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Abstract: Flood time series forecasting stands a critical challenge in precise predictive models and 

reliable error estimation methods. A novel approach utilizing a hybrid deep learning model for both 

point and interval flood prediction is presented, enhanced by improved kernel density estimation (KDE) 

for prediction comparison and error simulation. Firstly, an optimized gated recurrent unit-time 

convolutional network (GRU-TCN) is constructed by tuning the internal structure of the TCN, the 

activation function, the L2 regularization, and the optimizer. Then, Pearson Correlation is used for 

feature selection, and the hyperparameters of the improved GRU-TCN are optimized by the 

subtraction-average-based optimizer (SABO). To further assess the prediction uncertainty, interval 

predictions are provided via Non-parametric KDE, with an optimized bandwidth setting for accurate 

error distribution simulation. Experimental comparisons are made on 5-year hydro-meteorological 

daily data from two stations along the Yangtze River. The proposed model surpasses long short-term 

memory network (LSTM), TCN, GRU, TCN-LSTM, and GRU-TCN, with a reduction of more than 

13% in root mean square error (RMSE) and approximately 15% in mean absolute error (MAE), 

resulting in better interval estimation and error control. The improved kernel density estimation curves 

for the errors are closer to the mean value of the confidence intervals, better reflecting the trend of the 

error distribution. This research enhances the accuracy and reliability of flood predictions and 

improves the capacity of humans to cope with climate and environmental changes. 
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1. Introduction 

Floods are a major global natural disaster, causing significant property damage and safety hazards to 

humans. According to a report by the World Meteorological Organization, floods have caused 11,072 

disaster reports, 2,064,929 deaths, and a total economic loss of US$ 3.6 trillion between 1970 and 2019 [1]. 

Although traditional algorithms based on Arima [2] and Bayesian models have achieved good 

prediction results [3], there are challenges in dealing with nonlinear relationships that reduce model 

performance. With the development of artificial intelligence, integrating mathematical statistics with 

artificial intelligence in deep learning has emerged as a powerful approach for nonlinear prediction, 

gaining prominence in flood forecasting research [4–6]. In deep learning models, a long short-term 

memory network (LSTM) is a special type of recurrent neural network (RNN) with gating mechanism 

and long short-term memory function, which solves the problem of gradient vanishing that traditional 

RNNs are prone to when dealing with long sequential data, and embodies a good performance of water 

level prediction[7,8]. However, LSTM lacks bi-directional learning capabilities and has many 

parameters that are prone to cause problems with hard training and overfitting [9]. gated recursive unit 

(GRU) [10] is a variant of LSTM, which has the advantage of a more straightforward structure and 

fewer parameters. In [11], the authors proposed a multi-directional GRU with a convolutional neural 

network (CNN) to improve the accuracy of load and energy forecasting. In the case of small samples, 

GRU is more accessible to train and tune to obtain good flood prediction ability [12]. In 2018, Bai 

et al. [13] showed that time convolutional networks (TCNs), which use a particular convolution, do 

better than other common networks like LSTM and GRU in many different tasks. Since then, TCNs 

have been used extensively in various research areas, such as gas drainage prediction [14], remaining 

useful life prediction [15]. In [16,17], the authors used TCN for flood and water level prediction, 

proved that the TCN-based model outperformed the LSTM-based model. Many studies used hybrid 

models or optimized parameters to improve the accuracy of water level prediction, Zhang et al. [18] 

constructed TCM-LSTM to predict groundwater levels, confirming that hybrid models have better 

predictive ability. In [18], three deep learning models, LSTM, GRU, and TCN, were used to predict 

water levels at five stations, and the Bayesian model average was used to synthesize the prediction 

results of the three deep learning models, then improved prediction accuracy. However, in the hybrid 

model, the parameter sensitivity is more extensive, and the rational selection of parameters is more 

complicated. 

