)

applying the AIT to both sides of Eq (5.13) yields the following result:

β1(ψ, ϕ) = A−1
[ 1
sp

( m−1∑
k=0

β1
(k)(ψ, 0)
s2−p+k + A

[
a
∂2β1(ψ, ϕ)

∂ψ2 − β1(ψ, ϕ)
∂2β2(ψ, ϕ)

∂ψ
−
∂β1(ψ, ϕ)

∂ψ

∂β2(ψ, ϕ)
∂ψ

])]
,

β2(ψ, ϕ) = A−1
[ 1
sp

( m−1∑
k=0

β2
(k)(ψ, 0)
s2−p+k + A

[
b
∂2β2(ψ, ϕ)

∂ψ2 + cβ1(ψ, ϕ) − dβ2(ψ, ϕ)
])]
.

(5.14)

This equation is obtained by using the AT’s iterative procedure:

β10(ψ, ϕ) =A−1
[ 1
sp

( m−1∑
k=0

β1
(k)(ψ, 0)
s2−p+k

)]
= A−1

[β1(ψ, 0)
s2

]
= l1e−ψ

2
,

β20(ψ, ϕ) =A−1
[ 1
sp

( m−1∑
k=0

β2
(k)(ψ, 0)
s2−p+k

)]
= A−1

[β2(ψ, 0)
s2

]
= l2e−ψ

2
.

AIMS Mathematics Volume 9, Issue 6, 14949–14981.



14967

The RL integral is applied to Eq (5.1) to yield the equivalent form.

β1(ψ, ϕ) = l1e−ψ
2
− A

[
a
∂2β1(ψ, ϕ)

∂ψ2 − β1(ψ, ϕ)
∂2β2(ψ, ϕ)

∂ψ
−
∂β1(ψ, ϕ)

∂ψ

∂β2(ψ, ϕ)
∂ψ

]
,

β2(ψ, ϕ) = l2e−ψ
2
− A

[
b
∂2β2(ψ, ϕ)

∂ψ2 + cβ1(ψ, ϕ) − dβ2(ψ, ϕ)
]
.

(5.15)

Putting a = 0.5, b = 3, c = 1, and d = 0.8 and taking the values of l1 = 160 and l2 = 120, the
following terms are then acquired by using the ATIM procedure: These terms are obtained using the
ATIM process,

β10(ψ, ϕ) =160e−ψ
2
, β20(ψ, ϕ) = 120e−ψ

2
,

β11(ψ, ϕ) =
e−2β2

2
(
eβ2

2
(
320β2

2 − 160
)
− 38400

)
ϕp

Γ(p + 1)
, β21(ψ, ϕ) =

e−x2
(
1440x2 − 656

)
tp

Γ(p + 1)
,

β12(ψ, ϕ) = −
(
225 46−pe−2ψ2

ϕp
(
pΓ(p)

(
4pΓ

(
p +

1
2

)(
e−ψ

2(
− 240ψ4 − 10.66ψ2

+ eψ
2(
ψ4 − 0.044ψ2 + 0.727

)
+ 174.66

)
ϕ2pΓ(2p + 1) + 0.0416Γ(p + 1)Γ(3p + 1)

)
+ ϕpΓ(p + 1)Γ(3p + 1)

(
3.10179ψ2 +

(
− 0.0012ψ4

+ 35.4528ψ2 + 17.7236
)

sinh
(
ψ2

)
+

(
− 0.00123ψ4 − 35.4453ψ2 − 17.7254

)
cosh

(
ψ2

)
− 1.5115

))
− 0.0738Γ(p + 1)Γ(2p + 1)Γ(3p + 1)

))
/
(
pΓ(p)Γ

(
p +

1
2

)
Γ(p + 1)2Γ(3p + 1)

)
,

β22(ψ, ϕ) =
(
e−2ψ2

ϕ2p
(
eψ

2((
524.8 − 1152ψ2

)
Γ(p + 1)

+ p
(
17280ψ4 − 50752ψ2 + 12416

)
Γ(p)

)
− 38400pΓ(p)

