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Abstract: For a set X and a nonempty subset Y of X, denote by T (X) the full transformation semigroup
under the composition whose elements are functions on X. Let Fix(X,Y) be the subsemigroup of T (X)
containing functions α ∈ T (X) in which each element in Y is a fixed point of α. Moreover, let A be
a nonempty subset of Fix(X,Y). The Cayley digraph of Fix(X,Y) with respect to a connection set A
is a digraph with vertex set Fix(X,Y) and two vertices α, β induce an arc (α, β) if β = αλ for some
λ ∈ A. In this paper, the concepts of fractional dominating and fractional total dominating functions of
those Cayley digraphs were investigated. Furthermore, the fractional domination and fractional total
domination numbers were determined.
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1. Introduction

Throughout the paper, all sets are assumed to be finite and nonempty. Let X be a set and Y a subset
of X. It is well known that T (X) is a semigroup containing all functions from X into itself under the
composition of maps. In fact, T (X) is called the full transformation semigroup on the set X. Define a
semigroup Fix(X,Y) as follows:

Fix(X,Y) = {α ∈ T (X) : yα = y for all y ∈ Y}.

Indeed, Fix(X,Y) is a subsemigroup of T (X) and called a transformation semigroup with fixed set
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which was first introduced by Honyam and Sanwong [11] in 2013. In this content, we write functions
on the right. Particularly, for the composition αβ of α, β ∈ T (X), we mean that α is applied first.
An algebraic object, relative to graph theory and semigroup theory, our focus in this paper is the
Cayley digraph, which is defined as follows. Let A be a subset of Fix(X,Y). The Cayley digraph
Cay(Fix(X,Y), A) of Fix(X,Y) with respect to A is defined as a digraph (without multiple arcs) with
vertex set Fix(X,Y) and arc set consisting of ordered pairs (α, β) where β = αλ for some λ ∈ A.
The set A is called a connection set of the Cayley digraph Cay(Fix(X,Y), A). For convenience, we
write Γ instead of Cay(Fix(X,Y), A). Recently, there are some researches related to Cayley digraphs
of Fix(X,Y). For example, in 2020, Nupo and Pookpienlert [15] presented some prominent results
on Γ relative to minimal idempotents. In 2021, they investigated in [14] the domination parameters
of Γ where the connection sets contain only minimal idempotents or permutations. The major objects
focused on in the present paper are related to Cayley digraphs of Fix(X,Y) with respect to minimal
idempotents and permutations.

Graph theory is one of the branches of modern mathematics having experienced the most impressive
development in recent years. Several applications can be found in game theory, management sciences,
and transportation network theory. The next step of the evolution is related to fractional graph theory.
By developing the fractional idea, the purpose of researchers is multiple. First, to enlarge the scope
of applications in scheduling, operations research, and various kinds of assignment problems. Second,
to simplify those such problems. The fractional version of a theorem is frequently easier to prove
than the classical one. Further, a bound for a fractional coefficient of a graph is also a bound for
the classical coefficient or suggests a conjecture. In 1987, Hedetniemi et al. [10] introduced the
fractional domination concept in graphs. The fractional parameters we consider in this paper are
fractional domination and fractional total domination numbers. Many researchers are interested in
the concepts of fractional parameters in graphs and digraphs. In 1990, Fricke et al. [7] determined
the computational complexity of the fractional total domination number of graphs and described a
linear time algorithm to find such parameter for trees. In 1994, Fisher [4] showed the relations of
the 2-packing number, fractional domination number, and domination number of the Cartesian product
graphs. Moreover, Fisher et al. [6] proved the fractional domination of strong direct products of
graphs. In addition, Hare [8] studied the fractional domination number of the m × n complete grid
graph, which is isomorphic to the product of two paths Pm × Pn. In 2002, Fisher [5] considered
the fractional domination number and the fractional total domination number of graphs and their
complements. In 2007, Walsh [21] presented the fractional domination number of prisms. In the
same year, Arumugam and Rejikumar [2] proposed several results for the fractional domination chain
in graphs. In 2009, Rubalcaba and Walsh [17] investigated some structural properties of the fractional
dominating functions of graphs. In 2012, Arumugam et al. [1] studied the fractional version of distance
k-domination and related parameters. In 2015, Sangeetha and Maheswari [18] introduced the minimal
dominating functions of Euler Totient Cayley graphs. In 2018, Harutyunyan et al. [9] presented an
upper bound of the fractional domination number of digraphs in terms of independence number of their
underlying graphs. In 2021, Karunambigai and Sathishkumar [13] introduced the dominating functions
on fractional graphs and found the fractional domination number of certain graphs by formulating
the linear programming problem. In 2023, Shanthi et al. [20] analyzed the effects on the fractional
domination number of a graph G after deleting a vertex from G. Additionally, some bounds of the
parameter are discussed and proved using the eccentricity value of a vertex of G.
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In this contribution, we are interested to investigate the fractional concepts of domination
parameters on Cayley digraphs Γ of transformation semigroups with fixed sets. We divide the paper
into six sections. The introduction and preliminaries are provided in Sections 1 and 2, respectively.
In Section 3, we present the fractional (total) domination numbers on Γ with respect to minimal
idempotents. We prove that if all elements in the connection set of Γ are minimal idempotents, then
the fractional domination number of Γ is equal to the domination number. However, the fractional total
domination number of Γ does not exist. Moreover, we determine the fractional domination number and
fractional total domination number of Γ with respect to permutations in Sections 4 and 5, respectively.
Finally, we summarize the work in the conclusion provided in Section 6.