Most flood forecasting research focuses on point estimate forecasting, which makes it difficult to 

estimate the uncertainty of flood forecasting. Interval forecasting is a forecasting method that can 

provide an estimate of forecasting uncertainty. It helps to better understand the scope and possible risks 

of prediction and is currently a hot prediction research topic [19–22]. The methods for predicting 

intervals can be classified into parametric and non-parametric methods. Parametric methods, such as 

Bayesian interval estimation, use prior knowledge and sample data to estimate the distribution of 

parameters and calculate interval estimates based on the posterior distribution [23,24]. When dealing 

with highly fluctuating and random data that makes it difficult to estimate prior distributions, non-

parametric methods such as resampling technique bootstrap and kernel density estimation (KDE)-

based methods are commonly used for interval estimation [25,26]. In [25], an interval prediction for 

wind power by combining graph neural network and bootstrap technology was provided, by which the 

prediction uncertainty is analyzed. The bootstrap-based methods approximate the overall sampling 

distribution for parameter estimation, confidence interval estimation, or hypothesis testing by 

resampling the sample data rather than relying on the specific form of the distribution. KDE is based 

on the maximum likelihood principle and reveals data structure through smoothing. KDE is 
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particularly suitable for scenarios with small samples and high sampling errors. Regarding 

computational efficiency, KDE usually outperforms bootstrap. In [26,27], the authors utilized KDE-

Gaussian for interval prediction to further quantify the uncertainty of the prediction results. In [28], 

the authors performed interval estimation of the LSTM-GRU network using KDE and compared the 

prediction effects under four kernel functions to estimate the probability density of forecast errors. 

These methods help understand the uncertainty in predictions and are essential for decision-making 

and risk assessment. KDE is a non-parametric method to estimate the probability density function of 

a random variable. It smoothens the data points and is particularly useful when the underlying 

distribution is unknown. However, it is essential to note that choosing the suitable bandwidth and 

kernel function in KDE is crucial for accurate error estimation. 

Based on the above analysis, an optimized GRU-TCN prediction framework is proposed, 

implements point and interval estimation to evaluate the prediction uncertainty, improves the 

bandwidth selection method of KDE to increase the fitness of the error probability density curve, and 

achieves quantitative evaluation of the uncertainty in prediction results. The main contributions of this 

research are as follows: 

(1) Pearson correlation is used for feature selection, and the hyperparameters of the improved 

GRU-TCN are optimized by the subtraction-average-based optimizer (SABO). 

(2) The internal structure of the TCN network is adjusted, the Selu activation function is used to 

alleviate the problem of gradient vanishing, the L2 regularization parameter is introduced to prevent 

over fitting, and the AdamW optimizer is adopted instead of the Adam optimizer to reduce over-

regularization. 

(3) To further evaluate the uncertainty of flood prediction, the interval prediction is implemented 

with Non-parametric KDE. The bandwidth setting of KDE is improved, and the prediction error 

distribution is analyzed for model comparison. 

Using the hydro-meteorological data from two stations along the Yangtze River, the proposed 

model surpasses LSTM, TCN, GRU, TCN-LSTM, TCN-GRU, and GRU-TCN, with a reduction of 

more than 13% in root mean square error (RMSE) and approximately 15% in mean absolute error 

(MAE). The combination of interval and point estimation provides a more comprehensive analysis for 

flood prediction, and the estimation of the prediction error distribution based on the improved KDE 

benefits the model's accuracy and reliability. This approach introduces a novel theoretical framework 

for flood prediction and model comparison. Further, it enhances the applicability and effectiveness of 

hybrid models in complex environments, thus providing better support for the decision-making process 

in flood management. 

2. Methods 

2.1. GRU network 

The GRU network simplifies the LSTM architecture by combining the input and forgets gates 

into a single update gate and adding a reset gate. This design addresses the issue of information 

redundancy that occurs during LSTM’s training process ([10,18]). Figure 1a shows the basic structure 

of GRU. The calculation equations of the reset gate rt, the update gate zt, and the basic unit output ℎt 

for prediction by the GRU network are as follows [18]: 

https://www.sciencedirect.com/science/article/pii/S0048969723063453?via=ihub#f0015
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𝑟𝑡 = 𝜎(𝑊𝑟 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟),

𝑧𝑡 = 𝜎(𝑊𝑧 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧),

ℎ̃𝑡 = tanh(𝑊ℎ̃ ∙ [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ̃) ,

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡 ,

       (1) 

where 𝑊 and 𝑏 represents the weight matrix and deviation vector of each unit structure, respectively; 

∗ stands for the dot product of a matrix; 𝜎 represents a sigmoid function; and tanh (∙) represents a 

hyperbolic tangent function.𝑥 represents the feature vector in the input network at time t, ℎ̃t represents 

the update information of the current unit at time t, and ℎt−1 represents the network calculation output 

at previous time t − 1. 