))
/
(
Γ(p + 1)Γ(2p + 1)

)
. (5.16)

The following is the ATIM procedure’s ultimate solution:

β1(ψ, ϕ) = β10(ψ, ϕ) + β11(ψ, ϕ) + β12(ψ, ϕ) + · · · ,

β2(ψ, ϕ) = β20(ψ, ϕ) + β21(ψ, ϕ) + β22(ψ, ϕ) + · · · .
(5.17)

β1(ψ, ϕ) =160e−ψ
2
+

(
e−2β2

2(
eβ2

2(
320β2

2 − 160
)
− 38400

)
ϕp

)
/
(
Γ(p + 1)

)
−

(
225 46−pe−2ψ2

ϕp ×
(
pΓ(p)

(
4pΓ

(
p +

1
2

)(
e−ψ

2(
− 240ψ4 − 10.66ψ2

+ eψ
2(
ψ4 − 0.044ψ2 + 0.727

)
+ 174.66

)
ϕ2pΓ(2p + 1)

+ 0.0416Γ(p + 1)Γ(3p + 1)
)

+ ϕpΓ(p + 1)Γ(3p + 1)
(
3.10179ψ2

+
(
− 0.0012ψ4 + 35.4528ψ2 + 17.7236

)
sinh

(
ψ2

)
+

(
− 0.00123ψ4 − 35.4453ψ2 − 17.7254

)
cosh

(
ψ2

)
− 1.5115

))
− 0.0738Γ(p + 1)Γ(2p + 1)Γ(3p + 1)

))
/
(
pΓ(p)Γ

(
p +

1
2

)
Γ(p + 1)2Γ(3p + 1)

)
+ · · · ,

(5.18)

β2(ψ, ϕ) =120e−ψ
2
+

(
e−x2 (

1440x2 − 656
)

tp
)
/
(
Γ(p + 1)

)
+

(
e−2ψ2

ϕ2p
(
eψ

2((
524.8 − 1152ψ2

)
Γ(p + 1)

+ p
(
17280ψ4 − 50752ψ2 + 12416

)
Γ(p)

)
− 38400pΓ(p)

))
/
(
Γ(p + 1)Γ(2p + 1)

)
+ · · · .

(5.19)
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6. Graphics and tables discussion

In Problem 1, we embark on a comprehensive exploration of the solutions β1(ψ, ϕ) and β2(ψ, ϕ)
through both graphical and numerical analyses employing two distinct methodologies: the Aboodh
residual power series method (ARPSM) and the Aboodh transform iteration method (ATIM).
Beginning with β1(ψ, ϕ), Figure 1 offers an insightful depiction of the approximate solution obtained
via ARPSM for a specific value of p = 1. Building upon this foundation, Figure 2 extends the analysis,
providing both 3D and 2D representations to elucidate the influence of varying p on the solution
when ϕ = 0.1. Similarly, Figures 3 and 4 delve into the corresponding analyses for β2(ψ, ϕ). These
visualizations offer a nuanced understanding of how changes in the parameter p affect the behavior of
the solutions across different dimensions. In conjunction with the graphical exploration, Tables 1
and 2 complement our investigation by presenting detailed fractional order analyses for ARPSM
applied to β1(ψ, ϕ) and β2(ψ, ϕ), respectively. These tables provide valuable insights into the fractional
characteristics of the solutions and contribute to a comprehensive understanding of their properties.

Figure 1. Approximate solution of β1(ψ, ϕ) via ARPSM for p = 1.

Figure 2. β1(ψ, ϕ), (a) shows three-dimensional analysis of different values of p; (b) shows
two-dimensional analysis of different values of p at ϕ = 0.1 via ARPSM.
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Figure 3. Approximate solution of β2(ψ, ϕ) via ARPSM for p = 1.

Figure 4. β2(ψ, ϕ): (a) shows three-dimensional analysis of different values of p; (b) shows
two-dimensional analysis of different values of p at ϕ = 0.1 via ARPSM.

Table 1. Analysis of various values of fractional order of ARPSM of Problem 1 of β1(ψ, ϕ).