2. Preliminaries and notations

Let D be a digraph with vertex set V and arc set E. Assume that D admits loops and excludes
multiple edges. A dominating set of D is a set S of vertices such that every vertex in V\S has an
in-neighbor in S . The domination number γ(D) of D is defined to be the cardinality of the smallest
dominating set. Further, a total dominating set of D is a set S of vertices such that every vertex in V
has an in-neighbor in S . Similarly, the total domination number γt(D) is the cardinality of the smallest
total dominating set of D. Let S be a dominating set of D and f : V → {0, 1} be the characteristic
function on S , so that

f (v) =

{
0 if v ∈ V\S ,
1 if v ∈ S .

The dominating property of S is equivalent to∑
x∈N−[v]

f (x) ≥ 1,

for every v ∈ V , where N−[v] = N−(v)∪ {v} in which N−(v) is the set of in-neighbors of v in D. That is,
N−(v) = {u ∈ V\{v} : (u, v) ∈ E}. Similarly, for each v ∈ V , one can define N+[v] = N+(v) ∪ {v} where
N+(v) = {u ∈ V\{v} : (v, u) ∈ E} is the set of all out-neighbors of v in D. Moreover, the in-degree
d−(v) and out-degree d+(v) of v in D are defined to be |N−(v)| and |N+(v)|, respectively. Furthermore, if
(v, v) ∈ E and N−(v) = ∅ = N+(v), then we say that v is an isolated loop in D. Fractional graph theory
deals with the generalization of integer-valued graph theoretic concepts such that they take on fractional
values. One of the standard methods for converting a graph concept from integer to fractional is to
formulate the concept as an integer program and then to consider the linear programming relaxation.
A detailed study of fractional graph theory and fractionalization of various graph parameters are given
by Scheinerman and Ullman [19] in 1997.

Let D = (V, E) be a digraph and f : V → R be a real-valued function. For any subset S of V , we
let f (S ) =

∑
x∈S

f (x). The weight of f is defined by | f | = f (V). The fractional analogues of invariants

for a digraph D = (V, E) may be obtained as the linear relaxation of the associated integer programs or
combinatorically as follows.

A function f : V → [0, 1] is called a fractional dominating function of D if

f (N−[v]) =
∑

u∈N−[v]

f (u) ≥ 1,
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for every v ∈ V . The fractional domination number of D, denoted by γ∗(D), is the minimum weight of
a fractional dominating function of D, that is,

γ∗(D) = min{| f | : f (N−[v]) ≥ 1 for every v ∈ V}.

Similarly, one can define a fractional total dominating function of D and the fractional total domination
number γ∗t (D) of D by replacing N−[v] with N−(v). That is,

γ∗t (D) = min{| f | : f (N−(v)) ≥ 1 for every v ∈ V}.

Hereafter, some preliminaries and relevant information about digraphs can be found in [16] and
others on semigroups can be seen in [3] and [12]. We now present some concepts and notations related
to the semigroup Fix(X,Y). For convenience, we write Y = {ai : i ∈ I}. For each α ∈ Fix(X,Y), we
then have aiα = ai for all i ∈ I. Further, the image of α is denoted by Xα = Y∪̇{b j : j ∈ J}. Note that
the index set J could be empty, that is, Xα = Y . Consequently, α can be written as follows:

α =

(
Ai B j

ai b j

)
,

where Ai = aiα
−1 for each i ∈ I and B j = b jα

−1 for each j ∈ J. We can observe that Ai ∩ Y = {ai} for
each i ∈ I and B j ⊆ X\Y for each j ∈ J. Moreover, Honyam and Sanwong [11] proved that the set Em

of all minimal idempotents in Fix(X,Y) are as follows:

Em =

{(
Ai

ai

)
: {Ai : i ∈ I} is a partition of X with ai ∈ Ai

}
.

Further, denote by HidX the group of all permutations in Fix(X,Y) where idX is the identity map of
Fix(X,Y). It is clear that Fix(X,Y) = {idX} whenever X = Y , so we consider the case Y ( X throughout
the paper. Obviously, if idX is an element of a connection set of the Cayley digraph Γ, then Γ contains
loops attached to each vertex. Therefore, we consider only the case that all connection sets exclude the
identity map idX.

3. Fractional (total) domination on Γ with respect to minimal idempotents

In this section, we provide results for the fractional domination number and the fractional total
domination number of Γ whose connection sets are contained in Em.

Theorem 3.1. If A ⊆ Em is a connection set of Γ, then γ∗(Γ) = γ(Γ).

Proof. Let A ⊆ Em be a connection set of Γ. Define the setsA and B as follows.

A = {µ ∈ Em : (X\Y)µ ∩ (
⋃
α∈A

(X\Y)α) , ∅} and

B = Fix(X,Y)\A.