 

Figure 1. The basic structure of GRU and TCN network: (a) GRU unit; (b) TCN unit. 

2.2. Temporal convolutional network 

TCN is a CNN that utilizes convolution layers to process time series data. It employs a distinctive 

causal dilated convolution, consisting of one-dimensional dilated and causal convolution layers with 

identical input and output lengths. This guarantees the causal relationship of the input sequence and 

prevents future data leakage. Simultaneously, TCN can efficiently capture the local dependencies in 

sequence data and retain more historical information by utilizing stacked convolution layers and 

increasing the receptive field of the convolution kernel. Equation (2) shows the extended causal 

convolution calculation (see [13,18,29]): 

𝐺(𝐹, 𝑋) = (𝐹 ∗ 𝑋)𝑥𝑡
= ∑  𝐾

𝑘=1 𝑓𝑘 ∙ 𝑥𝑡−(𝐾−𝑘)𝑑,      (2) 

where 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑇}  represents the input time series, 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝐾}  represents the size of 

the convolution kernel, 𝑓𝐾  represents the number of filters in the convolution operation, and 𝑑 

represents the expansion rate. 

In addressing the gradient vanishing problem inherent in convolutional degradation, TCN has 

been innovatively enhanced with residual modules. These modules facilitate a seamless data flow 

across layers, maintaining integrity without bypassing intermediate stages. This methodology 

significantly reduces information loss during the feature extraction phase in TCN, culminating in the 

aggregation of causally convoluted feature sets for output generation. Comprising two dilated causal 

convolutions, batch normalization, dropout techniques, and Relu activation functionalities, the residual 

module exemplifies a sophisticated architectural integration. To preserve dimensional consistency 

https://www.sciencedirect.com/science/article/pii/S0048969723063453?via=ihub#f0015
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between input and output, a 1×1 convolution is adeptly employed, as illustrated in Figure 1b. For more 

details about TCN, please refer to [13]. 

2.3. Subtraction-average-based optimizer (SABO) 

SABO, introduced in 2023, is grounded in the principles of mathematical variable characteristics, 

encompassing concepts like average values, disparities in search locations, and the formulation of 

objective functions [30]. In SABO, the displacement of any search agent 𝑋𝑖 in the search space is 

calculated by the arithmetic mean of the 𝑣-subtraction of each search agent 𝑋𝑗 , 𝑗 = 1,2, … , 𝑁, from the 

search agent 𝑋𝑖. The updated position for every search agent is calculated by Eq (3) [30]: 

𝑋𝑖
new = 𝑋𝑖 + 𝑟𝑖 ∗

1

𝑁
∑  𝑁

𝑗=1 (𝑋𝑖 − 𝑣𝑋𝑗), 𝑖 = 1,2, … , 𝑁,      (3) 

where 𝑋𝑖
𝑛𝑒𝑤 is the new proposed position for the 𝑖-Th search agent 𝑋𝑖 , 𝑁 is the total number of the 

search agents, and 𝑟𝑖 is a vector of the dimension 𝑚, in which components have a normal distribution 

with the values from the interval [0,1]. 

SABO uses a dynamic approach to calculate the mean and standard deviation of the data. It 

utilizes the arithmetic mean position of all search agents for updating each agent’s position, instead of 

exclusively depending on the positions of the best or worst agents. Concurrently, the model’s 

parameters are adjusted in response to this statistical data. This characteristic enables the SABO model 

to manage noise and outliers adaptively and swiftly adjust to new conditions. 

2.4. Research framework and optimized GRU-TCN network 

Figure 2 shows the research flowchart, and the improvement details of the optimized GRU-TCN 

network are given in Sections 2.4.1 and 2.4.2. 

 

Figure 2. The research framework. 