ϕ p = 0.40 p = 0.60 p = 0.80 p = 1.00
0.2 0.0048028 0.0022338 0.00098417 0.00043033
0.4 0.0082096 0.0049227 0.00273349 0.00144405
0.6 0.0112581 0.0078699 0.00506050 0.00305916
0.8 0.0140966 0.0110044 0.00787829 0.00527565
1.0 0.0167894 0.0142882 0.0111338 0.00809353
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Table 2. Analysis of various values of fractional order of ARPSM of Problem 1 of β2(ψ, ϕ).

ϕ p = 0.40 p = 0.60 p = 0.80 p = 1.00
0.2 0.121739 0.054477 0.022375 0.0086336
0.4 0.211321 0.124300 0.066837 0.0334867
0.6 0.291879 0.201620 0.127169 0.0745724
0.8 0.367092 0.284277 0.200911 0.1318910
1.0 0.438569 0.371156 0.286582 0.2054420

Shifting focus to the ATIM method, Figures 5 and 7 display the approximate solutions of β1(ψ, ϕ)
and β2(ψ, ϕ) for p = 1, respectively. Figures 6 and 8 further extend the analysis, offering insights into
the impact of varying p at ϕ = 0.1. The fractional order sensitivity is examined through Tables 3 and 4
for β1(ψ, ϕ) and β2(ψ, ϕ) under ATIM.

Figure 5. Approximate solution of β1(ψ, ϕ) via ATIM for p = 1.

Figure 6. β1(ψ, ϕ): (a) shows three-dimensional analysis of different values of p; (b) shows
two dimensional analysis of different values of p at ϕ = 0.1 via ATIM.
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Figure 7. Approximate solution of β2(ψ, ϕ) via ATIM for p = 1.

Figure 8. β2(ψ, ϕ): (a) shows three-dimensional analysis of different values of p; (b) shows
two-dimensional analysis of different values of p at ϕ = 0.1 via ATIM.

Table 3. Analysis of various values of fractional order of ATIM of Problem 1 of β1(ψ, ϕ).

ϕ p = 0.40 p = 0.60 p = 0.80 p = 1.00
0.2 0.0048028 0.0022338 0.00098416 0.00043033
0.4 0.0082095 0.0049226 0.00273345 0.00144403
0.6 0.0112579 0.0078698 0.00506043 0.00305912
0.8 0.0140964 0.0110042 0.00787818 0.00527558
1.0 0.0167892 0.0142880 0.01113370 0.00809342
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Table 4. Analysis of various values of fractional order of ATIM of Problem 1 of β2(ψ, ϕ).

ϕ p = 0.40 p = 0.60 p = 0.80 p = 1.00
0.2 0.121748 0.054481 0.022376 0.0086342
0.4 0.211336 0.124308 0.066842 0.0334890
0.6 0.291899 0.201634 0.127178 0.0745776
0.8 0.367118 0.284297 0.200924 0.1319000
1.0 0.438600 0.371182 0.286602 0.2054560

In order to facilitate a comprehensive comparison, Tables 5 and 6 juxtapose the results obtained
from both ARPSM and ATIM for β1(ψ, ϕ) and β2(ψ, ϕ) in Problem 1. These tables provide a nuanced
understanding of the performance of each method, shedding light on their strengths and limitations
in solving the given fractional-order equations. The two most basic approaches to solving fractional
differential equations are the ATIM and the ARPSM, as stated in [52, 53] and [49–51], respectively.
These techniques provide numerical solutions to PDEs that do not need discretization or linearization,
making the symbolic terms in analytical solutions instantly visible. The primary objective of this study
is to compare and contrast the performance of ARPSM and ATIM in solving the Keller-Segel (KS)
model. It is worth mentioning that several linear and nonlinear fractional differential problems have
been solved using these two approaches.

