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Abstract: Flood time series forecasting stands a critical challenge in precise predictive models and
reliable error estimation methods. A novel approach utilizing a hybrid deep learning model for both
point and interval flood prediction is presented, enhanced by improved kernel density estimation (KDE)
for prediction comparison and error simulation. Firstly, an optimized gated recurrent unit-time
convolutional network (GRU-TCN) is constructed by tuning the internal structure of the TCN, the
activation function, the L2 regularization, and the optimizer. Then, Pearson Correlation is used for
feature selection, and the hyperparameters of the improved GRU-TCN are optimized by the
subtraction-average-based optimizer (SABO). To further assess the prediction uncertainty, interval
predictions are provided via Non-parametric KDE, with an optimized bandwidth setting for accurate
error distribution simulation. Experimental comparisons are made on 5-year hydro-meteorological
daily data from two stations along the Yangtze River. The proposed model surpasses long short-term
memory network (LSTM), TCN, GRU, TCN-LSTM, and GRU-TCN, with a reduction of more than
13% in root mean square error (RMSE) and approximately 15% in mean absolute error (MAE),
resulting in better interval estimation and error control. The improved kernel density estimation curves
for the errors are closer to the mean value of the confidence intervals, better reflecting the trend of the
error distribution. This research enhances the accuracy and reliability of flood predictions and
improves the capacity of humans to cope with climate and environmental changes.
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1. Introduction

Floods are a major global natural disaster, causing significant property damage and safety hazards to
humans. According to a report by the World Meteorological Organization, floods have caused 11,072
disaster reports, 2,064,929 deaths, and a total economic loss of US$ 3.6 trillion between 1970 and 2019 [1].
Although traditional algorithms based on Arima [2] and Bayesian models have achieved good
prediction results [3], there are challenges in dealing with nonlinear relationships that reduce model
performance. With the development of artificial intelligence, integrating mathematical statistics with
artificial intelligence in deep learning has emerged as a powerful approach for nonlinear prediction,
gaining prominence in flood forecasting research [4-6]. In deep learning models, a long short-term
memory network (LSTM) is a special type of recurrent neural network (RNN) with gating mechanism
and long short-term memory function, which solves the problem of gradient vanishing that traditional
RNNs are prone to when dealing with long sequential data, and embodies a good performance of water
level prediction[7,8]. However, LSTM lacks bi-directional learning capabilities and has many
parameters that are prone to cause problems with hard training and overfitting [9]. gated recursive unit
(GRU) [10] is a variant of LSTM, which has the advantage of a more straightforward structure and
fewer parameters. In [11], the authors proposed a multi-directional GRU with a convolutional neural
network (CNN) to improve the accuracy of load and energy forecasting. In the case of small samples,
GRU is more accessible to train and tune to obtain good flood prediction ability [12]. In 2018, Bai
et al. [13] showed that time convolutional networks (TCNs), which use a particular convolution, do
better than other common networks like LSTM and GRU in many different tasks. Since then, TCNs
have been used extensively in various research areas, such as gas drainage prediction [14], remaining
useful life prediction [15]. In [16,17], the authors used TCN for flood and water level prediction,
proved that the TCN-based model outperformed the LSTM-based model. Many studies used hybrid
models or optimized parameters to improve the accuracy of water level prediction, Zhang et al. [18]
constructed TCM-LSTM to predict groundwater levels, confirming that hybrid models have better
predictive ability. In [18], three deep learning models, LSTM, GRU, and TCN, were used to predict
water levels at five stations, and the Bayesian model average was used to synthesize the prediction
results of the three deep learning models, then improved prediction accuracy. However, in the hybrid
model, the parameter sensitivity is more extensive, and the rational selection of parameters is more
complicated.