Based on Figure 2, the research workflow follows a structured process. First, data preprocessing 

https://www.sciencedirect.com/science/article/pii/S0048969723063453?via=ihub#f0015
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and standardization are conducted as per Section 3.1. Then, the optimized GRU-TCN network is 

constructed in Section 2.4.1. After that, the network undergoes hyper-parameter optimization, as 

detailed in Section 2.4.2. Finally, Section 3.3 covers point and interval estimations and the evaluation 

of specific experiments. The optimized bandwidth for KDE is determined according to Section 2.4.3. 

Finally, in Section 3.4, kernel density estimation is used to compare the prediction error rates, enabling 

a more comprehensive evaluation of the model’s predictive performance. 

2.4.1. Establishment and optimization of the GRU-TCN network 

According to the experimental tests, an optimized hybrid neural network is constructed. The data 

is first inputted into a single layer of a GRU neural network to learn signal features. To prevent 

overfitting, L2 regularization is added to the GRU. The output features of the GRU are then transmitted 

to a TCN network, where the internal structure is adjusted. The activation function “Relu” is replaced 

with “Selu”. The self-normalization property of “Selu” helps to stabilize the neural network training, 

and its output range is close to zero mean and unit variance, this reduces the risk of gradient 

disappearance or explosion and achieves a better fitting effect. 

The normal weight matrix initialization is replaced with orthogonal initialization, which 

initializes the weight matrix as an orthogonal matrix. The orthogonal matrix’s transpose matrix equals 

its inverse matrix, which can help maintain the numerical stability of the weight matrix during the 

training process. 

In the selection of optimizer for hybrid network, AdamW optimizer combining Adam 

optimization algorithm and weight attenuation is adopted. Unlike traditional Adam optimizers, where 

L2 regularization is typically achieved by adding a weight-squared term to the loss function, this 

AdamW optimizer addresses weight decay independently from the optimization process. This 

approach is crucial in adaptive learning rate algorithms, as it prevents the compromise of L2 

regularization effectiveness due to learning rate adjustments. By treating weight decay separately and 

not as a part of the loss function, the AdamW optimizer ensures that the process is unaffected by 

learning rate modifications, thereby enhancing its effectiveness. 

For other parameters of TCN, the architecture is designed with 2 stacks of residual blocks, 

incorporating a sequence of dilations set as [1,2,4,8,16,32,64], the dropout rate is set to 0.15, and 

“orthogonal” is used as the core initializer to stabilize training and improve efficiency. 

2.4.2. Optimizing hyperparameters of GRU-TCN using SABO 

The hyperparameters of the GRU-TCN model, including the learning rate, number of filters for 

TCN, number of hidden layers, and batch sizes for GRU, are optimized using SABO. The optimization 

process involved a population size of 10 and 60 iterations, with a search dimension of 4. The four 

parameters’ lower and upper search limits are set to [0.0005,5,10,15] and [0.001,12,60,40]. Figure 3 

displays the process of optimizing the data parameters for the Hankou station. 
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Figure 3. Optimization of GRU-TCN parameters with SABO. 

Figure 3 shows that after 60 iterations, at a fitness value of 0.0134, the learning rate, number of 

filters in TCN, number of hidden layers in GRU, and optimal batch size parameters are [0.00055,8,25,15]. 

Similarly, the optimization parameters for the Luoshan station have been optimized. 

2.4.3. KDE-based interval estimation and bandwidth optimization 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be an independent and identically distributed sample from a univariate variable 

𝑋, the kernel density estimate of the density function of the distribution that 𝑋 follows is given by the 

Eq (4) [31]: 

𝑓(X) =
1

𝑛
∑  𝑛

𝑗=1
1

ℎ
𝐾 (

𝑋−𝑋𝑖

ℎ
),        (4) 

where 𝑛 is the number of the sample, 𝐾(. ) is the kernel function, ℎ > 0 is a smoothing parameter, 

called bandwidth. 

There are several kernel functions to choose from for specific use, such as Gauss, Laplace, and 

Cauchy. Researchers can also design any suitable kernel functions, but they must satisfy the nature of 

probability density. The Gaussian kernel function is selected in this study. 

