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Abstract: In poor lighting and rainy and foggy bad weather environments, road traffic signs are blurred 

and have low recognition, etc. A super-resolution reconstruction algorithm for complex lighting and 

bad weather traffic sign images was proposed. First, a novel attention residual module was designed 

to incorporate an aggregated feature attention mechanism on the jump connection side of the base 

residual module so that the deep network can obtain richer detail information; second, a cross-layer 

jump connection feature fusion mechanism was adopted to enhance the flow of information across 

layers as well as to prevent the problem of gradient disappearance of the deep network to enhance the 

reconstruction of the edge detail information; and lastly, a positive-inverse dual-channel sub-pixel 

convolutional up-sampling method was designed to reconstruct super-resolution images to obtain 

better pixel and spatial information expression. The evaluation model was trained on the Chinese traffic 

sign dataset in a natural scene, and when the scaling factor is 4, the average values of PSNR and SSIM 

are improved by 0.031 when compared with the latest release of the deep learning-based super-

resolution reconstruction algorithm for single-frame images, MICU (Multi-level Information 

Compensation and U-net), the average values of PSNR and SSIM are improved by 0.031 dB and 0.083, 

and the actual test average reaches 20.946 dB and 0.656. The experimental results show that the 

reconstructed image quality of this paper’s algorithm is better than the mainstream algorithms of 

comparison in terms of objective indexes and subjective feelings. The super-resolution reconstructed 

image has a higher peak signal-to-noise ratio and perceptual similarity. It can provide certain technical 

support for the research of safe driving assistive devices in natural scenes under multi-temporal varying 

illumination conditions and bad weather.  
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1. Introduction 

Safe driving is a core technical requirement of motor vehicle driving aids, and, to ensure a high 

driving safety coefficient, it is necessary to accurately identify traffic signs in the road environment, 

which are a core technical support for a safe driving aid systems [1]. However, due to the complexity 

of the traffic road environment and the large differences in visibility of traffic signs at different times 

of the day and in different weather environments, such as dim morning, evening, and night time, 

midday with strong illumination, and rainy, hazy and foggy days with blurred vision, traffic sign 

images show degradation phenomena such as dim and blurred and loss of information on the edges of 

the signs [2], and the lack of detailed information leads to low spatial resolution. Therefore, it is 

necessary to study the super-resolution reconstruction technology of traffic sign images at different 

times of day and in different weather environments, and use the image super-resolution reconstruction 

technology to improve the image quality of traffic signs, make the algorithm easier to deploy in safe 

driving assistance devices, and promote the intelligent development of driving technology [3].  

Single image super-resolution reconstruction (SISR) is one of the most fundamental image 

processing problems in computer vision [4], the task of which is to reconstruct one or more low-

resolution images (LR) into high-resolution images (HR), and because there are several factors that 

degrade an HR image into an LR image, image super-resolution reconstruction is a challenging 

subject [5]. This technique has a wide range of applications in fields such as medical imaging [6], 

satellite remote sensing [7], and security [8]. Early super-resolution reconstruction methods usually 

used nearest neighbor interpolation, bilinear interpolation, and bicubic interpolation [9], and although 

the interpolation method has small computational complexity and high reconstruction efficiency, the 

method reconstructs high-resolution images from local pixel information, which is not ideal when the 

magnification is large. Reconstruction-based methods appeared later [10], which are based on the 

image degradation model, and through the extraction of key information in the low-resolution image 

combined with a priori knowledge of the gradient and edge of the unknown super-resolution image, 

the mapping relationship from the LR image to the HR image is constructed and the loss function 

solution to obtain the high-resolution image is optimized [11]. Reconstruction-based methods have 

better reconstruction results compared to interpolation. Still, the model is inefficient, the reconstruction 

effect is easily affected by the accuracy of the regularization parameters, resulting in the texture details 

not being effectively recovered, and the computational time is greater, which makes it difficult to take 

into account real-time needs. Learning-based methods usually utilize a large number of LR images to 

train the model, from which some kind of implicit mapping relationship between LR images and HR 

images is learned, and then the LR images are reconstructed into the corresponding high-resolution 

images according to the learned implicit relationship, such as in sparse coding [12], stream learning [13], 

dictionary learning [14], etc. Although the learning-based methods have achieved further improvement, 

the optimization and updating process of network parameters is very complicated, and the model is 

usually not able to recover the texture details effectively. The optimization and updating process is 

very complicated, and the model is usually difficult to fit into the best target, leading to unstable 

