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1. Introduction

In the past two decades, neural networks have received considerable attention, having been
successfully applied in signal processing, parallel computing, and combinational optimization. In the
implementation and application of neural networks, time delay is unavoidable, which may bring about
instability, oscillations, bifurcation, and chaos for systems. In the application of neural networks with
delays, it is often required that the networks have a unique and stable equilibrium point. Therefore, the
stability analysis of equilibrium points for neural networks with delays is widely relevant [1–9].

Besides the stability analysis of equilibrium points, the research on neural networks with delays
involves the stability analysis of periodic solutions. The properties of periodic solutions are of great
interest, and these have been successfully applied in many biological and cognitive fields. For example,
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periodic solutions can be used to store acoustic characteristics in speech recognition, because they can
contain information for a time series. In practice, a time series of audio signal is fed as input into the
network if the weight of the network meet established criteria; then, the output is the periodic solution
of the time series. We calculate the average power spectral density (PSD) of the periodic solution and
compare it with the PSD of the original audio signal. If the difference between them is small, then the
periodic solution can be considered as effectively storing the acoustic characteristics. In addition, an
equilibrium point can be considered as a special periodic solution of neural networks with an arbitrary
period. Therefore, the stability analysis of periodic solutions for neural networks is more general and
interesting than that of equilibrium points. Recently, there have been a lot of work on the stabilization
of periodic solutions; see [10–18].

As pointed out in [19], the synaptic transmission in real nervous systems is a noisy process brought
on by random fluctuations in the release of neurotransmitters, and other probabilistic causes. Neural
networks could be stabilized or destabilized by some stochastic inputs. Therefore, it is of prime
importance to consider the stability of stochastic neural networks with delays [20–26].

The system discussed in this paper cannot be transformed into the vector-matrix form because of
multiple delays τi j(t). For neural networks with delays τi j(t), the common methods in the literature
include fixed point principles, differential inequalities, Lyapunov functional, and Halanay inequality.
These methods do not include linear matrix inequalities. Therefore, to the best of our knowledge, for
stochastic neural networks with delays τi j(t) , there is a lack of sufficient conditions in linear matrix
inequality forms.

The innovations of this paper are listed as follows:
(1) By constructing an appropriate Lyapunov-Krasovskii functional and using linear matrix

inequality, some sufficient conditions in the linear matrix inequality forms for the exponential stability
of periodic solutions of stochastic neural networks with delays τi j(t) are established.

(2) It is confirmed that the Lyapunov-Krasovskii functional and linear matrix inequality can be
applied to stochastic neural networks with delays τi j(t) that cannot be written in the vector-matrix form.

(3) Compared with the sufficient criteria established in [22,27,28], our sufficient criteria are delay-
dependent and less conservative.

The rest of the paper is organized as follows. In Section 2, the stochastic neural networks with
multiple time-varying delays and assumptions are introduced. In Sections 3, some sufficient conditions
in the linear matrix inequality forms are given to ensure exponential stability of periodic solutions. In
Section 4, several examples are given to demonstrate that our criteria are effective and less conservative.
The conclusions are drawn in Section 5.

Notation:
(1) Let w(t) = (w1(t), · · · ,wn(t))T be n-dimensional Brownian motion defined on a complete

probability space (Ω,F ,P) with a natural filtration {Ft}t≥0 generated by {w(t)}, in which Ω is the
canonical space generated by w(t) and F is the associated σ-algebra generated by {w(s) : 0 ≤ s ≤ t}
with the probability measure P.

(2) A < 0 means that matrix A is symmetric negative definite; AT denotes the transpose of the
matrix A; ∗ means the symmetric terms of a symmetric matrix, and I denotes identity matrix.

(3) C([−τ, 0]; Rn) denotes the Banach space of all continuous Rn-valued functions defined on
[−τ, 0] satisfying sup−τ≤t≤0 E‖ξ(t)‖

2 < ∞ ; E denotes the mathematical expectation; ‖ · ‖ denotes the
Euclidean norm.
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2. Preliminaries

The stochastic neural networks with multiple time-varying delays studied in this paper can be
described as the following mathematical expression

dxi(t) = [−cixi(t) +

n∑
j=1

ai j f j(x j(t)) +

n∑
j=1

bi jg j(x j(t − τi j(t))) + ui(t)]dt

+

n∑
j=1

σi j(x j(t), x j(t − τi j(t)))dw j(t), i = 1, · · · , n, t ≥ 0, (2.1)

where ai j, bi j, and ci are some constants and ci > 0 , fi(·) and gi(·) are activation functions, σi j(·, ·)
are diffusion functions. Obviously, the mathematical expression of system (2.1) cannot be transformed
into a vector-matrix system.