By [14, Lemma 3.3], we conclude that B is a dominating set of Γ. Define the characteristic function
f : Fix(X,Y)→ [0, 1] on B by

f (λ) =

{
0 if λ ∈ A,
1 if λ ∈ B.
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It is not hard to verify that f is a fractional dominating function of Γ. Let β ∈ B. We now prove
that N−(β) = ∅. Suppose to the contrary that there exists η ∈ Fix(X,Y) such that η ∈ N−(β), that is,
(η, β) ∈ E(Γ). Thus β = ηµ for some µ ∈ A ⊆ Em. For each x ∈ X, we see that xβ = x(ηµ) = (xη)µ ∈ Y
which yields that β ∈ Em. If η ∈ Em, then β = ηµ = η ∈ N−(β) which is impossible. So we
conclude that η < Em. Then there exists z ∈ X\Y in which zη ∈ X\Y . By the fact that β, µ ∈ Em and
zβ = z(ηµ) = (zη)µ ∈ (X\Y)µ, we have

zβ ∈ (X\Y)β ∩ (X\Y)µ ⊆ (X\Y)β ∩ (
⋃
α∈A

(X\Y)α).

We obtain that β ∈ A which is a contradiction. Hence N−(β) = ∅ for all β ∈ B. Furthermore, it is
proved in [14, Theorem 3.4] that B is the minimum dominating set of Γ. This implies that | f | must be
the minimum size among fractional dominating functions of Γ. Therefore, γ∗(Γ) = | f | = |B| = γ(Γ). �

Actually, if a connection set of Γ is contained in Em, then every non-minimal idempotent has zero
in-degree. Thus we can not define any fractional total dominating function of Γ and we then get the
following proposition.

Proposition 3.2. If A ⊆ Em is a connection set of Γ, then γ∗t (Γ) does not exist.

4. Fractional domination on Γ with respect to permutations

In semigroup theory, the Green’s equivalence relations L,R and H on Fix(X,Y) are defined as
follows. For convenience, let S = Fix(X,Y) and for α, β ∈ S ,

αL β if and only if Sα = S β,

αR β if and only if αS = βS ,

αH β if and only if αL β and αR β.

Moreover, for each α ∈ S , we denote the equivalenceH-class containing α by Hα. That is,

Hα = {β ∈ S : βH α}.

We now present the fractional domination number of Γ whose connection sets are contained in
HidX\{idX}. Clearly, if |X\Y | = 1, then HidX = {idX} and yields that A = ∅. So we focus on the case
|X\Y | ≥ 2. By [14, Theorem 4.1], we obtain that Γ is the disjoint union of induced subdigraphs
Γ[Em],Γ[HidX ], and Γ[G] where G = Fix(X,Y)\(Em ∪ HidX ). Thus we will propose results by
considering each induced subdigraph, independently. However, if A = HidX\{idX}, then we obtain
the fractional domination number of Γ as follows.

Proposition 4.1. If A = HidX\{idX} is a connection set of Γ, then γ∗(Γ) = γ(Γ).

Proof. Let A = HidX\{idX} be a connection set of Γ. By following the proof of [14, Proposition 4.4], we
conclude that Γ is the disjoint union of Γ[Rα] where Γ[Rα] is a complete subdigraph of Γ induced by
an R-class of Fix(X,Y) containing α ∈ Fix(X,Y). By choosing one vertex from each subdigraph and
let U be the set of such vertices, we obtain that γ(Γ) = |U |. Further, by considering the characteristic
function on the set U, we observe that it is a fractional dominating function of Γ and yields that
γ∗(Γ) = |U | = γ(Γ). �
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We next study the fractional domination number of Γ where a connection set A is a proper subset of
HidX\{idX} by considering Γ[Em],Γ[HidX ], and Γ[G], respectively.

Theorem 4.2. If A ( HidX\{idX} is a connection set of Γ, then γ∗(Γ[Em]) = |Y ||X|−|Y |.

Proof. Let A ( HidX\{idX} be a connection set of Γ. In Γ[Em], we see that every minimal idempotent is
an isolated loop and then N−(µ) = ∅ = N+(µ) for all µ ∈ Em. By defining the constant map f (µ) = 1
for all µ ∈ Em, we get that f is a fractional dominating function of Γ which is also minimum. Thus
γ∗(Γ[Em]) = | f | = |Em| = |Y ||X|−|Y |. �

Theorem 4.3. If A ( HidX\{idX} is a connection set of Γ, then γ∗(Γ[HidX ]) =
|X\Y |!
|A| + 1

.

Proof. Let A ( HidX\{idX} be a connection set of Γ. For convenience, we may assume that A =

{α1, α2, . . . , αk} for some k ∈ N. By the property of the group HidX , we can conclude that, for each
α ∈ HidX , elements of {αα1, αα2, . . . , ααk} are all distinct. Further, we can observe that N+(α) =

{αα1, αα2, . . . , ααk} which implies that d+(α) = |N+(α)| = |A|. Similarly, we can summarize that
N−(α) = {αα−1

1 , αα
−1
2 , . . . , αα

−1
k } and so d−(α) = |N−(α)| = |A|. Therefore, d−(α) = |A| = d+(α) for all

α ∈ HidX . By [9, Proposition 2.7], we have

γ∗(Γ[HidX ]) ≥
|HidX |

|A| + 1
=
|X\Y |!
|A| + 1

.

On the other hand, let f : HidX → [0, 1] be defined by f (λ) =
1

|A| + 1
for all λ ∈ HidX . We now show

that f is a fractional dominating function of Γ[HidX ]. Let λ ∈ HidX . Consider

f (N−[λ]) =
∑

α∈N−[λ]

f (α) = f (λ) +
∑

α∈N−(λ)

f (α) =
1

|A| + 1
+
|A|
|A| + 1

= 1,

this implies that f is a fractional dominating function of Γ[HidX ], immediately. It follows that

γ∗(Γ[HidX ]) ≤ | f | =
∑
α∈HidX

f (α) =
|HidX |

|A| + 1
=
|X\Y |!
|A| + 1

.