Table 5. Problem 1: comparison of both methods for β1(ψ, ϕ).
p = 1.00 p = 0.80 p = 0.60 p = 0.40

ϕ ARPSM ATIM ARPSM ATIM ARPSM ATIM ARPSM ATIM
0.2 0.00043033 0.00043033 0.00098417 0.00098416 0.0022338 0.0022338 0.0048028 0.0048028
0.4 0.00144405 0.00144403 0.00273349 0.00273345 0.0049227 0.0049226 0.0082096 0.0082095
0.6 0.00305916 0.00305912 0.00506050 0.00506043 0.0078699 0.0078698 0.0112581 0.0112579
0.8 0.00527565 0.00527558 0.00787829 0.00787818 0.0110044 0.0110042 0.0140966 0.0140964
1.0 0.00809353 0.00809342 0.01113380 0.01113370 0.0142882 0.0142880 0.0167894 0.0167892

Table 6. Problem 1: comparison of both methods for β2(ψ, ϕ).

p = 1.00 p = 0.80 p = 0.60 p = 0.40
ϕ ARPSM ATIM ARPSM ATIM ARPSM ATIM ARPSM ATIM

0.2 0.0086336 0.0086342 0.022375 0.022376 0.054477 0.054481 0.121739 0.121748
0.4 0.0334867 0.0334890 0.066837 0.066842 0.124300 0.124308 0.211321 0.211336
0.6 0.0745724 0.0745776 0.127169 0.127178 0.201620 0.201634 0.291879 0.291899
0.8 0.1318910 0.1319000 0.200911 0.200924 0.284277 0.284297 0.367092 0.367118
1.0 0.2054420 0.2054560 0.286582 0.286602 0.371156 0.371182 0.438569 0.438600

In Problem 2, the analysis of solutions β1(ψ, ϕ) and β2(ψ, ϕ) is carried out using the ARPSM
and the ATIM. For β1(ψ, ϕ), Figure 9 illustrates the approximate solution via ARPSM for p = 1.
Subsequently, Figure 10 presents 3D and 2D analyses, demonstrating the influence of varying p on the
solution at ϕ = 0.1. Analogously, Figures 11 and 12 provide the corresponding analyses for β2(ψ, ϕ).
Complementing the graphical exploration, Table 7 details the fractional order analysis for ARPSM of
β1(ψ, ϕ), and Table 8 does the same for β2(ψ, ϕ).
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Figure 9. Approximate solution of β1(ψ, ϕ) via ARPSM for p = 1.

Figure 10. 2D analysis of different values of p at ϕ = 0.1.

Figure 11. Approximate solution of β2(ψ, ϕ) via ARPSM for p = 1.
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Figure 12. 2D analysis of different values of p at ϕ = 0.1.

Table 7. Analysis of various values of fractional order of ARPSM of Problem 2 of β1(ψ, ϕ).

ϕ p = 0.40 p = 0.60 p = 0.80 p = 1.00
0.2 0.0048027 0.0022338 0.00098415 0.00043032
0.4 0.0082094 0.0049226 0.00273344 0.00144403
0.6 0.0112578 0.0078698 0.00506040 0.00305910
0.8 0.0140963 0.0110042 0.00787813 0.00527555
1.0 0.0167891 0.0142880 0.01113360 0.00809337

Table 8. Analysis of various values of fractional order of ARPSM of Problem 2 of β2(ψ, ϕ).

ϕ p = 0.40 p = 0.60 p = 0.80 p = 1.00
0.2 0.121739 0.054477 0.022375 0.0086336
0.4 0.211321 0.124300 0.066837 0.0334867
0.6 0.291879 0.201620 0.127169 0.0745724
0.8 0.367092 0.284277 0.200911 0.1318910
1.0 0.438569 0.371156 0.286582 0.2054420

Shifting focus to the ATIM method, Figures 13 and 15 display the approximate solutions of β1(ψ, ϕ)
and β2(ψ, ϕ) for p = 1, respectively. Figures 14 and 16 further extend the analysis, offering insights
into the impact of varying p at ϕ = 0.1. The fractional order sensitivity is examined through Tables 9
and 10 for β1(ψ, ϕ) and β2(ψ, ϕ) under ATIM.
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Figure 13. Approximate solution of β1(ψ, ϕ) via ATIM for p = 1.

Figure 14. 2D analysis of different values of p at ϕ = 0.1.