Most flood forecasting research focuses on point estimate forecasting, which makes it difficult to
estimate the uncertainty of flood forecasting. Interval forecasting is a forecasting method that can
provide an estimate of forecasting uncertainty. It helps to better understand the scope and possible risks
of prediction and is currently a hot prediction research topic [19-22]. The methods for predicting
intervals can be classified into parametric and non-parametric methods. Parametric methods, such as
Bayesian interval estimation, use prior knowledge and sample data to estimate the distribution of
parameters and calculate interval estimates based on the posterior distribution [23,24]. When dealing
with highly fluctuating and random data that makes it difficult to estimate prior distributions, non-
parametric methods such as resampling technique bootstrap and kernel density estimation (KDE)-
based methods are commonly used for interval estimation [25,26]. In [25], an interval prediction for
wind power by combining graph neural network and bootstrap technology was provided, by which the
prediction uncertainty is analyzed. The bootstrap-based methods approximate the overall sampling
distribution for parameter estimation, confidence interval estimation, or hypothesis testing by
resampling the sample data rather than relying on the specific form of the distribution. KDE is based
on the maximum likelihood principle and reveals data structure through smoothing. KDE is
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particularly suitable for scenarios with small samples and high sampling errors. Regarding
computational efficiency, KDE usually outperforms bootstrap. In [26,27], the authors utilized KDE-
Gaussian for interval prediction to further quantify the uncertainty of the prediction results. In [28],
the authors performed interval estimation of the LSTM-GRU network using KDE and compared the
prediction effects under four kernel functions to estimate the probability density of forecast errors.
These methods help understand the uncertainty in predictions and are essential for decision-making
and risk assessment. KDE is a non-parametric method to estimate the probability density function of
a random variable. It smoothens the data points and is particularly useful when the underlying
distribution is unknown. However, it is essential to note that choosing the suitable bandwidth and
kernel function in KDE is crucial for accurate error estimation.

Based on the above analysis, an optimized GRU-TCN prediction framework is proposed,
implements point and interval estimation to evaluate the prediction uncertainty, improves the
bandwidth selection method of KDE to increase the fitness of the error probability density curve, and
achieves quantitative evaluation of the uncertainty in prediction results. The main contributions of this
research are as follows:

(1) Pearson correlation is used for feature selection, and the hyperparameters of the improved
GRU-TCN are optimized by the subtraction-average-based optimizer (SABO).

(2) The internal structure of the TCN network is adjusted, the Selu activation function is used to
alleviate the problem of gradient vanishing, the L2 regularization parameter is introduced to prevent
over fitting, and the AdamW optimizer is adopted instead of the Adam optimizer to reduce over-
regularization.

(3) To further evaluate the uncertainty of flood prediction, the interval prediction is implemented
with Non-parametric KDE. The bandwidth setting of KDE is improved, and the prediction error
distribution is analyzed for model comparison.

Using the hydro-meteorological data from two stations along the Yangtze River, the proposed
model surpasses LSTM, TCN, GRU, TCN-LSTM, TCN-GRU, and GRU-TCN, with a reduction of
more than 13% in root mean square error (RMSE) and approximately 15% in mean absolute error
(MAE). The combination of interval and point estimation provides a more comprehensive analysis for
flood prediction, and the estimation of the prediction error distribution based on the improved KDE
benefits the model's accuracy and reliability. This approach introduces a novel theoretical framework
for flood prediction and model comparison. Further, it enhances the applicability and effectiveness of
hybrid models in complex environments, thus providing better support for the decision-making process
in flood management.