Consequently, we have γ∗(Γ[HidX ]) =
|X\Y |!
|A| + 1

, as desired. �

Generally, the structure of Γ[G] is more complicated than the other two subdigraphs Γ[Em] and
Γ[HidX ]. This yields that the fractional domination number of Γ[G] is quite difficult to be determined.
Hence we attempt to investigate the lower and upper bounds of γ∗(Γ[G]). However, the following
lemma is needed.

Lemma 4.4. If A ⊆ HidX\{idX} is a connection set of Γ, then ∆+(Γ[G]) = |A| where ∆+(Γ[G]) is the
maximum out-degree of Γ[G] without considering loops.

Proof. Let A ⊆ HidX\{idX} be a connection set of Γ. Further, let y ∈ Y and z ∈ X\Y . Define λ ∈ G by

xλ =

{
x if x , z,
y if x = z.
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We now prove that elements in the set λA = {λα : α ∈ A} are all distinct. Assume that λα = λβ for some
α, β ∈ A. Let x ∈ X\{z}. Then xα = (xλ)α = x(λα) = x(λβ) = (xλ)β = xβ. Since α, β ∈ A ⊆ HidX\{idX},
we obtain that zα = zβ. Hence α = β. Thus elements in the set λA are all distinct. We next show that
λ < λA. If λ = λα for some α ∈ A, then xα = (xλ)α = x(λα) = xλ = x for all x ∈ X\{z}. From
α ∈ HidX\{idX}, we have zα = z. This yields that α = idX which is a contradiction. Consequently,
N+(λ) = λA which implies that d+(λ) = |A|. As the fact that N+(µ) ⊆ µA for all µ ∈ Γ, we have
∆+(Γ[G]) = d+(λ) = |A|. �

Theorem 4.5. If A ( HidX\{idX} is a connection set of Γ, then

|G|
|A| + 1

≤ γ∗(Γ[G]) ≤ min
{
|G|

δ− + 1
, γ(Γ[G])

}
,

where δ− := δ−(Γ[G]) is the minimum in-degree of Γ[G] without considering loops.

Proof. Assume that A ( HidX\{idX} is a connection set of Γ. By [9, Proposition 2.7], we obtain that

γ∗(Γ[G]) ≥
|G|

∆+ + 1
where ∆+ := ∆+(Γ[G]) is the maximum out-degree of Γ[G]. Moreover, we get

by Lemma 4.4 that ∆+(Γ[G]) = |A|. Thus the lower bound, γ∗(Γ[G]) ≥
|G|
|A| + 1

, is proved. In order to

verify the upper bound, we define a function f : G → [0, 1] by f (α) =
1

δ− + 1
for all α ∈ G. Obviously,

δ− ≤ |N−(α)| for all α ∈ G. So it is not hard to consider that, for each α ∈ G,

f (N−[α]) =
∑

λ∈N−[α]

f (λ)

= f (α) +
∑

λ∈N−(α)

f (λ)

=
1

δ− + 1
(|N−(α)| + 1) ≥

|N−(α)| + 1
|N−(α)| + 1

= 1.

Thus, f is a fractional dominating function of Γ[G] which yields that γ∗(Γ[G]) ≤ | f | =
∑
α∈G

f (α) =

|G|
δ− + 1

. Clearly, γ∗(Γ[G]) ≤ γ(Γ[G]). Therefore,

γ∗(Γ[G]) ≤ min
{
|G|

δ− + 1
, γ(Γ[G])

}
.

�

We now describe some terminologies related to the expression of permutations. Let α ∈ HidX . In
fact, every permutation can be written as the product of disjoint cycles. Therefore, we can write α
as follows:

α = δ1δ2 · · · δr,

such that, for each k = 1, 2, . . . , r, there exist c1, c2, . . . , cs ∈ X in which c1δk = c2, c2δk =

c3, . . . , cs−1δk = cs, and csδk = c1. For convenience, δk is called a subcycle of length s in the permutation
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α. Furthermore, if there exists l ∈ {1, 2, . . . , r} such that δl is a subcycle of odd length in α, then we say
that α contains an odd subcycle. Otherwise, it does not contain an odd subcycle.

To investigate the equality of bounds stated in Theorem 4.5, we consider a singular connection set
and obtain the parameter γ∗(Γ[G]) as follows.

Proposition 4.6. Let A = {α} ⊆ HidX\{idX} be a connection set of Γ. If no element in X\Y is a fixed
point of α, then

γ∗(Γ[G]) =
1
2
|G| =

 γ(Γ[G]) if α does not contain an odd subcycle of length greater than 1,

γ(Γ[G]) −
t
2

if α contains an odd subcycle of length greater than 1,

where t is the number of odd directed cycles in Γ[G].