The following assumption is added in order to discuss the stability of periodic solutions of the
system (2.1):

There exist some constants F−i , F
+
i ,G

−
i ,G

+
i , Li j > 0,Mi j > 0, τ and τ̃ such that for all z1, z2, z3, z4 ∈ R,

F−i ≤ F+
i ,G

−
i ≤ G+

i and t ≥ 0,

F−i ≤
fi(z1) − fi(z2)

z1 − z2
≤ F+

i ,G
−
i ≤

gi(z1) − gi(z2)
z1 − z2

≤ G+
i , z1 , z2, (2.2)

0 ≤ τi j(t) ≤ τ, τ̇i j(t) ≤ τ̃ < 1, (2.3)

|σi j(z1, z2) − σi j(z3, z4)| ≤ Li j|z1 − z3| + Mi j|z2 − z4|. (2.4)

The initial condition xi (s) = ξi (s), s ∈ [−τ, 0], and ξ = {(ξ1(s), · · · , ξ1(s))T : −τ ≤ s ≤ 0} is
C([−τ, 0]; Rn)-valued function and F0-measurable Rn-valued random variable.

Let x(t, ξ) and y(t, ψ) be the solutions of system (2.1) with arbitrary initial conditions ξ and ψ,
respectively. If it will not cause any misunderstanding, x(t, ξ) and y(t, ψ) are denoted by x(t) and y(t),
respectively. Then, for i = 1, · · · , n, t ≥ 0, we have

d[xi(t) − yi(t)] =

(
− ci[xi(t) − yi(t)] +

n∑
j=1

ai j[ f j(x j(t)) − f j(y j(t))] (2.5)

+

n∑
j=1

bi j[g j(x j(t − τi j(t))) − g j(y j(t − τi j(t)))]
)
dt

+

n∑
j=1

[σi j(x j(t), x j(t − τi j(t))) − σi j(y j(t), y j(t − τi j(t)))]dw j(t).
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3. Main results

Theorem 1. There exist two positive constants λ and K > 1 such that

E‖x(t) − y(t)‖2 ≤ Ke−λtE‖ξ − ψ‖2, t ≥ 0, (3.1)

if there exist some positive constants p1, · · · , pn, ui1, · · · , uin (i = 1, 2) such that

Σ =


Σ1 PA + U1F̄ U2Ḡ
∗ −2U1 0
∗ ∗ −2U2 + B2

1−τ̃

 < 0, (3.2)

where
Σ1 = −2PC + PB1 + L +

1
1 − τ̃

M − 2U1F̃ − 2U2G̃,P = diag{p1, · · · , pn},

A = (ai j)n×n,C = diag{c1, · · · , cn},Ui = diag{ui1, · · · , uin}(i = 1, 2),

B1 = diag{
n∑

j=1

|b1 j|, · · · ,

n∑
j=1

|bn j|},B2 = diag{
n∑

j=1

p j|b j1|, · · · ,

n∑
j=1

p j|b jn|},

L = diag{
n∑

j=1

2p jL2
j1, · · · ,

n∑
j=1

2p jL2
jn},M = 2diag{

n∑
j=1

2p jM2
j1, · · · ,

n∑
j=1

2p jM2
jn},

F̃ = diag{F−1 F+
1 , · · · , F

−
n F+

n }, F̄ = diag{F−1 + F+
1 , · · · , F

−
n + F+

n },

G̃ = diag{G−1 G+
1 , · · · ,G

−
n G+

n }, Ḡ = diag{G−1 + G+
1 , · · · ,G

−
n + G+

n }.

Proof. It follows from (3.2) that there exists a constant λ > 0 such that

Σ̄ =


Σ̄1 PA + U1F̄ U2Ḡ
∗ −2U1 0
∗ ∗ −2U2 + eλτ

1−τ̃B2

 < 0, (3.3)

where

Σ̄1 = λP − 2PC + PB1 + L +
eλτ

1 − τ̃
M − 2U1F̃ − 2U2G̃.