reconstruction results. 
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In recent years, deep learning has developed rapidly in the field of image super-resolution 

reconstruction, and a variety of SR methods based on deep learning have appeared to solve the various 

problems existing in traditional algorithms. Dong et al. [15] pioneered the introduction of 

convolutional neural networks for the task of image super-resolution reconstruction, and designed a 

super-resolution convolutional neural network (SRCNN) that has only three layers to realize feature 

extraction, feature nonlinear mapping, and reconstruction. SRCNNs achieve good end-to-end 

reconstruction results and lay the foundation for deep learning in the field of image super-resolution 

reconstruction. Although SRCNNs shows good reconstruction performance compared to traditional 

SR methods, the SRCNN algorithm has fewer layers in the network structure, which makes it difficult 

to fully utilize the image context information resulting in HR image clarity that needs to be further 

improved. To solve the problem of incomplete feature extraction caused by the small number of 

network layers, Kim et al. [16] used the ResNet module to construct the ultra-deep SISR network 

model (VDSR). The VDSR network utilizes the idea of residual learning, and learns the high-

frequency information between low- and high-resolution images by jumping connections, which 

improves the training efficiency and the clarity of the reconstruction of the texture details; however, 

the deepening of the network also brings about a drastic increase in the number of parameters, which 

leads to the improvement of the clarity of the HR image. Tai et al. [17] combined ResNet and 

RNN(Recurrent Neural Network) to propose a deep recurrent residual network (DRRN) for image 

super-resolution reconstruction, which improves the performance of the network without introducing 

too many parameters by adopting recursive learning for some of the convolutional layers. Although 

the parameter-sharing mechanism of the RNN can enable the network model to maintain a small 

number of parameters while learning higher-level features, it still cannot avoid the problems of 

gradient vanishing and redundant information training consumption faced by ultra-deep networks. 

Zhang et al. [18] applied the channel attention mechanism to image SR for the first time in 2018, and 

combined it with the residual module to propose the residual channel attention network (RCAN), 

although the addition of the attention mechanism makes the network learn more important edge detail 

features, the authors simply interspersed the plug-and-play channel attention module in one layer of 

the network, which makes the reinforcement of important features limited. The excellent performance 

of the attention mechanism and residual learning became an important part of the later excellent single-

frame image superpixel reconstruction (SISR) network models; for example, the second-order 

attention network (SAN) proposed by Dai et al. [19] introduces the second-order channel attention 

mechanism, which has better reconstruction performance on drastically varied and diverse targets, but 

the channel attention mechanism overemphasizes the importance of the channel information and 

neglects the spatial relationship between pixels, thus lacking a detailed description of texture features. 

Wei et al. [20] proposed the component partition network model (CDC) to explore the importance of 

different components by constructing three component attention blocks related to planes, edges, and 

corners to solve the superpixel reconstruction problem with the idea of divide-and-conquer, but the 

components independent of each other impede the interactive learning of spatial features of the 

channels, which makes the reconstructed image incongruous in terms of light and dark, and jumping 

edge pixels. As deep learning continues to develop in the field of image super-resolution reconstruction, 

some researchers have recently proposed reconstruction models with better performance, such as 

Zhang et al. [21] who proposed a cascaded visual attention network (CVANet) for single-image super-

resolution reconstruction to solve the problem of the deep convolutional neural network utilizing 

feature maps, channels, and insufficient pixels, but the independent reinforcement design strategy 



14528 

AIMS Mathematics  Volume 9, Issue 6, 14525–14548. 

adopted makes the feature maps, channels, and pixels still lack information exchange among each other, 

leading to problems such as loss of image details and pixel distortion. Wang et al. [22] designed a 

Transformer-based Terrain Neural Network (TTSR) for the super-resolution reconstruction of digital 

elevation models by introducing the Transformer structure, and, compared with the traditional method, 

the method's elevation accuracy, slope accuracy, and root-mean-square error (RMSE) of slope accuracy 

are reduced by about 6%–30%, 4%–16%, and 1%–9%, respectively. Although progress is made in 

performance, the transformer structure drags down the model training speed and fitting efficiency 

considerably, and is difficult to deploy in common training platforms as well as edge computing 

devices, which affects the practical application effect. Chen et al. [23]used the multilevel information 

through the multi-level compensation and U-net (MICU) to realize image super-resolution 

reconstruction, but the U-net structure adopts the strategy of down-sampling and up-sampling, which 

is less effective for the reconstruction of larger targets. 