Proof. Assume that no element in X\Y is a fixed point of α. We first show that Γ[G] is the disjoint
union of directed cycles. To show this, it suffices to prove that d−(λ) = 1 = d+(λ) for all λ ∈ G. Let
λ ∈ G. Clearly, d+(λ) = 1. Further, we easily observe that λ1β = λ2β if and only if λ1 = λ2 whenever
λ1, λ2 ∈ G and β ∈ HidX . Thus d−(λ) = 1. Hence Γ[G] is the disjoint union of directed cycles.
Case 1. α does not contain an odd subcycle of length greater than 1. We need to show that those
directed cycles in Γ[G] are of even length. Suppose that there exists a directed cycle

−→
Ck of odd length

k in Γ[G]. For convenience, let
−→
Ck := λ1, λ2, . . . , λk, λ1. We obtain that λk = λk−1α = λk−2α

2 = . . . =

λ2α
k−2 = λ1α

k−1 and λ1 = λkα. Then λk = λ1α
k−1 = (λkα)αk−1 = λkα

k. Since λk ∈ G, there exists
b ∈ X\Y such that bλk ∈ X\Y . By assumption, we have (bλk)α , bλk. Let p be the smallest positive
integer such that (bλk)αp = bλk. As the fact that α does not contain an odd subcycle of length greater
than 1, we obtain that p is even. If p < k, then by Division’s algorithm, k = qp + r for some q ∈ N
and 1 ≤ r < p. Thus bλk = bλkα

k = (bλk)αk = (bλk)αqp+r = (bλk)αqpαr = (bλk)αr which is impossible
since r < p. If p > k, then (bλk)αk = b(λkα

k) = bλk. This also leads to a contradiction. Hence every

induced directed cycle in Γ[G] has even length. We now define the function f : G → [0, 1] by f (β) =
1
2

for all β ∈ G. It is not complicated to conclude that f is a minimum fractional dominating function

of Γ[G]. Therefore, γ∗(Γ[G]) = | f | =
1
2
|G| = γ(Γ[G]).

Case 2. α contains an odd subcycle of length greater than 1. Let (a1 a2 . . . ak) be an odd subcycle of α
for some odd positive integer k ≥ 3. Define λ ∈ Fix(X,Y) by

xλ =

{
x if x ∈ Y,
a1 if x ∈ X\Y.

We obtain that λ, λα, λα2, . . . , λαk−1, λαk = λ form a directed cycle of length k. In this case, we observe
that λ, λα, λα2, . . . , λαk−1 ∈ G. That is, Γ[G] contains an induced directed cycle of odd length. Let t
be the number of odd directed cycles in Γ[G]. It is easily investigated that if r is an odd number, then

γ(
−→
Cr) =

r + 1
2

. Let g : V(
−→
Cr) → [0, 1] be defined by g(β) =

1
2

for all β ∈ V(
−→
Cr). Then γ∗(

−→
Cr) ≤

r
2

.

By [9, Proposition 2.7], we have γ∗(
−→
Cr) ≥

r
2

and hence γ∗(
−→
Cr) =

r
2

=
r + 1

2
−

1
2

= γ(
−→
Cr) −

1
2

.
Consequently,

γ∗(Γ[G]) =
∑

γ∗(
−→
C ) =

∑
i is even

γ∗(
−→
Ci) +

∑
j is odd

γ∗(
−→
C j)
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=
∑

i is even

γ(
−→
Ci) +

∑
j is odd

[
γ(
−→
C j) −

1
2

]
= γ(Γ[G]) −

t
2
.

Using the minimum fractional dominating function f of Γ[G] defined in Case 1, we also have

γ∗(Γ[G]) = | f | =
1
2
|G|. Hence the result is proved. �

5. Fractional total domination on Γ with respect to permutations

Next, we will study the fractional total domination number of Γ for a connection set A which is a
subset of HidX\{idX}. Recall that a function f : Fix(X,Y)→ [0, 1] is called a fractional total dominating
function of Γ if

f (N−(α)) =
∑

λ∈N−(α)

f (λ) ≥ 1,

for every α ∈ Fix(X,Y). The fractional total domination number of Γ is the minimum weight of a
fractional total dominating function of Γ which is denoted by γ∗t (Γ). That is,

γ∗t (Γ) = min{| f | : f (N−(α)) ≥ 1 for every α ∈ Fix(X,Y)}.

We observed in the proof of Theorem 4.2 that, for a connection set A ⊆ HidX\{idX}, all minimal
idempotents have zero in-degree in Γ. Consequently, we cannot define any fractional total dominating
function of Γ. Therefore, the fractional total domination number of Γ does not exist. Hence, we aim to
investigate this parameter for the induced subdigraphs Γ[HidX ],Γ[Em] and Γ[G].

As we mentioned above, all minimal idempotents have zero in-degree in Γ which implies that
γ∗t (Γ[Em]) does not exist. For results on the fractional total domination numbers of Γ[HidX ] and Γ[G], we
present as follows. By [15, Theorem 4.5], we have known that Γ is locally connected. Hence N−(α) , ∅
for all α ∈ HidX . Consequently, the fractional total domination number of Γ[HidX ] always exists.

Theorem 5.1. If A ⊆ HidX\{idX} is a connection set of Γ, then γ∗t (Γ[HidX ]) =
|X\Y |!
|A|

.

Proof. Assume that A = {α1, α2, . . . , αk}. Let λ ∈ HidX . Clearly, N−(λ) = {λα−1
1 , λα

−1
2 , . . . , λα

−1
k } where

λα−1
i , λα

−1
j for all i , j ∈ {1, 2, . . . , k}. That is, d−(λ) = |N−(λ)| = |A|. We now define f : HidX → [0, 1]

by f (β) =
1
|A|

for all β ∈ HidX . Hence

f (N−(λ)) =
∑

µ∈N−(λ)

f (µ) = |N−(λ)|
1
|A|

= 1.