In KDE, bandwidth determines the smoothness and shape of the estimated probability density 

function. Adjusting the bandwidth allows for a better fit to the data and a more accurate distribution 

characterization. It is important to note that the bandwidth parameter should be carefully chosen to 

avoid under or over-smoothing the data. In traditional KDE, a fixed bandwidth is typically used, but 

this may result in errors due to varying estimation accuracies in different density regions. To optimize 

bandwidth selection, the golden section search algorithm [32] is adopted to adaptively search for the 

optimal bandwidth. The optimal bandwidth is dynamically adjusted by seeking the minimum value of 

the loss function, as shown in Eq (5), to obtain the best result 

https://www.sciencedirect.com/science/article/pii/S0048969723063453?via=ihub#f0015
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loss = y2 − 2𝑦 × 𝑦hist +
2

√2𝜋
×

1

h
× 𝑦hist,      (5) 

where loss is the loss function,𝑦 is the kernel density estimate. 𝑦hist is the data histogram. h is the 

locally optimal bandwidth. 

To conduct interval predictions using KDE, the first step involves selecting a suitable kernel 

function and bandwidth for data smoothing. Then, calculate the contribution by applying the kernel 

function and selected bandwidth to each data point. Next, compute the cumulative probability density 

function to determine the confidence interval. The bounds of the intervals at a given confidence level 

can be found by performing density estimation on the dataset. This method is well-suited for data with 

irregular or non-standard distributions because it does not require strict assumptions about the 

distribution. 

3. Data and results 

3.1. Study area and data preparation 

The study area is in Wuhan, China, as depicted in Figure 4. Wuhan, with a population of over 13 

million, serves as China’s economic and geographic center. It is prone to flooding in the Yangtze River 

basin due to its geographic positioning. Located at the convergence of the Yangtze and Hanging Rivers, 

the city regularly confronts substantial flood challenges in the midsection of the Yangtze River. Its 

coordinates range roughly between 29°58′N to 31°22′N latitude and 113°41′E to 115°05′E longitude. 

 

Figure 4. The research area and data visualization: (a) target area; (b) true water level. 

Yangtze River flooding is primarily caused by heavy basin rainfall, upper reaches snowmelt, 

constrained river channels, and sediment accumulation. These elements collectively result in elevated 

water levels and subsequent flooding. The defense water levels of Hankou and Luoshan stations are 25 

m and 31 m, respectively. According to Figure 3b, the risk of a relatively high water level has been 

concentrated in July for the past five years, and the water level exceeding the fortification line has been 

concentrated in June-September. This study is based on daily data from April to September yearly to 

improve training efficiency and relevance. 

The water level and hourly data from adjacent meteorological stations for 2017–2021 were 

collected from the thousand miles water and rainfall information query website and the China 

Meteorological Network. Outliers were eliminated using the 3 sigma principle, and missing values were 

filled by averaging with the sequence proximity points. The dataset for this study was constructed using 
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the corresponding hydrological station data (http://113.57.190.228:8001/web/Report/RiverReport) and 

meteorological data (https://data.cma.cn/) at 6:00 PM each day. Rainfall was recorded as the daily 

cumulative value. Predictive feature inputs were selected using Pearson’s correlation analysis, with 

variables meeting the correlation conditions at a test level of p=0.05. The selected input feature 

variables at the two stations are water volume, rainfall, temperature, wind speed, and humidity. 

Normalization uses Eq (6) after dividing the data by 0.8:0.2 for training and testing: 

𝑥𝑖
∗ =

𝑥𝑖−�̅�


,          (6) 

where 𝑥𝑖
∗ is the input data after standardization, �̅� is the mean value, and σ is the standard deviation. 

3.2. Evaluation indicators 

The four indexes shown in Table 1 (I) and Eq (7) are selected as objective evaluation indexes for 

point prediction evaluation, and the three indexes shown in Table 1 (II) and Eq (8) are chosen as the 

evaluation indexes for interval evaluation. 

Table 1. Evaluation indicator description. 

Num Indexes Interpretations Variable description 

(I) 

RMSE Root mean square error 

𝑥𝑖 and �̂�𝑖 denote the i-th input actual water level value and the 

predicted value, n is the number of samples, �̅� = (𝑥1 + 𝑥2 +

⋯ + 𝑥𝑛)/𝑛. Small RMSE, MAPE, 𝑀𝐴𝐸 and 𝑅2 close to 1 

indicate the superiority of the prediction model. 