The Lyapunov-Krasovskii functional is defined as follows:

V(t) = V1(t) + V2(t), (3.4)

where

V1(t) = eλt
n∑

i=1

pi[xi(t) − yi(t)]2,

V2(t) =

n∑
i=1

n∑
j=1

∫ t

t−τi j(t)

eλ(s+τ) pi

1 − τ̃

(
|bi j|[g j(x j(s)) − g j(y j(s))]2 + 2M2

i j[x j(s) − y j(s)]2
)
ds.
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Applying Itô formula in [20] to V(t) along with system (2.5), we obtain

dV1(t) =

n∑
i=1

n∑
j=1

Wi j(t)dw j(t) + λeλt
n∑

i=1

pi[xi(t) − yi(t)]2dt

+2eλt
n∑

i=1

pi[xi(t) − yi(t)]
(
− ci[xi(t) − yi(t)] +

n∑
j=1

ai j[ f j(x j(t)) − f j(y j(t))]

+

n∑
j=1

bi j[g j(x j(t − τi j(t))) − g j(y j(t − τi j(t)))]

+eλt
n∑

i=1

pi

n∑
j=1

[σi j(x j(t), x j(t − τi j(t))) − σi j(y j(t), y j(t − τi j(t)))]2
)
dt

≤

n∑
i=1

n∑
j=1

Wi j(t)dw j(t) + eλt
n∑

i=1

(
pi[λ − 2ci][xi(t) − yi(t)]2

+

n∑
j=1

2ai j pi[xi(t) − yi(t)][ f j(x j(t)) − f j(y j(t))] +

n∑
j=1

|bi j|pi[xi(t) − yi(t)]2

+

n∑
j=1

|bi j|pi[g j(x j(t − τi j(t))) − g j(y j(t − τi j(t)))]2

+eλt
n∑

i=1

n∑
j=1

2piL2
i j(x j(t) − y j(t))2

+eλt
n∑

i=1

n∑
j=1

2piM2
i j(x j(t − τi j(t)) − y j(t − τi j(t)))2

)
dt, (3.5)

where
Wi j(t) = 2eλt pi[xi(t) − yi(t)][σi j(x j(t), x j(t − τi j(t))) − σi j(y j(t), y j(t − τi j(t)))],

and

dV2(t) =

n∑
i=1

n∑
j=1

eλ(t+τ) pi

1 − τ̃

(
|bi j|[g j(x j(t)) − g j(y j(t))]2 + 2M2

i j[x j(t) − y j(t)]2
)
dt

−(1 − τ̇i j(t))
n∑

i=1

n∑
j=1

eλ(t−τi j(t))+τ) pi

1 − τ̃

(
|bi j|[g j(x j(t − τi j(t)))) − g j(y j(t − τi j(t))))]2

+2M2
i j[x j(t − τi j(t))) − y j(t − τi j(t)))]2

)
dt

≤

n∑
i=1

n∑
j=1

eλ(t+τ) pi

1 − τ̃

(
|bi j|[g j(x j(t)) − g j(y j(t))]2 + 2M2

i j[x j(t) − y j(t)]2
)
dt

−

n∑
i=1

n∑
j=1

eλt pi

(
|bi j|[g j(x j(t − τi j(t)))) − g j(y j(t − τi j(t))))]2
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+2M2
i j[x j(t − τi j(t))) − y j(t − τi j(t)))]2

)
dt. (3.6)

From (3.5) and (3.6), we have

dV(t) = dV1(t) + dV2(t)

≤

n∑
i=1

n∑
j=1

Wi j(t)dw j(t) + eλt
n∑

i=1

(
[λpi − 2ci pi +

n∑
j=1

|bi j|pi

+

n∑
j=1

p j(2L2
ji + eλτ

2M2
ji

1 − τ̃
)][xi(t) − yi(t)]2

+

n∑
j=1

2ai j pi[xi(t) − yi(t)][ f j(x j(t)) − f j(y j(t))]
)
dt

+

n∑
i=1

n∑
j=1

eλ(t+τ) |b ji|p j

1 − τ̃
[gi(xi(t)) − gi(yi(t))]2dt

=

n∑
i=1

n∑
j=1

Wi j(t)dw j(t) + 2[x(t) − y(t)]T PA[f(x(t)) − f(y(t))]dt

+eλt
{
[x(t) − y(t)]T

(
λP − 2PC + PB1 + L +

eλτ

1 − τ̃
M

)
[x(t) − y(t)]dt

+
eλτ

1 − τ̃
[g(x(t)) − g(y(t))]T B2[g(x(t)) − g(y(t))]dt

}
, (3.7)

where
x(t) − y(t) = (x1(t) − y1(t), · · · , xn(t) − yn(t))T ,

f(x(t)) − f(y(t)) = ( f1(x1(t)) − f1(y1(t)), · · · , fn(xn(t)) − fn(yn(t)))T ,

g(x(t)) − g(y(t)) = (g1(x1(t)) − g1(y1(t)), · · · , gn(xn(t)) − gn(yn(t)))T .