2. Methods
2.1. GRU network

The GRU network simplifies the LSTM architecture by combining the input and forgets gates
into a single update gate and adding a reset gate. This design addresses the issue of information
redundancy that occurs during LSTM’s training process ([10,18]). Figure 1a shows the basic structure

of GRU. The calculation equations of the reset gate r, the update gate z, and the basic unit output 4
for prediction by the GRU network are as follows [18]:
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1y = oW, - [he—1, ] + by),

zy = o(W, * [he—1, %¢] + by), (1)
hy = tanh(Wj, - [1p * he_q, x¢] + bj),

he =1 —2z)*hi_q+2z * flt'

where W and b represents the weight matrix and deviation vector of each unit structure, respectively;
* stands for the dot product of a matrix; o represents a sigmoid function; and tanh (-) represents a
hyperbolic tangent function.x represents the feature vector in the input network at time t, A, represents
the update information of the current unit at time t, and h;_; represents the network calculation output
at previous time t — 1.
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Figure 1. The basic structure of GRU and TCN network: (a) GRU unit; (b) TCN unit.
2.2. Temporal convolutional network

TCN is a CNN that utilizes convolution layers to process time series data. It employs a distinctive
causal dilated convolution, consisting of one-dimensional dilated and causal convolution layers with
identical input and output lengths. This guarantees the causal relationship of the input sequence and
prevents future data leakage. Simultaneously, TCN can efficiently capture the local dependencies in
sequence data and retain more historical information by utilizing stacked convolution layers and
increasing the receptive field of the convolution kernel. Equation (2) shows the extended causal
convolution calculation (see [13,18,29]):

G(F,X) = (F* X)xt = 25:1 fr- Xt—(K-k)d> (2)

where X = {x, x,, ..., X7} represents the input time series, F = {f, f5, ..., fx} represents the size of
the convolution kernel, fx represents the number of filters in the convolution operation, and d
represents the expansion rate.

In addressing the gradient vanishing problem inherent in convolutional degradation, TCN has
been innovatively enhanced with residual modules. These modules facilitate a seamless data flow
across layers, maintaining integrity without bypassing intermediate stages. This methodology
significantly reduces information loss during the feature extraction phase in TCN, culminating in the
aggregation of causally convoluted feature sets for output generation. Comprising two dilated causal
convolutions, batch normalization, dropout techniques, and Relu activation functionalities, the residual
module exemplifies a sophisticated architectural integration. To preserve dimensional consistency
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between input and output, a 1x1 convolution is adeptly employed, as illustrated in Figure 1b. For more
details about TCN, please refer to [13].

2.3. Subtraction-average-based optimizer (SABO)

SABO, introduced in 2023, is grounded in the principles of mathematical variable characteristics,
encompassing concepts like average values, disparities in search locations, and the formulation of
objective functions [30]. In SABO, the displacement of any search agent X; in the search space is
calculated by the arithmetic mean of the v-subtraction of each search agent X;,j = 1,2, ..., N, from the

search agent X;. The updated position for every search agent is calculated by Eq (3) [30]:
W - 1 .
XMV = X, + 7 « Ez;vzl (X, —vX;),i=12,..,N, (3)

where X**" is the new proposed position for the i-Th search agent X;, N is the total number of the
search agents, and 7 is a vector of the dimension m, in which components have a normal distribution
with the values from the interval [0,1].

SABO uses a dynamic approach to calculate the mean and standard deviation of the data. It
utilizes the arithmetic mean position of all search agents for updating each agent’s position, instead of
exclusively depending on the positions of the best or worst agents. Concurrently, the model’s
parameters are adjusted in response to this statistical data. This characteristic enables the SABO model
to manage noise and outliers adaptively and swiftly adjust to new conditions.

2.4. Research framework and optimized GRU-TCN network

Figure 2 shows the research flowchart, and the improvement details of the optimized GRU-TCN
network are given in Sections 2.4.1 and 2.4.2.

Data preprocessing and
standardization

GRU TCN
network "] metwork

Selu/Dropout
Kernel_initializer

Optimize
L2 regularization parameters
Activation Selu using SABO

GRU-TCN
Network

Point Interval
prediction Predicition

VN

Subjective and Prediction
objective evaluation error analysis

RMSE,MAP,R2 Bootsrap
PICP,PINAW KDE

Figure 2. The research framework.