However, although there are many newly proposed image reconstruction methods, there are fewer 

studies related to the reconstruction of traffic sign images, which is a research shortcoming in the 

development of intelligent assistive devices for safe driving, mainly adopting traditional image 

processing techniques and classical machine learning methods, such as Qu [24] who proposed an 

Adaboost integration algorithm based on the image keypoint statistical transform (MCT) features to 

realize the classification and recognition of traffic signs under complex lighting conditions; Zhang [25] 

and others used BP neural networks for real-time recognition of speed limit traffic signs. Although 

traditional image processing technology and machine learning methods have obtained certain 

recognition accuracy, because the environment where the traffic signs are simple, the difficulty of 

recognition is not a big problem. In addition, traditional methods have not high accuracy, complicated 

algorithm design, poor operability, and tedious deployment difficulty. Xu et al. [26] used the improved 

Cascade R-CNN depth model to recognize traffic signs in rain, snow, fog, and other inclement weather, 

and achieved better recognition accuracy; but, this higher recognition accuracy is based on short-

horizon scenes and environments with better visual conditions, so for long horizon scenes at different 

hours of illumination and inclement weather environments, dim, fuzzy, and unclear edges of the traffic 

signs do not have very good generalization performance and recognition accuracy. However, a high-

performance complex system for safe driving must take into account the accurate recognition of traffic 

signs in a long field of view, and it is important for safe driving to accurately recognize traffic signs 

within a sufficiently safe distance [27]. Since long field-of-view traffic signs usually have smaller 

targets, fuzzy and dim traffic sign bodies, unclear edges of sign prompt messages, and lower resolution, 

super-pixel reconstruction of low-resolution traffic signs is needed to obtain larger visible images and 

clear sign edges, which can help safe driving assistance systems to recognize traffic signs in advance 

in longer field-of-view ranges and to make safe driving warnings [28]. From the above review of image 

super-resolution reconstruction methods, it can be understood that, although the attention mechanism 

and residual learning have good extraction effect on LR image texture, details, and edge high-

frequency information, the jump connection of the residuals also passes a large amount of low-

frequency information to the high-level feature layer, which affects the reconstruction effect of the 

reconstruction layer on the texture details; in addition, the interpolation and the inverse convolution 

upsampling methods form discontinuous jagged edges. While sub-pixel convolution can alleviate this 

problem, it still cannot eliminate the obvious artificial traces. 

Based on the above problems, this paper proposes a super-resolution reconstruction method for 

low-resolution traffic sign images by integrating attention residuals, an important feature fusion 
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strategy, and double inverse channel sub-pixel convolution. To do so, first the channel spatial hybrid 

attention mechanism (CBAM) [29] is fused in the jump connection side of the residual module so that 

the network learns the relationship between channels and spatial location information in the shallow 

image at the same time, the channel attention mechanism optimizes the contribution weights between 

image channels to give better representation to important channels, and the spatial attention mechanism 

parses high and low-frequency information of different spatial locations within the same channel to 

extract important high-frequency information and pay more attention to it. When learning the image 

channel and spatial information, the network can adaptively extract important features in the feature 

map according to their importance and ignore a large amount of redundant low-frequency information 

to solve the problem of unclear details and texture of dim and blurred traffic sign images. Second, the 

color, detail, texture, spatial, and semantic features acquired by the different layers can be adequately 

fused so that different feature layers can capture the color and detail of the image. The different feature 

layers can capture different information so that the model has better feature representation and 

robustness, and, at the same time, by extracting representative features, the impact of noise and 

redundant information on the network model processing can be reduced. Finally, for the problem of 

pixel discontinuity and jumping traces in the reconstruction process, a double inverse channel sub-

pixel convolution method is proposed. Sub-pixel convolution up-sampling usually adopts the forward 

channel to arrange the spatial information in the positive order to expand the image size and to increase 

the spatial information, the original feature map channel is reversed and sampled to arrange the spatial 

information in the same way, and then the two times of exactly inverse information is fused globally 

to eliminate obvious artifacts and the pixel jumping phenomenon, and to improve the reconstruction 

capability of the traffic sign image. For this paper, the main contributions are as follows: 

(1) We propose an attention residual network for backbone feature extraction, which improves 

the extraction ability of edge and texture features by strengthening important detail features and 

filtering low-frequency redundant information; 

(2) We design a hierarchical feature fusion method to fully fuse the features extracted from 

different feature layers and learn the intrinsic mapping relationship between different layers to improve 

the model generalization ability and robustness; 

(3) We construct a dual inverse channel sub-pixel convolutional upsampling structure to increase 

the spatial information content, enhance global feature fusion, and eliminate artificial traces and pixel-

jagged discontinuities. 