Simultaneously, by using (2.2), we can deduce

0 ≤ −2
n∑

i=1

u1i[( fi(xi(t)) − fi(yi(t))) − F+
i (xi(t) − yi(t))][( fi(xi(t)) − fi(yi(t)))

−F−i (xi(t) − yi(t))]

= −2
n∑

i=1

u1i( fi(xi(t)) − fi(yi(t)))2 − 2
n∑

i=1

u1iF+
i F−i (xi(t) − yi(t))2

+2(F+
i + F−i )

n∑
i=1

u1i( fi(xi(t)) − fi(yi(t)))(xi(t) − yi(t))

= −2[f(x(t)) − f(y(t))]T U1[f(x(t)) − f(y(t))] − 2[x(t) − y(t)]T U1F̃[x(t) − y(t)]
+2[f(x(t)) − f(y(t))]T U1F̄[x(t) − y(t)], (3.8)

and

0 ≤ −2
n∑

i=1

u2i[(gi(xi(t)) − gi(yi(t))) −G+
i (xi(t) − yi(t))][(gi(xi(t)) − gi(yi(t)))
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−G−i (xi(t) − yi(t))]
= −2[g(x(t)) − g(y(t))]T U2[g(x(t)) − g(y(t))] − 2[x(t) − y(t)]T U2G̃[x(t) − y(t)]

+2[g(x(t)) − g(y(t))]T U2Ḡ[x(t) − y(t)]. (3.9)

From (3.4) and (3.7)–(3.9), we deduce

eλt min
1≤i≤n
{pi}‖x(t) − y(t)‖2 ≤ V(t)

≤ V(0) +

∫ t

0
eλshT (s)Σ̄1h(s)ds +

∫ t

0

n∑
i=1

n∑
j=1

Wi j(s)dw j(s)

≤ max
1≤i≤n
{pi}‖x(0) − y(0)‖2 +

∫ t

0

n∑
i=1

n∑
j=1

Wi j(s)dw j(s)

+

n∑
i=1

n∑
j=1

∫ 0

−τ

eλ(s+τ) pi

1 − τ̃

(
|bi j|[g j(x j(s)) − g j(y j(s))]2 + 2M2

i j[x j(s) − y j(s)]2
)
ds

≤ max
1≤i≤n
{pi}‖x(0) − y(0)‖2 +

∫ t

0

n∑
i=1

n∑
j=1

Wi j(s)dw j(s)

+

n∑
i=1

n∑
j=1

∫ 0

−τ

eλ(s+τ) pi

1 − τ̃

(
|bi j|G2

j + 2M2
i j

)
[x j(s) − y j(s)]2ds, (3.10)

where h(t) = ([x(t)−y(t)]T , [f(x(t))−f(y(t))]T , [g(x(t))−g(y(t))]T )T ,Gi = max{|G−i |, |G
+
i |}, i = 1, 2, · · · , n.

Taking mathematical expectations for both sides of (3.10), we obtain

eλt min
1≤i≤n
{pi}E‖x(t) − y(t)‖2 ≤ EV(t) (3.11)

≤

(
max
1≤i≤n
{pi} +

eλττ
1 − τ̃

max
1≤i≤n
{

n∑
j=1

p j[|b ji|G2
i + 2M2

ji]}
)

sup
−τ≤t≤0

E‖x(t) − y(t)‖2,

which can deduce (3.1).
Remark 1. Obviously, the right-hand side of (3.10) is a non-negative semimartingale. From the non-
negative semimartingale convergence theorem [20] and (3.10), we obtain

lim sup
t→∞

eλt min
1≤i≤n
{pi}‖x(t) − y(t)‖2 < +∞,P − almost surely,

which implies

lim sup
t→∞

ln ‖x(t) − y(t)‖2

t
< −λ,P − almost surely.