Based on Figure 2, the research workflow follows a structured process. First, data preprocessing
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and standardization are conducted as per Section 3.1. Then, the optimized GRU-TCN network is
constructed in Section 2.4.1. After that, the network undergoes hyper-parameter optimization, as
detailed in Section 2.4.2. Finally, Section 3.3 covers point and interval estimations and the evaluation
of specific experiments. The optimized bandwidth for KDE is determined according to Section 2.4.3.
Finally, in Section 3.4, kernel density estimation is used to compare the prediction error rates, enabling
a more comprehensive evaluation of the model’s predictive performance.

2.4.1. Establishment and optimization of the GRU-TCN network

According to the experimental tests, an optimized hybrid neural network is constructed. The data
is first inputted into a single layer of a GRU neural network to learn signal features. To prevent
overfitting, L2 regularization is added to the GRU. The output features of the GRU are then transmitted
to a TCN network, where the internal structure is adjusted. The activation function “Relu” is replaced
with “Selu”. The self-normalization property of “Selu” helps to stabilize the neural network training,
and its output range is close to zero mean and unit variance, this reduces the risk of gradient
disappearance or explosion and achieves a better fitting effect.

The normal weight matrix initialization is replaced with orthogonal initialization, which
initializes the weight matrix as an orthogonal matrix. The orthogonal matrix’s transpose matrix equals
its inverse matrix, which can help maintain the numerical stability of the weight matrix during the
training process.

In the selection of optimizer for hybrid network, AdamW optimizer combining Adam
optimization algorithm and weight attenuation is adopted. Unlike traditional Adam optimizers, where
L2 regularization is typically achieved by adding a weight-squared term to the loss function, this
AdamW optimizer addresses weight decay independently from the optimization process. This
approach is crucial in adaptive learning rate algorithms, as it prevents the compromise of L2
regularization effectiveness due to learning rate adjustments. By treating weight decay separately and
not as a part of the loss function, the AdamW optimizer ensures that the process is unaffected by
learning rate modifications, thereby enhancing its effectiveness.

For other parameters of TCN, the architecture is designed with 2 stacks of residual blocks,
incorporating a sequence of dilations set as [1,2,4,8,16,32,64], the dropout rate is set to 0.15, and
“orthogonal” is used as the core initializer to stabilize training and improve efficiency.

2.4.2. Optimizing hyperparameters of GRU-TCN using SABO

The hyperparameters of the GRU-TCN model, including the learning rate, number of filters for
TCN, number of hidden layers, and batch sizes for GRU, are optimized using SABO. The optimization
process involved a population size of 10 and 60 iterations, with a search dimension of 4. The four
parameters’ lower and upper search limits are set to [0.0005,5,10,15] and [0.001,12,60,40]. Figure 3
displays the process of optimizing the data parameters for the Hankou station.
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Figure 3. Optimization of GRU-TCN parameters with SABO.

Figure 3 shows that after 60 iterations, at a fitness value of 0.0134, the learning rate, number of
filters in TCN, number of hidden layers in GRU, and optimal batch size parameters are [0.00055,8,25,15].
Similarly, the optimization parameters for the Luoshan station have been optimized.

2.4.3. KDE-based interval estimation and bandwidth optimization

Let X1, X5, ..., X;; be an independent and identically distributed sample from a univariate variable
X, the kernel density estimate of the density function of the distribution that X follows is given by the

Eq (4) [31]:

f0 =230, 2k (55), “)

h h

where n is the number of the sample, K(.) is the kernel function, h > 0 is a smoothing parameter,
called bandwidth.

There are several kernel functions to choose from for specific use, such as Gauss, Laplace, and
Cauchy. Researchers can also design any suitable kernel functions, but they must satisfy the nature of
probability density. The Gaussian kernel function is selected in this study.