Most of the current deep learning-based single-frame image super-resolution reconstruction 

algorithms are trained on a large scale based on public datasets, such as ImageNet [30], OST [31], 

DPED [32], etc., which mainly consist of common objects in life, such as people, animals, plants, 

transportation, buildings, landscapes, and other subjects. Since learning algorithms will have different 

performances for specific learning objects, the image hyperpixel reconstruction algorithm based on 

public datasets does not reconstruct well when facing dim and blurred traffic sign images. To address 

this problem, we first construct a real traffic sign dataset in a natural environment, and then design an 

adapted deep network model for feature extraction and image reconstruction. Therefore, in this paper, 

we first construct a dataset of traffic sign images in a natural environment with multiple hours of 

illumination and severe weather for network model training, which is rich in scenes and fully adapted 

to the real traffic scene so that the model has a better generalization ability. The traffic sign dataset is 

collected from natural scene cameras or Baidu Street View under different times, weather conditions, 

lighting conditions, and motion blur conditions. The types of traffic signs are mainly traffic signs and 
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traffic panels; the locations of the collected images include road intersections, accident-prone road 

sections, and vehicle-only road locations; the periods of the collected images include the early morning 

when the sky is white, the middle of the day when the light intensity is high, dusk time, and night time, 

and other all-weather periods; the weather conditions include sunny, foggy, and rainy days, damaged 

images and extremely fuzzy images are eliminated, and the traffic sign data set is generalized to natural 

scenes. Selected valid images, the images are uniformly cropped into 640 × 480 size images, and 

finally 5000 traffic sign images are obtained which reflect the real traffic scenes in the real natural 

environment and have a certain degree of representativeness. Figure 1 shows examples of dataset 

images. It is difficult for existing devices to acquire paired LR images and HR images in the same 

scene, and, usually, only HR images are acquired, and then the corresponding LR images are obtained 

by the mathematical degradation model. However, the actual LR images are affected by blurring, noise, 

downsampling, image compression, and many other unknowable and complex factors. Since LR 

images obtained using the same mathematical degradation model are structurally similar, they tend to 

obtain higher reconstruction metrics when composing a test set. To avoid such spurious reconstruction 

performance guides, the training set and the test set will be synthesized into a specific dataset using 

different degradation model constructions. In this paper, simple downsampling will be used to obtain 

the training set LR images, and downsampling with a combination of blurring and noise will be used 

to obtain the test set LR images. 

 

Figure 1. Partial images of the image dataset of traffic signs in five environments: early 

morning, midday, night, rainy day, and foggy day. 

 



14531 

AIMS Mathematics  Volume 9, Issue 6, 14525–14548. 

2. The network model of this paper 

In this paper, we propose a super-resolution reconstruction network model for low-resolution 

traffic sign images that integrates the attention residual, feature fusion mechanism, and double inverse 

channel sub-pixel convolution, and the complete network model consists of 3 parts: 1) attention 

residual module; 2) feature fusion mechanism; 3) image reconstruction module, and the network 

structure is shown in Figure 2. First of all, the convolution, normalization, and activation functions 

constitute the basic feature extraction units for cyclic stacking, and the attention mechanism and 

residual learning ideas are used to link the basic feature extraction units. Then, the fusion layer receives 

feature information from different depth feature extraction layers, superimposes them on the channel 

dimension, performs feature fusion and compresses the channel dimension, fully combines the detailed 

texture features and semantic features of different levels of feature maps, and improves the quality of 

the reconstructed image. Finally, the image reconstruction layer designed a novel dual inverse channel 

sub-pixel convolution algorithm to realize the up-sampling of the image, and used the convolution 

layer for pixel adjustment to complete the final reconstructed image. 

 

Figure 2. The overall network structure of image super-resolution reconstruction model. 

2.1. Attention residual module (ARM) 

In the feature extraction stage, the basic feature extraction module is composed of three functional 

blocks of a 3 × 3 convolutional layer, normalization layer, and Relu activation function layer 

sequentially arranged and repeated once to constitute the basic feature extraction unit. The network 

structure is shown in Figure 3, and the logical computational relationship of this module can be 

expressed by Eq (1). 

 

Figure 3. Basic feature extraction module. 