Remark 2. Inequality (3.2) is the sufficient condition in the linear matrix inequality form. However,
the matrices P, U1, and U2 in (3.2) cannot be solved by MATLAB because the matrices B2,L, and M
contain the constants p1, · · · , pn. In order to obtain the easily verified condition, we take pi = p (i =

1, · · · , n), then (3.2) transforms into (3.12).
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Corollary 1. Inequality (3.1) holds if there exist some positive constants p, ui1, · · · , uin (i = 1, 2)
such that

Σ =


Σ1 pA + U1F̄ U2Ḡ
∗ −2U1 0
∗ ∗ −2U2 +

p
1−τ̃B̄2

 < 0, (3.12)

where

Σ1 = −2pC + pB1 + pL̄ +
p

1 − τ̃
M̄ − 2U1F̃ − 2U2G̃, B̄2 = diag{

n∑
j=1

|b j1|, · · · ,

n∑
j=1

|b jn|},

L̄ = diag{
n∑

j=1

2L2
j1, · · · ,

n∑
j=1

2L2
jn}, M̄ = diag{

n∑
j=1

2M2
j1, · · · ,

n∑
j=1

2M2
jn},

the other symbols are the same as Theorem 1.
Certainly, we can also slightly modify the proof of Theorem 1 so that these matrices B2,L, and M

do not contain the constants p1, · · · , pn.
Theorem 2. Inequality (3.1) holds if there exist some positive constants p1, · · · , pn, q, ui1, · · · , uin (i =

1, 2) such that q > max1≤i≤n{pi} and

Σ =


Σ1 PA + U1F̄ U2Ḡ
∗ −2U1 0
∗ ∗ −2U2 + 1

1−τ̃B̄2

 < 0, (3.13)

where
Σ1 = −2PC + P2B1 + qL̄ +

q
1 − τ̃

M̄ − 2U1F̃ − 2U2G̃,

the other symbols are the same as Theorem 1 and Corollary 1.
Proof. From (3.13), we can obtain a constant λ > 0 such that

Σ̄ =


Σ̄1 PA + U1F̄ U2Ḡ
∗ −2U1 0
∗ ∗ −2U2 + eλτ

1−τ̃B̄2

 < 0, (3.14)

where

Σ̄1 = λP − 2PC + P2B1 + qL̄ +
qeλτ

1 − τ̃
M̄ − 2U1F̃ − 2U2G̃.

The Lyapunov-Krasovskii functional is defined as follows:

V(t) = eλt
n∑

i=1

pi[xi(t) − yi(t)]2 +

n∑
i=1

n∑
j=1

∫ t

t−τi j(t)

eλ(s+τ)

1 − τ̃(
|bi j|[g j(x j(s)) − g j(y j(s))]2 + 2qM2

i j[x j(s) − y j(s)]2
)
ds.
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From (3.5) and q > max1≤i≤n{pi} , we have

dV(t) ≤
n∑

i=1

n∑
j=1

Wi j(t)dw j(t) + eλt
n∑

i=1

(
pi[λ − 2ci][xi(t) − yi(t)]2

+

n∑
j=1

2ai j pi[xi(t) − yi(t)][ f j(x j(t)) − f j(y j(t))] +

n∑
j=1

|bi j|p2
i [xi(t) − yi(t)]2

+

n∑
j=1

|bi j|[g j(x j(t − τi j(t))) − g j(y j(t − τi j(t)))]2

+eλt
n∑

i=1

n∑
j=1

2qL2
i j(x j(t) − y j(t))2

+eλt
n∑

i=1

n∑
j=1

2qM2
i j(x j(t − τi j(t)) − y j(t − τi j(t)))2

)
dt

+

n∑
i=1

n∑
j=1

eλ(t+τ)

1 − τ̃

(
|bi j|[g j(x j(t)) − g j(y j(t))]2 + 2qM2

i j[x j(t) − y j(t)]2
)
dt

−

n∑
i=1

n∑
j=1

eλt
(
|bi j|[g j(x j(t − τi j(t)))) − g j(y j(t − τi j(t))))]2

+2qM2
i j[x j(t − τi j(t))) − y j(t − τi j(t)))]2

)
dt

≤

n∑
i=1

n∑
j=1

Wi j(t)dw j(t) + eλt
n∑

i=1

(
[λpi − 2ci pi +

n∑
j=1

|bi j|p2
i +

n∑
j=1

q(2L2
ji + 2M2

ji
eλτ

1 − τ̃
)]

[xi(t) − yi(t)]2 +

n∑
j=1

2ai j pi[xi(t) − yi(t)][ f j(x j(t)) − f j(y j(t)))

+

n∑
j=1

eλτ|b ji|

1 − τ̃
[gi(xi(t)) − gi(yi(t))]2

)
dt

=

n∑
i=1

n∑
j=1

Wi j(t)dw j(t) + eλt
{
[x(t) − y(t)]T

(
λP − 2PC + P2B1 + qL̄ +

qeλτ

1 − τ̃
M̄

)
[x(t) − y(t)] + 2[x(t) − y(t)]T PA[f(x(t)) − f(y(t))]

+
eλτ

1 − τ̃
[g(x(t)) − g(y(t))]T B̄2[g(x(t)) − g(y(t))]

}
dt.