In KDE, bandwidth determines the smoothness and shape of the estimated probability density
function. Adjusting the bandwidth allows for a better fit to the data and a more accurate distribution
characterization. It is important to note that the bandwidth parameter should be carefully chosen to
avoid under or over-smoothing the data. In traditional KDE, a fixed bandwidth is typically used, but
this may result in errors due to varying estimation accuracies in different density regions. To optimize
bandwidth selection, the golden section search algorithm [32] is adopted to adaptively search for the
optimal bandwidth. The optimal bandwidth is dynamically adjusted by seeking the minimum value of
the loss function, as shown in Eq (5), to obtain the best result
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loss = y? = 2y X Y + \/%—n X % X Vhists (%)
where loss is the loss function,y is the kernel density estimate. yy; is the data histogram. 4 is the
locally optimal bandwidth.

To conduct interval predictions using KDE, the first step involves selecting a suitable kernel
function and bandwidth for data smoothing. Then, calculate the contribution by applying the kernel
function and selected bandwidth to each data point. Next, compute the cumulative probability density
function to determine the confidence interval. The bounds of the intervals at a given confidence level
can be found by performing density estimation on the dataset. This method is well-suited for data with
irregular or non-standard distributions because it does not require strict assumptions about the
distribution.

3. Data and results
3.1. Study area and data preparation

The study area is in Wuhan, China, as depicted in Figure 4. Wuhan, with a population of over 13
million, serves as China’s economic and geographic center. It is prone to flooding in the Yangtze River
basin due to its geographic positioning. Located at the convergence of the Yangtze and Hanging Rivers,
the city regularly confronts substantial flood challenges in the midsection of the Yangtze River. Its
coordinates range roughly between 29°58'N to 31°22'N latitude and 113°41'E to 115°05'E longitude.

Figure 4. The research area and data visualization: (a) target area; (b) true water level.

Yangtze River flooding is primarily caused by heavy basin rainfall, upper reaches snowmelt,
constrained river channels, and sediment accumulation. These elements collectively result in elevated
water levels and subsequent flooding. The defense water levels of Hankou and Luoshan stations are 25
m and 31 m, respectively. According to Figure 3b, the risk of a relatively high water level has been
concentrated in July for the past five years, and the water level exceeding the fortification line has been
concentrated in June-September. This study is based on daily data from April to September yearly to
improve training efficiency and relevance.

The water level and hourly data from adjacent meteorological stations for 2017-2021 were
collected from the thousand miles water and rainfall information query website and the China
Meteorological Network. Outliers were eliminated using the 3 sigma principle, and missing values were
filled by averaging with the sequence proximity points. The dataset for this study was constructed using
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the corresponding hydrological station data (http://113.57.190.228:8001/web/Report/RiverReport) and
meteorological data (https://data.cma.cn/) at 6:00 PM each day. Rainfall was recorded as the daily
cumulative value. Predictive feature inputs were selected using Pearson’s correlation analysis, with
variables meeting the correlation conditions at a test level of p=0.05. The selected input feature
variables at the two stations are water volume, rainfall, temperature, wind speed, and humidity.
Normalization uses Eq (6) after dividing the data by 0.8:0.2 for training and testing:

¥ _ Xi—X

Xi = o’ (6)

where x; is the input data after standardization, X is the mean value, and o is the standard deviation.
3.2. Evaluation indicators

The four indexes shown in Table 1 (I) and Eq (7) are selected as objective evaluation indexes for
point prediction evaluation, and the three indexes shown in Table 1 (II) and Eq (8) are chosen as the

evaluation indexes for interval evaluation.

Table 1. Evaluation indicator description.