Next, let g be arbitrary fractional total dominating function of Γ[HidX ]. Then g(N−(δ)) ≥ 1 = f (N−(δ))
for all δ ∈ HidX which implies that

|g| = g(HidX ) =
∑
η∈HidX

g(η) ≥
∑
η∈HidX

f (η) = | f |.
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Therefore, we can conclude that f is the minimum fractional total dominating function of Γ[HidX ].

Consequently, γ∗t (Γ[HidX ]) = | f | =
|HidX |

|A|
=
|X\Y |!
|A|

, as required. �

We now provide the characterization for an existence of the fractional total domination number
of Γ[G]. For each α ∈ Fix(X,Y), define Fix(α) = {x ∈ X : xα = x}.

Theorem 5.2. Let A ⊆ HidX\{idX} be a connection set of Γ. Then the following statements
are equivalent.

(i) The fractional total domination number of Γ[G] exists.
(ii) N−(η) , ∅ for all η ∈ G.

(iii)
⋂
α∈A

Fix(α) = Y.

Proof. Obviously, the statements (i) and (ii) are equivalent. We now prove that (ii) and (iii)
are equivalent.

(ii)⇒(iii): Assume that N−(η) , ∅ for all η ∈ G. Suppose that there exists x ∈ X\Y such that
x ∈

⋂
α∈A

Fix(α). Consider λ ∈ G defined by

λ =

(
ai X\Y
ai x

)
.

By assumption, there exists β ∈ N−(λ), that means β , λ. Then (β, λ) ∈ E(Γ), that is, λ = βµ for some
µ ∈ A. Let z ∈ X\Y . Thus x = zλ = z(βµ) = (zβ)µ. Since x ∈ Fix(µ) and µ ∈ A ⊆ HidX , we get that
zβ = x. Hence β = λ which is a contradiction.

(iii)⇒(ii): Assume that
⋂
α∈A

Fix(α) = Y . Let η ∈ G. Then we can write

η =

(
Ai B j

ai b j

)
.

Since
⋂
α∈A

Fix(α) = Y , there exists λ ∈ A such that (X\Y)η * Fix(λ). Hence there exists bk ∈ (X\Y)η in

which bk < Fix(λ). That is, bkλ , bk which implies that bkλ
−1 , bk. Define µ ∈ Fix(X,Y) by

µ =

(
Ai B j

ai b jλ
−1

)
.

We can obtain that µ ∈ G\{η} and µλ = η. Thus (µ, η) ∈ E(Γ[G]) and so µ ∈ N−(η). Therefore,
N−(η) , ∅. �

To present results on the fractional total domination number of Γ[G], we need the following lemma.

Lemma 5.3. Let λ ∈ G and α ∈ A. Then Xλ ⊆ Fix(α) if and only if λ = λα.

Proof. Assume that Xλ ⊆ Fix(α). Let x ∈ X. Then xλ ∈ Xλ ⊆ Fix(α). Hence xλ = (xλ)α = x(λα)
which implies that λ = λα.

Conversely, assume that λ = λα. Let a ∈ Xλ. Then a = bλ for some b ∈ X. Thus aα = (bλ)α =

b(λα) = bλ = a. Therefore, a ∈ Fix(α) which yields that Xλ ⊆ Fix(α). �
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Moreover, we aim to investigate some prominent properties of Γ[G] via an equivalence relation
defined as follows.

Let A be a connection set of Γ in which
⋂
α∈A

Fix(α) = Y . For each λ ∈ G, we define Aλ ⊆ A by

Aλ = {α ∈ A : Xλ * Fix(α)}.

Hence Aλ , ∅. Further, we define a relation ∼λ on Aλ by, for each α, β ∈ Aλ,

α ∼λ β if and only if xλα−1 = xλβ−1 for all x ∈ (X\Y)λ−1. (5.1)

Clearly, the relation ∼λ is an equivalence relation on Aλ. Let Aλ
/
∼λ

be the set of all equivalence
classes of Aλ with respect to ∼λ. In addition, denote by the notation 1Aλ the equivalence relation
{(α, α) : α ∈ Aλ}. We then obtain the following theorem.

Theorem 5.4. Let A ⊆ HidX\{idX} be a connection set of Γ in which
⋂
α∈A

Fix(α) = Y. If λ ∈ G, then

N−(λ) is one-to-one corresponding to Aλ
/
∼λ

. Consequently, d−(λ) =
∣∣∣∣Aλ

/
∼λ

∣∣∣∣.
Proof. Let λ ∈ G. By Theorem 5.2, we have N−(λ) , ∅. Let α ∈ N−(λ). Then there exists β ∈ A
such that λ = αβ, that is, α = λβ−1. We first show that β ∈ Aλ. Suppose that Xλ ⊆ Fix(β). For each
x ∈ X, we obtain that x(λβ) = (xλ)β = xλ = x(αβ). Thus λβ = αβ and so λ = α which is impossible
since α ∈ N−(λ). Hence Xλ * Fix(β) which implies that β ∈ Aλ. Define ϕ : N−(λ) → Aλ