The rest of the proof is similar to that of Theorem 1 and so is omitted.
Remark 3. When pi = p (i = 1, · · · , n), (3.3) becomes

Σ̄ =


Σ̄1 pA + U1F̄ U2Ḡ
∗ −2U1 0
∗ ∗ −2U2 + eλτ

1−τ̃ pB̄2

 < 0, (3.15)

where

Σ̄1 = λpI − 2pC + pB1 + pL̄ +
eλτ

1 − τ̃
pM̄ − 2U1F̃ − 2U2G̃.
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It is easy to see that the stability criteria (3.12)–(3.15) are delay-dependent.
Remark 4. In [22,27,28], delay-independent stability criteria of periodic solutions are established
by using the fixed-point principle, Gronwall-Bellman inequality, Lyapunov functional, Halanay
inequality, and differential inequality technique (see Remarks 5–7). It is generally agreed that delay-
dependent stability criteria are less conservative than delay-independent ones [7]. Therefore, our
sufficient criteria are less conservative than those in [22,27,28].
Theorem 3. Let ui(t) and τi j(t)(i, j = 1, · · · , n) be ω-periodic functions. If the
condition (3.12) (or (3.13)) holds, then system (2.1) has a unique periodic solution, which is globally
exponentially stable in the mean square.
Proof. If the condition (3.12) (or (3.13)) holds, then inequality (3.1) holds. We can choose a positive
integer m such that

Ke−λmω ≤
1
16
. (3.16)

We define a Poincare mapping P:C([−τ, 0]; Rn) → C([−τ, 0]; Rn) by Pξ = xω(ξ) = x(ω + θ, ξ), θ ∈
[−τ, 0), t ≥ 0. Then, from (3.1) and (3.16), we have

E‖x(t) − y(t)‖2 = E‖Pmξ − Pmψ‖2 ≤
1
8
E‖ξ − ψ‖2.

By the integral property of measurable functions, we have

‖Pmξ − Pmψ‖2 ≤
1

16
‖ξ − ψ‖2, a.e.

that is,

‖Pmξ − Pmψ‖ ≤
1
4
‖ξ − ψ‖, a.e.

So Pm is a contraction mapping and there exists a unique fixed point ξ∗ ∈ C([−τ, 0]; Rn) such that
Pmξ∗ = ξ∗, a.e. Note that

Pm(Pξ∗) = P(Pmξ∗) = Pξ∗, a.e.

We know that Pξ∗ ∈ C([−τ, 0]; Rn) is also a fixed point of Pm and obtain

xω(ξ∗) = Pξ∗ = ξ∗, a.e.

Let x(t, ξ∗) be the solution of (2.1) through (0, ξ∗). Then, x(t + ω, ξ∗) is also a solution of (2.1) and
for t ≥ 0,

xt+ω(ξ∗) = xt(xω(ξ∗)) = xt(ξ∗), a.e.

So we have x(t + ω, ξ∗) = x(t, ξ∗), a.e. which shows x(t, ξ∗) is one ω-periodic solution of (2.1).
From (3.1), we know all other solutions converge exponentially to x(t, ξ∗) in the mean square as t → ∞.
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4. Several examples and comparison

Example 1. Consider system (2.1) with the following parameters and functions:

A =


1 −1 −1 1
−1 1 −1 −1
1 1 −1 1
−1 −1 −1 −1

 ,B =


−1 1 −1 1
−1 −1 1 −1
1 −1 −1 −1
−1 −1 −1 1

 ,
C = diag{6, 6, 5, 5}, fi(x) = tanh(xi), gi(xi) = 0.8tanh(xi), ui = sint, τii(t) = 0.2sint + 0.2, τi j(t) =

0.2cost + 0.2(i , j), σi j(x j(t), x j(t − τi j(t))) = 0.05x j(t) + 0.05x j(t − τi j(t)), i, j = 1, 2, 3, 4.
We calculate that B1 = B̄2 = 4I, F̃ = G̃ = 0, F̄ = I, Ḡ = 0.8I, Li j = Mi j = 0.005, L̄ = M̄ =

0.02I, τ̃ = 0.2.
By using MATLAB LMI Control Toolbox, we obtain P = 0.6044I, U1 =

diag{1.5261, 1.5243, 1.5127, 1.6004}, U2 = diag{2.9135, 2.9018, 2.9970, 2.9887} to satisfy the
condition (3.12) of Corollary 1, and obtain P = diag{0.5191, 0.5209, 0.5726, 0.5705}, q =

1.7100, U1 = diag{1.2485, 1.2521, 1.2398, 1.3223}, U2 = diag{2.3854, 2.3835, 2.6177, 2.6148} to
satisfy the condition (3.13) of Theorem 2. Therefore, Corollary 1 and Theorem 2 are effective.
Figure 1 shows the solution trajectories of system (2.1) with the initial value (−0.4,−0.2, 0.4, 0.6)T

appearing as periodic motions after a few seconds.