( )( )( )3 3 LR
T BN f I


= ,         (1) 
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where 𝐼𝐿𝑅denotes a low-resolution image, 𝑓3×3 denotes a convolutional layer with a convolutional 

kernel size of 3, BN denotes a normalization layer, 𝛿(⋅) denotes an activation function, where the 

Relu activation function is used here, and T denotes the extracted feature vector. Combining the 

attention residual structure with the basic feature extraction module constitutes a new type of feature 

extraction module with residual mapping function and attention to the important features of attention, 

and the structure of the backbone feature extraction network stacked with this new type of module is 

shown in Figure 4. Dim and fuzzy traffic signs usually contain rich low-frequency information. Still, 

the edge detail mainly exists in the high-frequency information, while the high-frequency information 

is weak. The detail features are gradually lost in the process of continuous convolution, so it is 

necessary to introduce the residual jump-connection branch, which adds shallow high-frequency 

information after a certain stage of network learning and strengthens the expression of the edge detail 

features. However, the jump-connection of the residual structure strengthens the deeper transfer of 

high-frequency information, and it is more of a color change. Although the residual structure of jump 

connections enhanced the transfer of high-frequency information to the deeper levels, this process 

transferred information with more low-frequency information such as color, brightness, etc., and the 

low-frequency information had a dissociative effect on the deeper high-level semantic information, 

which is not conducive to the accurate recognition of the target, the addition of the attention mechanism 

to the branch of the jump connection can effectively attenuate the transmission of the redundant 

information, the attention mechanism [29,33,34] can give more weight to the important information 

through the learning features to strengthen the expression and transmission of the important features, 

and the computational expression is shown in the Eq (2). 

( )( )( )( ) ( )1 13 3 3 3n n CBAM n
BN BNf fT T A T

− − 

 = + 
 

,     (2) 

where the feature map 𝑇1 is not computed because the first feature layer does not apply to Eq (2), 

where 𝑛 ≥ 2 in Eq (2), 𝑇𝑛−1is the input feature of the nth attention residual module, 𝑓3×3 denotes 

the convolutional layer with convolutional kernel size 3, BN denotes the normalization layer, 

𝛿(⋅)denotes the Relu activation function, 𝐴𝐶𝐵𝐴𝑀(⋅)denotes the spatial hybrid attention mechanism of 

the CBAM channel, and 𝑇𝑛 denotes the nth attention residual output feature of the module. According 

to Figure 4 and Eq (2), the pseudo-code algorithm is as Algorithm 1. 

 

Figure 4. Attention residual module. 
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Algorithm 1: Attention residual module feature extraction algorithm 

1 function ARM( x ); 

 Input: Original low-resolution image 

 Output: eigenmaps 

2 if x = 0 then 

3  return 0; 

4 else 

5  𝑥1 = 𝐴𝐶𝐵𝐴𝑀(𝑥); 

6  𝑥2 = 𝑓3×3(𝑥); 

7  𝑥3 = BN(𝑥2); 

8  𝑥4 = 𝛿(𝑥3); 

9  𝑥5 = 𝑓3×3(𝑥4); 

10  𝑥6 = BN(𝑥5); 

11  𝑥 = 𝑥1 + 𝑥6; 

12  return x; 

13 end 

2.2. Feature fusion mechanisms 

Feature fusion is the fusion of shallow network features and deep network features. The shallow 

network has covariant features required for localization, which is crucial for the accurate location of 

objects in the reconstructed image, and the deep network has more high-level semantic features to 

distinguish objects, which ensure the consistency of the content of the reconstructed image during the 

image reconstruction process. Thus, the shallow and deep features are indispensable for the 

reconstruction of high-resolution images. Each feature layer has its special and important feature 

information, so it needs to be extracted independently to interact with other independent feature layers 

in the feature fusion session to enrich the details and semantic features of the image reconstruction 

layer and improve the quality of image reconstruction. As the feature extraction method learns the 

jump connection of the residual network, there will still be a large amount of redundant information 

transfer, so it will be integrated into the channel space attention mechanism module (CBAM) in each 

connection branch, attenuating the role of invalid information to discrete effective features. The 

network structure diagram of the combination of the feature extraction module and the feature fusion 

mechanism is shown in Figure 5. 