/
∼λ

by
ϕ(λβ−1) = β ∼λ. For each λβ−1, λµ−1 ∈ N−(λ), assume that λβ−1 = λµ−1. For each x ∈ (X\Y)λ−1, we
have x(λβ−1) = x(λµ−1). Then β ∼λ µ which means that β ∼λ= µ ∼λ. Hence ϕ is well-defined. We next
show that ϕ is a bijection. Let λβ−1, λµ−1 ∈ N−(λ) be such that ϕ(λβ−1) = ϕ(λµ−1). Then β ∼λ= µ ∼λ,
that is, β ∼λ µ. Thus xλβ−1 = xλµ−1 for all x ∈ (X\Y)λ−1. Furthermore, for each x ∈ Yλ−1, we have
xλ ∈ Y and hence xλβ−1 = xλ = xλµ−1. Therefore, λβ−1 = λµ−1 which yields that ϕ is injective.
For proving that ϕ is surjective, let β ∼λ∈ Aλ

/
∼λ

. Thus β ∈ Aλ which implies that Xλ * Fix(β). Let
µ = λβ−1. By Lemma 5.3, we obtain that λ , λβ. Hence µ = λβ−1 , λ. Moreover, λ = µβ and
then µ ∈ N−(λ). Clearly, ϕ(µ) = ϕ(λβ−1) = β ∼λ. Consequently, ϕ is a bijection. This implies that
d−(λ) = |N−(λ)| =

∣∣∣∣Aλ
/
∼λ

∣∣∣∣. �

To illustrate more clearly, we present the following example for illustrating the above theorem.

Example 5.5. Let X = {1, 2, . . . , 8} and Y = {1, 2, 3}. Further, let A = {α1, α2, α3, α4} be a connection
set of Γ contained in HidX\{idX} such that

α1 =

(
1 2 3 4 5 6 7 8
1 2 3 4 6 7 5 8

)
, α2 =

(
1 2 3 4 5 6 7 8
1 2 3 5 7 6 8 4

)
,

α3 =

(
1 2 3 4 5 6 7 8
1 2 3 8 5 6 4 7

)
, α4 =

(
1 2 3 4 5 6 7 8
1 2 3 5 4 6 7 8

)
.

Then Fix(α1) = Y ∪ {4, 8}, Fix(α2) = Y ∪ {6}, Fix(α3) = Y ∪ {5, 6}, Fix(α4) = Y ∪ {6, 7, 8} and thus⋂
α∈A

Fix(α) = Y. By Theorem 5.2, we have N−(λ) , ∅ for all λ ∈ G. Let λ ∈ G be defined as follows:

λ =

(
1 2 3 4 5 6 7 8
1 2 3 1 1 1 5 6

)
.
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We obtain that Aλ = {α ∈ A : Xλ * Fix(α)} = {α1, α2, α4}. By the equivalence relation ∼λ on Aλ

defined in (5.1), we obtain that α1 ∼λ= {α1} and α2 ∼λ= {α2, α4}. Let µ1, µ2 ∈ G be defined as follows:

µ1 =

(
1 2 3 4 5 6 7 8
1 2 3 1 1 1 7 5

)
and µ2 =

(
1 2 3 4 5 6 7 8
1 2 3 1 1 1 4 6

)
.

It is not hard to verify that the following statements hold in Γ[G]. Let β ∈ G.

(i) βα1 = λ if and only if β = µ1.
(ii) βα2 = λ if and only if β = µ2.

(iii) βα3 = λ if and only if β = λ.
(iv) βα4 = λ if and only if β = µ2.

Thus the subdigraph of Γ[G] induced by N−[λ] is shown in Figure 1.

b

b b

λ

µ1 µ2

Figure 1. Γ[N−[λ]].

Hence we get that N−(λ) = {µ1, µ2}. Therefore, d−(λ) = |N−(λ)| = 2 = |{α1 ∼λ, α2 ∼λ}| =
∣∣∣∣Aλ

/
∼λ

∣∣∣∣.
We now define certain graphical terminologies. The induced subdigraph Γ[G] of Γ is said to be

semi-regular if d−(α) = d−(β) for all α, β ∈ G. Moreover, if d−(α) = k for all α ∈ G, then Γ[G] is said
to be k-semi-regular. We now present a characterization of the semi-regularity of Γ[G] as follows.

Theorem 5.6. Let A ⊆ HidX\{idX} be a connection set of Γ such that Fix(α) = Y for all α ∈ A. The
following statements are equivalent.

(i) Γ[G] is semi-regular.
(ii) For each x ∈ X\Y, xα , xβ for all α , β ∈ A.

(iii) ∼λ= 1A for all λ ∈ G.

Proof. (i)⇒(ii): Assume that Γ[G] is semi-regular. Let z ∈ X\Y be fixed. Suppose to the contrary that
there exist two distinct α, β ∈ A such that zα = zβ. Let y ∈ Y . Define λ ∈ G by

xλ =


x if x ∈ Y,
y if x ∈ X\(Y ∪ {z}),
zα if x = z.

We claim that d−(λ) < |A|. If λξ−1 = λ for some ξ ∈ A, then λ = λξ. Hence (zα)ξ = (zλ)ξ = zλξ = zλ =

zα which implies that zα ∈ Fix(ξ). Since z ∈ X\Y and α is a permutation, we have zα ∈ X\Y which
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contradicts the assumption. So we conclude that N−(λ) = {λξ−1 : ξ ∈ A}. Thus d−(λ) = |N−(λ)| ≤ |A|.
Now, we define µ ∈ G by

xµ =


x if x ∈ Y,
y if x ∈ X\(Y ∪ {z}),
z if x = z.

Therefore, µα = λ = µβ. Since α, β ∈ A and Fix(α) = Y = Fix(β), we have zα = zβ , z which yields
that µ , λ. Furthermore, we see that λα−1 = µ = λβ−1. This implies that d−(λ) < |A|, immediately.
Next, we define η ∈ G by

xη =

{
x if x , z,
y if x = z.