Figure 1. The solution trajectories of system (2.1) with initial value (−0.4,−0.2, 0.4, 0.6)T .

By changing some functions in system (2.1), we obtain the following systems considered
in [22,27,28] :

dxi(t) = [−cixi(t) +

n∑
j=1

ai j f j(x j(t)) +

n∑
j=1

bi jg j(x j(t − τi j(t))) + ui(t)]dt

+

n∑
j=1

σi j(x j(t))dw j(t), (4.1)
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ẋi(t) = −cixi(t) +

n∑
j=1

ai j f j(x j(t)) +

n∑
j=1

bi jg j(x j(t − τ j(t))) + ui(t), (4.2)

and

ẋi(t) = −cixi(t) +

n∑
j=1

ai j f j(x j(t)) +

n∑
j=1

bi j f j(x j(t − τi j(t))) + ui(t). (4.3)

Remark 5. In [22], fixed-point principle and Gronwall-Bellman inequality are used to establish
the stability condition of the periodic solutions of system (4.1), that is, ρ = max1≤i≤n{3θi/c2

i } <

1, where θi = (
∑n

j=1 |ai j|F j + |bi j|G j)2 + (
∑n

j=1 Li j)2 + (
∑n

j=1 L̃i j)2, F j = max{|F−j |, |F
+
j |},G j =

max{|G−j |, |G
+
j |}, |σi j(·)| ≤ L̃i j in this paper. However, for system (4.1) in Example 2, we calculate

ρ > 1, which implies that the condition in [22] is not applicable.
Example 2. Consider system (4.1) with σi j(x j(t)) = 0.1 + 0.05 sin(x j(t)), i, j = 1, 2, 3, 4, other symbols
are the same as in Example 1.

We calculate that B1 = B̄2 = 4I, F̃ = G̃ = 0, F̄ = I, Ḡ = 0.8I, Li j = 0.05,Mi j = 0, L̄ = 0.02I, M̄ =

0, τ̃ = 0.2.
By using MATLAB LMI Control Toolbox, we obtain P = 0.1563I, U1 =

diag{0.4515, 0.4500, 0.4772, 0.4761}, U2 = diag{0.7289, 0.7291, 0.7314, 0.7315} to satisfy the
condition (3.12) of Corollary 1, and obtain P = diag{0.1765, 0.1751, 0.1993, 0.1970}, q =

0.8439, U1 = diag{0.4678, 0.4659, 0.4929, 0.4932}, U2 = diag{0.7652, 0.7624, 0.8485, 0.8434} to
satisfy the condition (3.13) of Theorem 2. Therefore, Corollary 1 and Theorem 2 are effective.
Figure 2 shows the solution trajectories of system (4.1) with the initial value (−0.4,−0.2, 0.4, 0.6)T

appearing as periodic motions after a few seconds.
On the other hand, based on Theorem 3.1 in [22], we calculate that F j = 1,G j = 0.8, |ai j| = |bi j| =

1, Li j = 0.05, L̃i j = 0.15 θi = 52.24 and ρ = 52.24 × 3/25 = 6.2688 > 1. Therefore, Theorem 3.1
in [22] is not applicable to system (4.1) in this example.

Figure 2. The solution trajectories of system (4.1) with initial value (−0.4,−0.2, 0.4, 0.6)T .
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Remark 6. In [27], fixed-point principle and differential inequality technique are used to establish
the stability condition of the periodic solutions of system (4.2), that is, F =

ξ||A||2+η||B||2
c0

< 1, where
ξ = max1≤i≤n{supxi,0

fi(xi)
xi
}, η = max1≤i≤n{supxi,0

gi(xi)
xi
}, c0 = min1≤i≤n{ci}, ||A||2 denotes the square root

of the largest eigenvalue of AT A. However, for system (4.2) in Example 3, we calculate F > 1, which
implies the condition in [27] is not applicable.
Example 3. Consider system (4.2) with τ j(t) = 0.2sint + 0.2, j = 1, 2, 3, 4, other symbols are the same
as in Example 1.