Num Indexes Interpretations Variable description

RMSE Root mean square error
x; and X; denote the i-th input actual water level value and the

0 MAPE Mean absolute percentage error predicted value, N is the number of samples, X = (x; + x, +
MAE Mean absolute error <+ x,)/n. Small RMSE, MAPE, MAE and R? close to 1
indicate the superiority of the prediction model.
R’ Adjusted R-squared (goodness of fit)
PI Prediction interval
PINAW PI normalized averaged width U; represents the upper bound, and L; denotes the lower
(0 g bounds,V is the range of target values (for normalization). u is
PICP PI coverage probability the confidence level. Larger P/CP and smaller PINAW and
CWC represent better interval estimation.
cMC Coverage width criterion
RMSE = |2Y™  (x; — £)% MAPE = 237 |58 ymap = 1yn |x, — %, R? = 1 — 2z Ca®)” %
- n i=1 xl xl ) - n i=1 ; ) - n i=1 xl xl ) - Z?:l (xi_f)zﬁ
ilyn = 0 Lic, Wi-Ly) —n(PICP— )
PICP = (331, ) x 100%, PINAW = 2=20020 y, e = PINAW (1 + ve ). (8)

Ifx; € (L;, Uy), C = 1, otherwise, C='l = 0.IfPICP < pu,y = 1, otherwise, y = 0.
The penalty parameter 7 determines the degree of penalty for failing to meet the PICP confidence
level. As 1 decreases, the penalty decreases as well. Let 7 = 10 in the following experiments.

3.3. Experimental comparisons
3.3.1.  Prediction step selection and parameter settings

To determine the appropriate prediction step size, the partial auto correlation function (PACF) is
analyzed for both hydrological and meteorological data. Figure 5 illustrates the PACF plots for water
level and rainfall, showing partial autocorrelation coefficients with 95% confidence intervals for lag
orders from 1 to 100. Based on the experiments and data from Figure 5, the number of lag points is

AIMS Mathematics Volume 9, Issue 6, 14681-14696.


http://113.57.190.228:8001/web/Report/RiverReport
https://data.cma.cn/

14690

identified as 4 for meteorological data and 2 for hydrological data, both outside the 95% confidence
interval. Therefore, the prediction step chosen for subsequent experiments is 3, averaging these two
values.

PACF for Water level PACF for Rainfall

Lo 95% CI (Lower) 10 ~--- 95% CI (Lower)
95% CI (Upper) --== 95% CI (Upper)
m— PACF - pACF

08

0.6

PACF
PACF

0.2

ool | i|i"r"l'l'_'_'l' '.f.'J."I""'.'i]l'_'.'ﬂ'l'i;:_"ﬁ"

B e

o 20 40 60 80 100 [ 20 40 60 80 100

Figure 5. PACF hysteresis diagram.

The comparison algorithms for the following experiments are set up: LSTM and GRU are two-
layer networks with parameters set as follows: epoch=100, batch size=32, and learning rate=0.001.
The number of the first and second hidden layers are 16 and 32, respectively. TCN parameters are set
as follows: The number of filters used in the convolutional layers is 10, the kernel size used in each
convolutional layer is 6, the number of stacks of residual blocks is 2, and the dropout rate is 0. 15.
Both TCN-LSTM and GRU-TCN use single-layer networks, with LSTM and GRU parameters set to
match those of the first layer of the GRU bilayer network.

3.3.2. Point prediction and interval estimation

Tables 2 and 3 compare metrics between point and interval estimation, where the interval
estimator is based on the 95% confidence interval of the KDE. In the following comparisons, LSTM
isused in [33], GRU isused in [12], TCN is used in [16], TCN-LSTM is used in [17], TCN-GRU is used
in [34], and SOGT(SABO-Optimized-GRU-TCN) is the proposed model.

As shown in Tables 2 and 3, the SOGT algorithm achieved the best point prediction results with
the smallest RMSE, MAPE, and MAE and the largest R? compared to the six comparison algorithms.
On the Hankou dataset, the SOGT algorithm reduced the RMSE by 13.01%, the MAPE and MAE by
about 18.44%, 16.81%, respectively, compared to the GRU-TCN, and the R? is improved by 0.36%.
PINAW is the smallest among the six algorithms, and PICP and CWC of TCN-LSTM also achieve
good results.