We show that d−(η) = |A|. Indeed, N−(η) = {ηξ−1 : ξ ∈ A}. Suppose that there exist ξ1, ξ2 ∈ A such that
ηξ−1

1 = ηξ−1
2 . For each x ∈ X\{z}, we obtain that xξ−1

1 = (xη)ξ−1
1 = x(ηξ−1

1 ) = x(ηξ−1
2 ) = (xη)ξ−1

2 = xξ−1
2 .

Moreover, we can conclude that zξ−1
1 = zξ−1

2 since ξ1, ξ2 are permutations. Consequently, ξ−1
1 = ξ−1

2 and
hence ξ1 = ξ2. Thus all elements in N−(η) are distinct which leads to d−(η) = |N−(η)| = |A|. Now, we
see that d−(λ) < |A| = d−(η) which contradicts the semi-regularity of Γ[G].

(ii)⇒(iii): Assume that the condition holds. Let λ ∈ G. Since Fix(α) = Y for all α ∈ A, we
have Xλ * Fix(α) for all α ∈ A. This implies that Aλ = {α ∈ A : Xλ * Fix(α)} = A. Clearly,
1A = 1Aλ ⊆ ∼λ. Next, let α, β ∈ Aλ be such that α ∼λ β. Since λ ∈ G, there exists xλ ∈ X\Y for some
x ∈ X\Y . Hence x ∈ (X\Y)λ−1. From α ∼λ β, we get that xλα−1 = xλβ−1 ∈ X\Y . If α , β, then
(xλα−1)α = xλ(α−1α) = xλ = xλ(β−1β) = (xλβ−1)β contradicts the assumption. Therefore, α = β and
thus ∼λ⊆ 1Aλ = 1A. Consequently, ∼λ= 1A, as required.

(iii)⇒(i): Assume that the condition holds. We prove that Γ[G] is semi-regular. Let λ ∈ G. By
Theorem 5.4 and we have known that Aλ = A, it follows that

d−(λ) =
∣∣∣∣Aλ

/
∼λ

∣∣∣∣ =
∣∣∣∣A/

1A

∣∣∣∣ = |A|.

Hence each element in G has an in-degree |A|. Consequently, Γ[G] is semi-regular. �

Remark 5.7. By the proof of (iii)⇒(i) in Theorem 5.6, we observe that Γ[G] is |A|-semi-regular.

Theorem 5.8. Let A ⊆ HidX\{idX} be a connection set of Γ such that
⋂
α∈A

Fix(α) = Y. Then

|G|
|A|
≤ γ∗t (Γ[G]) ≤

|G|
m

,

where m = min
{∣∣∣∣Aλ

/
∼λ

∣∣∣∣ : λ ∈ G
}
. The equality holds if Γ[G] is semi-regular.

Proof. By Theorem 5.2, the fractional total domination number of Γ[G] exists and then N−(λ) , ∅ for
all λ ∈ G. We first prove the lower bound of γ∗t (Γ[G]). Let f be a fractional total dominating function
of Γ[G]. Then f (N−(λ)) ≥ 1 for all λ ∈ G. We obtain that

|G| ≤
∑
λ∈G

f (N−(λ)) =
∑
λ∈G

 ∑
µ∈N−(λ)

f (µ)


=

∑
µ∈G

f (µ)|N+(µ)| ≤ ∆+(Γ[G])
∑
µ∈G

f (µ).
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By Lemma 4.4, we have ∆+(Γ[G]) = |A|. Hence

|G| ≤ ∆+(Γ[G])
∑
µ∈G

f (µ) = |A|
∑
µ∈G

f (µ),

that is, | f | =
∑
µ∈G

f (µ) ≥
|G|
|A|

. Since f is arbitrary, we conclude that

γ∗t (Γ[G]) = min{| f | : f is a fractional total dominating function of Γ[G]} ≥
|G|
|A|

.

For proving the upper bound of γ∗t (Γ[G]), we let m = min
{∣∣∣∣Aλ

/
∼λ

∣∣∣∣ : λ ∈ G
}

and define a function

f : G → [0, 1] by f (λ) =
1
m

for all λ ∈ G. By Theorem 5.4, we obtain that m is the minimum in-degree
of Γ[G]. Therefore, it is clear that f is a fractional total dominating function of Γ[G]. We conclude that

γ∗t (Γ[G]) ≤ | f | =
∑
λ∈G

f (λ) = |G|
1
m

.

We now assume that Γ[G] is semi-regular. By Remark 5.7, we obtain that m = |A|. Therefore,

γ∗t (Γ[G]) =
|G|
|A|

. The equality is attained. �

6. Conclusions

In this paper, the concepts of fractional domination and fractional total domination have been
investigated for Cayley digraphs Γ of transformation semigroups with fixed sets. The results have been
divided into two major parts. The first one is related to the fractional (total) domination numbers of Γ

with respect to minimal idempotents, which is presented in Section 3. In this part, we have found that
the fractional domination number and the domination number coincide. However, the fractional total
domination number of Γ does not exist. For the second part, including Sections 4 and 5, the fractional
domination and fractional total domination numbers have been provided with respect to permutations.
The results have been presented by considering the induced subdigraphs of Γ, separately. Further, we
have introduced an equivalence relation for applying to study the fractional total domination number
of certain induced subdigraph of Γ.
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