We calculate that B1 = B̄2 = 4I, F̃ = G̃ = 0, F̄ = I, Ḡ = 0.8I, L̄ = M̄ = 0, τ̃ = 0.2 .
By using MATLAB LMI Control Toolbox, we obtain P = 0.1564I, U1 =

diag{0.4524, 0.4509, 0.4781, 0.4770}, U2 = diag{0.7300, 0.7301, 0.7325, 0.7326} to satisfy the
condition (3.12) of Corollary 1, and obtain P = diag{0.1829, 0.1814, 0.2069, 0.2045}, U1 =

diag{0.4908, 0.4887, 0.5160, 0.5162}, U2 = diag{0.7981, 0.7951, 0.8849, 0.8795} to satisfy the
condition (3.13) of Theorem 2. Therefore, Corollary 1 and Theorem 2 are effective. Figure 3 shows
the solution trajectories of system (4.2) with the initial value (1,−1,−0.5, 0.5)T appearing as periodic
motions after a few seconds.

On the other hand, according to Theorem 3 in [27], we calculate ξ = 1, η = 0.8, ||A||2 =
√

8, ||B||2 =√
7.4641, c0 = min1≤i≤4{ci} = 5 and

F =
ξ||A||2 + η||B||2

c0
=

5.014
5

> 1.

Therefore, Theorem 3 in [27] is not applicable to system (4.2) in this example.

Figure 3. The solution trajectories of system (4.2) with initial value (1,−1,−0.5, 0.5)T .

Remark 7. In [28], Lyapunov functional and Halanay inequality are used to establish the stability
conditions of the periodic solutions of system (4.3) : di − Li

∑n
j=1(|a ji| + |b ji|) > 0 or di −

∑n
j=1(|ai j| +

|bi j|)L j > 0, i = 1, · · · , n,where di = ci and L j = max{|F−j |, |F
+
j |} in this paper. However, for system (4.3)

in Example 4, we calculate di − Li
∑n

j=1(|a ji| + |b ji|) = di −
∑n

j=1(|ai j| + |bi j|)L j = 0(i = 1, · · · , n) , which
implies the criteria in [28] are not applicable.
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Example 4. Consider system (4.3) with C = diag{4, 4, 4, 4}, fi(xi) = 0.5tanh(xi), τii(t) = 0.2sint +

0.2, τi j(t) = 0.2cost + 0.2(i , j), i, j = 1, 2, 3, 4, the matrices A and B are the same as in Example 1.
We calculate that B1 = B̄2 = 4I, F̃ = G̃ = L̄ = M̄ = 0, F̄ = Ḡ = 0.5I, τ̃ = 0.2.
By using MATLAB LMI Control Toolbox, we obtain P = 2.2433I, U1 =

diag{9.8971, 9.8971, 10.7128, 10.7128}, U2 = 14.3836I to satisfy the condition (3.12)
of Corollary 1, and obtain P = diag{1.6333, 1.6333, 2.2619, 2.2619}, U1 =

diag{7.6665, 7.6665, 8.3747, 8.3747}, U2 = diag{10.9331, 10.9331, 12.0760, 12.0760} to satisfy
the condition (3.13) of Theorem 2. Therefore, Corollary 1 and Theorem 2 are effective. Figure 4
shows that the solution trajectories of system (4.3) with the initial value (−0.6, 0.4,−0.4, 0.8)T

appearing as periodic motions after a few seconds.
On the other hand, based on the results proposed in [28], we calculate that di = 4, Li = 0.5, di −

Li
∑4

j=1(|a ji| + |b ji|) = di −
∑4

j=1(|ai j| + |bi j|)L j = 0, i = 1, 2, 3, 4. Therefore, the sufficient criteria in [28]
are not applicable to system (4.3) in this example.

Figure 4. The solution trajectories of system (4.3) with initial value (−0.6, 0.4,−0.4, 0.8)T .

5. Conclusions

This paper has investigated the global exponential periodicity of stochastic neural networks with
multiple time-varying delays τi j(t). Such stochastic neural networks cannot be transformed into the
vector-matrix form because of the multiple time-varying delays τi j(t). For neural networks with
delays τi j(t), the commonly used methods do not include linear matrix inequality. Therefore, the
stability conditions in the linear matrix inequality forms are rare for networks with delays τi j(t). In this
paper, we establish several sets of easily verified conditions in the linear matrix inequality forms to
ensure that the stochastic networks have a unique and exponentially stable periodic solution. Several
examples are given to demonstrate that our sufficient criteria are effective and less conservative than
those in the existing references.
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