MAPE Mean absolute percentage error  

MAE Mean absolute error  

R2 Adjusted R-squared (goodness of fit) 

(II) 

PI Prediction interval 

𝑈𝑖  represents the upper bound, and 𝐿𝑖 denotes the lower 

bounds,𝑉 is the range of target values (for normalization). μ is 

the confidence level. Larger PICP and smaller PINAW and 

CWC represent better interval estimation. 

PINAW PI normalized averaged width 

PICP PI coverage probability 

CMC Coverage width criterion 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  𝑛

𝑖=1   (𝑥𝑖 − �̂�𝑖)2, 𝑀𝐴𝑃𝐸 =
1

𝑛
∑  𝑛

𝑖=1 |
𝑥𝑖−�̂�𝑖

𝑥𝑖
| , 𝑀𝐴𝐸 =

1

𝑛
∑  𝑛

𝑖=1 |𝑥𝑖 − �̂�𝑖|, 𝑅2 = 1 −
∑  𝑛

𝑖=1  (𝑥𝑖−�̂�𝑖)2

∑  𝑛
𝑖=1  (𝑥𝑖−𝑥‾)2 ,  (7) 

𝑃𝐼𝐶𝑃 = (
1

𝑛
∑  𝑛

𝑖=1  𝐶�̅�
̅ ) × 100%,  𝑃𝐼𝑁𝐴𝑊 =

∑  𝑛
𝑖=1 (𝑈𝑖−𝐿𝑖)

𝑛
⋅ 𝑉, 𝐶𝑊𝐶 = 𝑃𝐼𝑁𝐴𝑊(1 + 𝛾𝑒−𝜂(𝑃𝐼𝐶𝑃−𝜇)).   (8) 

If 𝑥𝑖 ∈ (𝐿𝑖 , 𝑈𝑖), 𝐶‾̅ = 1, otherwise, 𝐶�̅�
̅ = 0. If 𝑃𝐼𝐶𝑃 < 𝜇, 𝛾 = 1, otherwise, 𝛾 = 0. 

The penalty parameter 𝜂 determines the degree of penalty for failing to meet the PICP confidence 

level. As 𝜂 decreases, the penalty decreases as well. Let 𝜂 = 10 in the following experiments. 

3.3. Experimental comparisons 

3.3.1. Prediction step selection and parameter settings 

To determine the appropriate prediction step size, the partial auto correlation function (PACF) is 

analyzed for both hydrological and meteorological data. Figure 5 illustrates the PACF plots for water 

level and rainfall, showing partial autocorrelation coefficients with 95% confidence intervals for lag 

orders from 1 to 100. Based on the experiments and data from Figure 5, the number of lag points is 

http://113.57.190.228:8001/web/Report/RiverReport
https://data.cma.cn/
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identified as 4 for meteorological data and 2 for hydrological data, both outside the 95% confidence 

interval. Therefore, the prediction step chosen for subsequent experiments is 3, averaging these two 

values. 

 

Figure 5. PACF hysteresis diagram. 

The comparison algorithms for the following experiments are set up: LSTM and GRU are two-

layer networks with parameters set as follows: epoch=100, batch size=32, and learning rate=0.001. 

The number of the first and second hidden layers are 16 and 32, respectively. TCN parameters are set 

as follows: The number of filters used in the convolutional layers is 10, the kernel size used in each 

convolutional layer is 6, the number of stacks of residual blocks is 2, and the dropout rate is 0. 15. 

Both TCN-LSTM and GRU-TCN use single-layer networks, with LSTM and GRU parameters set to 

match those of the first layer of the GRU bilayer network. 

3.3.2. Point prediction and interval estimation 

Tables 2 and 3 compare metrics between point and interval estimation, where the interval 

estimator is based on the 95% confidence interval of the KDE. In the following comparisons, LSTM 

is used in [33], GRU is used in [12], TCN is used in [16], TCN-LSTM is used in [17], TCN-GRU is used 

in [34], and SOGT(SABO-Optimized-GRU-TCN) is the proposed model. 

As shown in Tables 2 and 3, the SOGT algorithm achieved the best point prediction results with 

the smallest RMSE, MAPE, and MAE and the largest R2 compared to the six comparison algorithms. 