Table 2. Experimental predictive results of Hankou station from 2017 to 2021.

Model RMSE (m) MAPE (%)  MAE(m) R PINAW _ PICP __CWC

LSTM 0.2892 1.0261 0.221 0.98 0.0958 09333  1.1827
GRU 0.2869 1.0443 0.2335 09804  0.1222 09333  1.2091
TCN 0.3053 1.0227 0.23 09778  0.1364 09111  1.351

TCN-LSTM  0.2604 0.9033 0.2028 09838  0.114 09444 11422
TCN-GRU  0.4944 1.8927 0.4154 09417  0.2134 0.9556  0.2134
GRU-TCN  0.2475 0.889 0.1945 0.9854  0.1109 09333  1.1978
SOGT 0.2153 0.7251 0.1618 0.9889  0.0954 09333  1.1823
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Table 3. Compare metrics for Luoshan station from 2017 to 2021.

Model RMSE (m) MAPE (%) MAE (m) R? PINAW  PICP CwWcC

LSTM 0.2786 0.8334 0.2204 0.9807  0.1052 0.9222  1.2542
GRU 0.2707 0.7874 0.2133 0.9818  0.1115 0.9278  1.229

TCN 0.3194 0.9134 0.2512 0.9747  0.1419 0.9056  1.3908
TCN-LSTM 0.2834 0.8188 0.2242 0.9801 0.1304 0.9278  1.2479
TCN-GRU 0.423 1.3304 0.3496 0.9556  0.1799 0.9611 0.1799
GRU-TCN 0.2835 0.8851 0.2387 0.9801 0.1268 0.9500 0.1268
SOGT 0.2283 0.686 0.1878 0.9871  0.091 0.9389  1.1481

In the experiment at Luoshan station, the SOGT algorithm reduces the RMSE by 15.66%, MAPE
and MAE by about 12.88%, 11.95%, respectively, and the R? is improved by 0.54% relative to GRU.
PINAW is the smallest among the six algorithms, and PICP and CWC of GRU-TCN also achieve good
results. Despite the modest CWC values observed for TCN-GRU and GRU-TCN models, they
exhibited higher PINAW values, indicating less precision in their interval predictions. Moreover, their
peak prediction curves did not achieve a good fit, suggesting a need for further refinement in capturing
peak behaviors. The effect of point estimation, especially in predicting the flooding point, is that the
SOGT algorithm has better tracking fit and higher accuracy (as shown in Figures 6a and 7a), so the
SOGT algorithm proposed has better prediction stability. Excluding the time for parameter
optimization, the runtime of different models revealed that a single model operates more swiftly, when
the complexity of a hybrid model increases, leading to a longer runtime. The proposed SOGT's runtime
is slightly shorter than that of GRU-TCN, demonstrating commendable operational efficiency.

Figures 6 and 7 present comparison plots of point estimation for Hankou and Luoshan stations,
as well as visualizations of point and interval estimation evaluation metrics, and confidence intervals
at different confidence levels of SOGT.
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Figure 6. Prediction comparison of Hankou station: (a) comparison of point estimates for
Hanko; (b) displaying indicators for different prediction models; (¢) interval estimation of
SOGT at different confidence levels.
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Figure 7. Prediction comparison of Luoshan station: (a) comparison of point estimates for
Luoshan; (b) displaying indicators for different prediction models; (c) interval estimation
of SOGT at different confidence levels.