Figure 15. Approximate solution of β2(ψ, ϕ) via ATIM for p=1.
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Figure 16. 2D analysis of different values of p at ϕ = 0.1.

Table 9. Analysis of various values of fractional order of ATIM of Problem 2 of β1(ψ, ϕ).

ϕ p = 0.40 p = 0.60 p = 0.80 p = 1.00
0.2 0.0047363 0.00220436 0.00097225 0.00042586
0.4 0.0080934 0.00485484 0.00269728 0.00142614
0.6 0.0110971 0.00775928 0.00499109 0.00301877
0.8 0.0138937 0.01084780 0.00776810 0.00520373
1.0 0.0165466 0.01408330 0.01097610 0.00798096

Table 10. Analysis of various values of fractional order of ATIM of Problem 2 of β2(ψ, ϕ).

ϕ p = 0.40 p = 0.60 p = 0.80 p = 1.00
0.2 0.121748 0.054481 0.0223765 0.0086342
0.4 0.211336 0.124308 0.0668425 0.0334890
0.6 0.291899 0.201634 0.1271780 0.0745776
0.8 0.367118 0.284297 0.2009240 0.1319000
1.0 0.438600 0.371182 0.2866020 0.2054560

To facilitate a comprehensive comparison, Tables 11 and 12 juxtapose the results obtained from
both ARPSM and ATIM for β1(ψ, ϕ) and β2(ψ, ϕ) in Problem 2. These tables provide a nuanced
understanding of the performance of each method, shedding light on their strengths and limitations in
solving the given fractional-order equations in the context of Problem 2.

Table 11. Problem 2 comparison of both methods for β1(ψ, ϕ).

p = 1.00 p = 0.80 p = 0.60 p = 0.40
ϕ ARPSM ATIM ARPSM ATIM ARPSM ATIM ARPSM ATIM

0.2 0.0004303 0.0004258 0.0009841 0.0009722 0.0022338 0.0022043 0.004802 0.0047363
0.4 0.0014440 0.0014261 0.0027334 0.0026972 0.0049226 0.0048548 0.008209 0.0082096
0.6 0.0030591 0.0030187 0.0050604 0.0049910 0.0078698 0.0077592 0.011257 0.0110971
0.8 0.0052755 0.0052037 0.0078781 0.0077681 0.0110042 0.0108478 0.014096 0.0138937
1.0 0.0080933 0.0079809 0.0111336 0.0109761 0.0142880 0.0140833 0.016789 0.0165466
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Table 12. Problem 2 comparison of both methods for β2(ψ, ϕ).

p = 1.00 p = 0.80 p = 0.60 p = 0.40
ϕ ARPSM ATIM ARPSM ATIM ARPSM ATIM ARPSM ATIM

0.2 0.0086336 0.0086342 0.022375 0.022376 0.054477 0.054481 0.121739 0.121748
0.4 0.0334867 0.0334890 0.066837 0.066842 0.124300 0.124308 0.211321 0.211336
0.6 0.0745724 0.0745776 0.127169 0.127178 0.201620 0.201634 0.291879 0.291899
0.8 0.1318910 0.1319000 0.200911 0.200924 0.284277 0.284297 0.367092 0.367118
1.0 0.2054420 0.2054560 0.286582 0.286602 0.371156 0.371182 0.438569 0.438600

7. Conclusions

In summary, this research has focused on improving numerical methods designed for solving the
fractional Keller-Segel (KS) model, which is a crucial framework for studying chemotaxis phenomena.
By utilizing the Caputo operator framework, we have employed two distinct methodologies: the
Aboodh residual power series method (ARPSM) and the Aboodh transform iteration method (ATIM).
These approaches have enabled us to obtain accurate solutions to the fractional KS equation,
contributing to a better understanding of chemotactic behavior in biological systems. Through
a comparative analysis of ARPSM and ATIM, we have revealed their individual strengths and
applications in addressing complex fractional models. This work not only advances numerical
techniques tailored for fractional differential equations but also improves our understanding of
chemotaxis dynamics through precise modeling.
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