On the Hankou dataset, the SOGT algorithm reduced the RMSE by 13.01%, the MAPE and MAE by 

about 18.44%, 16.81%, respectively, compared to the GRU-TCN, and the R2 is improved by 0.36%. 

PINAW is the smallest among the six algorithms, and PICP and CWC of TCN-LSTM also achieve 

good results. 

Table 2. Experimental predictive results of Hankou station from 2017 to 2021. 

Model RMSE (m) MAPE (%) MAE (m) R2 PINAW PICP CWC 

LSTM 0.2892 1.0261 0.221 0.98 0.0958 0.9333 1.1827 

GRU 0.2869 1.0443 0.2335 0.9804 0.1222 0.9333 1.2091 

TCN 0.3053 1.0227 0.23 0.9778 0.1364 0.9111 1.351 

TCN-LSTM 

TCN-GRU 

0.2604 

0.4944 

0.9033 

1.8927 

0.2028 

0.4154 

0.9838 

0.9417 

0.114 

0.2134 

0.9444 

0.9556 

1.1422 

0.2134 

GRU-TCN 0.2475 0.889 0.1945 0.9854 0.1109 0.9333 1.1978 

SOGT 0.2153 0.7251 0.1618 0.9889 0.0954 0.9333 1.1823 
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Table 3. Compare metrics for Luoshan station from 2017 to 2021. 

Model RMSE (m) MAPE (%) MAE (m) R2 PINAW PICP CWC 

LSTM 0.2786 0.8334 0.2204 0.9807 0.1052 0.9222 1.2542 

GRU 0.2707 0.7874 0.2133 0.9818 0.1115 0.9278 1.229 

TCN 0.3194 0.9134 0.2512 0.9747 0.1419 0.9056 1.3908 

TCN-LSTM 0.2834 0.8188 0.2242 0.9801 0.1304 0.9278 1.2479 

TCN-GRU 0.423 1.3304 0.3496 0.9556 0.1799 0.9611 0.1799 

GRU-TCN 0.2835 0.8851 0.2387 0.9801 0.1268 0.9500 0.1268 

SOGT 0.2283 0.686 0.1878 0.9871 0.091 0.9389 1.1481 

In the experiment at Luoshan station, the SOGT algorithm reduces the RMSE by 15.66%, MAPE 

and MAE by about 12.88%, 11.95%, respectively, and the R2 is improved by 0.54% relative to GRU. 

PINAW is the smallest among the six algorithms, and PICP and CWC of GRU-TCN also achieve good 

results. Despite the modest CWC values observed for TCN-GRU and GRU-TCN models, they 

exhibited higher PINAW values, indicating less precision in their interval predictions. Moreover, their 

peak prediction curves did not achieve a good fit, suggesting a need for further refinement in capturing 

peak behaviors. The effect of point estimation, especially in predicting the flooding point, is that the 

SOGT algorithm has better tracking fit and higher accuracy (as shown in Figures 6a and 7a), so the 

SOGT algorithm proposed has better prediction stability. Excluding the time for parameter 

optimization, the runtime of different models revealed that a single model operates more swiftly, when 

the complexity of a hybrid model increases, leading to a longer runtime. The proposed SOGT's runtime 

is slightly shorter than that of GRU-TCN, demonstrating commendable operational efficiency. 

Figures 6 and 7 present comparison plots of point estimation for Hankou and Luoshan stations, 

as well as visualizations of point and interval estimation evaluation metrics, and confidence intervals 

at different confidence levels of SOGT. 

 

Figure 6. Prediction comparison of Hankou station: (a) comparison of point estimates for 

Hanko; (b) displaying indicators for different prediction models; (c) interval estimation of 

SOGT at different confidence levels. 
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Figure 7. Prediction comparison of Luoshan station: (a) comparison of point estimates for 

Luoshan; (b) displaying indicators for different prediction models; (c) interval estimation 

of SOGT at different confidence levels. 