Figures 6 and 7 show that the SOGT algorithm tracks the actual points more accurately,
particularly, in the flooding point. The interval estimation curves demonstrate that the prediction
intervals’ coverage of the true values varies with different confidence levels. It is important to note that
as the confidence level increases, coverage decreases, and real points are covered more extensively as
the confidence level decreases. To ensure a balance between the confidence level and the interval width,
a standard reference for interval estimation is 95%. Under the 95% confidence level, Figures 6¢ and 7¢
display the evaluation indexes for point estimation and interval estimation. Combined with Tables 2
and 3, it is evident that the algorithm proposed performs better in both point and interval predictions

4. Discussion
4.1. Error kernel density estimation based on improved bandwidth

An analysis of the distribution of prediction errors offers a more detailed comparison of model
performance and insights into error characteristics, which can guide model refinement. Focusing on
Hankou station, Figure 8 shows the KDE error estimation curves of seven models before and after the
KDE improvement at a 95% confidence level, along with the mean curve of the confidence interval.

In Figure 8, the fitted curves based on the improved KDE bandwidth by the Golden Section
Search algorithm are closer to the mean value of the confidence intervals and better reflect the trend
of the error confidence intervals. KDE error analysis can reveal biases or systematic errors in a model.
Ideally, a model's errors would cluster symmetrically around zero. Figure 8 indicates that the LSTM's
prediction errors are left-skewed with a mean less than the median, suggesting a tendency towards
underestimation. On the contrary, the error distributions of GRU, TCN, TCN-LSTM, and TCN-GRU
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are right-skewed, with the mean exceeding the median, indicating overprediction. The error
distribution of GRU-TCN is approximately symmetric, but there is a slight change in the right tail.
Although the proposed improved SOGT model and GRU-TCN have similar shapes in their error
distributions, the prediction error distribution of the SOGT model has more balanced tails and
symmetry. Moreover, the peak of the kernel density curve at zero is particularly sharp, reaching about 2.4,
which means that the prediction errors of the SOGT model are more concentrated around zero,
implying a higher prediction accuracy. The enhanced SOGT model introduced in this study exhibits
more balanced tails and improved symmetry, reflecting a more uniform error distribution.
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Figure 8. Comparison of KDE curves for prediction error of Hankou station: (a) LSTM;
(b) GRU; (c) TCN; (d) TCN-LSTM; (e) TCN-GRU; (f) GRU-TCN; (g) SOGT.

4.2. Forecast error and evaluation analysis

Deep learning prediction algorithms can have a black box effect, making it difficult to understand
the interrelationships within the network. Therefore, different datasets often require different network
structures and parameters. Predictive errors can be reduced by adjusting the network structure,
combining networks, and adjusting parameters. Additionally, appropriate variable selection can help
improve prediction accuracy and reduce error sensitivity due to the large number of feature variables.
In model evaluation, many algorithms predominantly focus on point estimation metrics. However, this
study reveals a divergence between point estimation and interval prediction indexes. A fairer
assessment of prediction models emerges when both prediction modes are considered together.
Furthermore, analyzing the distribution of prediction errors enriches understanding of a model’s
susceptibility to errors, offering more profound insights into its predictive reliability.

5. Conclusions

This study developed a daily time series dataset from hydrological and meteorological stations
and advanced point and interval water level predictions for the Yangtze River stations, showcasing
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enhancements in model structure, parameter optimization, and evaluation techniques. The innovation
centers on an optimized hybrid model for precise point and interval predictions, with improved KDE
bandwidth for error analysis. These innovations in model evaluation are generalizable and can be
evaluated for a wide range of forecasting models.

Despite its achievements, the study recognizes certain limitations, such as optimizing parameters
may require a lot of computation and time, especially in large datasets, and determining the depth of
hidden layers and the interpretability of the model structure is also more difficult. Future researchers
can address these constraints by incorporating an attention mechanism and multimodal decomposition
or finding other parameter selection methods, thereby refining the integrated model's predictive
capabilities. Exploring how to improve performance by estimating the probability distribution of
prediction errors is also a worthwhile research direction.

This research provides decision-makers with powerful tools for evaluating models, facilitating the
application of predictive models in critical areas such as flood forecasting. Additionally, it offers an
innovative research tool for constructing and evaluating deep learning models, which can be used not
only for predicting flood time series but also for predicting and estimating errors in other multivariate
time series.
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