Figures 6 and 7 show that the SOGT algorithm tracks the actual points more accurately, 

particularly, in the flooding point. The interval estimation curves demonstrate that the prediction 

intervals’ coverage of the true values varies with different confidence levels. It is important to note that 

as the confidence level increases, coverage decreases, and real points are covered more extensively as 

the confidence level decreases. To ensure a balance between the confidence level and the interval width, 

a standard reference for interval estimation is 95%. Under the 95% confidence level, Figures 6c and 7c 

display the evaluation indexes for point estimation and interval estimation. Combined with Tables 2 

and 3, it is evident that the algorithm proposed performs better in both point and interval predictions 

4. Discussion 

4.1. Error kernel density estimation based on improved bandwidth 

An analysis of the distribution of prediction errors offers a more detailed comparison of model 

performance and insights into error characteristics, which can guide model refinement. Focusing on 

Hankou station, Figure 8 shows the KDE error estimation curves of seven models before and after the 

KDE improvement at a 95% confidence level, along with the mean curve of the confidence interval. 

In Figure 8, the fitted curves based on the improved KDE bandwidth by the Golden Section 

Search algorithm are closer to the mean value of the confidence intervals and better reflect the trend 

of the error confidence intervals. KDE error analysis can reveal biases or systematic errors in a model. 

Ideally, a model's errors would cluster symmetrically around zero. Figure 8 indicates that the LSTM's 

prediction errors are left-skewed with a mean less than the median, suggesting a tendency towards 

underestimation. On the contrary, the error distributions of GRU, TCN, TCN-LSTM, and TCN-GRU 
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are right-skewed, with the mean exceeding the median, indicating overprediction. The error 

distribution of GRU-TCN is approximately symmetric, but there is a slight change in the right tail. 

Although the proposed improved SOGT model and GRU-TCN have similar shapes in their error 

distributions, the prediction error distribution of the SOGT model has more balanced tails and 

symmetry. Moreover, the peak of the kernel density curve at zero is particularly sharp, reaching about 2.4, 

which means that the prediction errors of the SOGT model are more concentrated around zero, 

implying a higher prediction accuracy. The enhanced SOGT model introduced in this study exhibits 

more balanced tails and improved symmetry, reflecting a more uniform error distribution. 

 

Figure 8. Comparison of KDE curves for prediction error of Hankou station: (a) LSTM; 

(b) GRU; (c) TCN; (d) TCN-LSTM; (e) TCN-GRU; (f) GRU-TCN; (g) SOGT. 

4.2. Forecast error and evaluation analysis 

Deep learning prediction algorithms can have a black box effect, making it difficult to understand 

the interrelationships within the network. Therefore, different datasets often require different network 

structures and parameters. Predictive errors can be reduced by adjusting the network structure, 

combining networks, and adjusting parameters. Additionally, appropriate variable selection can help 

improve prediction accuracy and reduce error sensitivity due to the large number of feature variables. 

In model evaluation, many algorithms predominantly focus on point estimation metrics. However, this 

study reveals a divergence between point estimation and interval prediction indexes. A fairer 

assessment of prediction models emerges when both prediction modes are considered together. 

Furthermore, analyzing the distribution of prediction errors enriches understanding of a model’s 

susceptibility to errors, offering more profound insights into its predictive reliability. 

5. Conclusions 

This study developed a daily time series dataset from hydrological and meteorological stations 

and advanced point and interval water level predictions for the Yangtze River stations, showcasing 
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enhancements in model structure, parameter optimization, and evaluation techniques. The innovation 

centers on an optimized hybrid model for precise point and interval predictions, with improved KDE 

bandwidth for error analysis. These innovations in model evaluation are generalizable and can be 

evaluated for a wide range of forecasting models.  

Despite its achievements, the study recognizes certain limitations, such as optimizing parameters 

may require a lot of computation and time, especially in large datasets, and determining the depth of 

hidden layers and the interpretability of the model structure is also more difficult. Future researchers 

can address these constraints by incorporating an attention mechanism and multimodal decomposition 

or finding other parameter selection methods, thereby refining the integrated model's predictive 

capabilities. Exploring how to improve performance by estimating the probability distribution of 

prediction errors is also a worthwhile research direction. 

This research provides decision-makers with powerful tools for evaluating models, facilitating the 

application of predictive models in critical areas such as flood forecasting. Additionally, it offers an 

innovative research tool for constructing and evaluating deep learning models, which can be used not 

only for predicting flood time series but also for predicting and estimating errors in other multivariate 

time series. 
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