 

Figure 5. Hierarchical important feature fusion strategy. 
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In this paper, the design of feature fusion mechanism is based on the jump connection of different 

layers of attention residual modules and residual learning, the LR image input into the network firstly 

do the convolutional kernel size of 9 for large scale shallow feature extraction, and stretch the first 

feature layer channel into 64 channels; then, after the first feature layer successively stack five attention 

residual modules (ARM), and elicit the input feature layer of different modules with the last one 

module output feature layer Concat operation; finally, 3 × 3 convolution is used to do information 

fusion on the last Concat feature layer and output it into 64 channels to provide rich spatial and pixel 

features for the subsequent reconstruction layer, and the whole process can be expressed by Eqs (3) 

and (4). 

( )( )( )1 9 9CBAM LRfF A I


= ,        (3) 

where 𝐼𝐿𝑅 denotes the original low-resolution image, 𝑓9×9  denotes the convolution operation with 

convolution kernel size 9, 𝛿(⋅)  denotes the Relu activation function, and 𝐴𝐶𝐵𝐴𝑀(⋅)  denotes the 

CBAM channel space hybrid attention mechanism, where the low-resolution original image passes 

through the shallow feature extraction network and is weighted by the attention mechanism to obtain 

the feature map 𝐹1. 

( )n CBAM nF A T= ,          (4) 

where 𝑛 ≥ 2 is the logical equation for calculating the feature layers 𝐹2 − 𝐹6, 𝑇𝑛 is described in Eq (2), 

and Eq (4) represents the new feature maps obtained by attentional weighting of the 𝑇2 − 𝑇6 feature 

maps. 

( )( )1 2 3 4 5 6Re 3 3
, , , , ,

M Leaky lu
ConcatfT F F F F F F − 

 =   .     (5) 

The operation logic to be expressed in Eq (5) is to superimpose different levels of feature layers 

in the channel dimensions and then apply convolutional operations to adjust the number of channels 

of the fused feature layers and learn different levels of features, and finally obtain the new feature 

layers through the activation function. 𝐹𝑛，𝑛 = 1,2,3,4,5,6 , denotes the feature layer after different 

stages of extraction and attention weighting, 𝐶𝑜𝑛𝑐𝑎𝑡[⋅]  is the superposition of different layers of 

feature maps in the channel dimension, 𝑓3×3 denotes the convolution operation with a convolution 

kernel size of 3, 𝛿𝐿𝑒𝑎𝑘𝑦−𝑅𝑒𝑙𝑢(⋅) denotes the Leaky-Relu activation function [35], and we set 𝛼 = 0.2 

to prevent negative output necrosis. 

2.3. Image reconstruction module 

The reconstruction algorithm proposed in this paper is a double inverse channel sub-pixel 

convolution method, as shown in Figure 6. The core idea is to carry out two channels for inverse sub-

pixel convolution up-sampling to obtain two high-resolution images with the same dimensions and 

depths, but with opposite elements in the unit space of the feature map, and then superimpose two 

high-resolution images in channel dimension, and the final image of the required magnification will 

be obtained through a 3 × 3 convolution layer, which is calculated as follows: 
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Figure 6. Dual inverse channel sub-pixel convolution algorithm. 

( )Up MUp
fI F

+ +
= ,          (6) 

where 𝐹𝑀
+  denotes the feature map of the channel in forward order, 𝑓𝑈𝑝  denotes the subpixel 

convolutional upsampling operation, and 𝐼𝑈𝑝
+  denotes the high-resolution feature map obtained from 

the forward-ordered channel feature map by the subpixel convolutional operation. 

( )Up MUp
fI F

− −
= .          (7) 

In Eq (7), 𝐹𝑀
− denotes the feature layer of the channel in reverse order, 𝑓𝑈𝑝 is the same as in 

Eq (6), and 𝐼𝑈𝑝
−   denotes the high-resolution feature map obtained from the reverse-order channel 

feature map by sub-pixel convolution operation. 

( )p3 3
,

SR U Up
ConcatfI I I

+ −



 =
 

.        (8) 

In Eq (8), 𝐶𝑜𝑛𝑐𝑎𝑡[⋅] denotes the positive and negative high-resolution feature maps superimposed in 

the channel dimension, and 𝑓3×3denotes the convolution operation with a convolution kernel size of 3. 

According to Eqs (6)–(8), the steps to obtain the super-resolution image are as follows: First, obtain 

the high-resolution feature maps 𝐼𝑈𝑝
+  + and 𝐼𝑈𝑝

−   of the forward and inverse channel feature layers, 

respectively, and then superimpose the two types of feature maps 𝐼𝑈𝑝
+  + and 𝐼𝑈𝑝

−   in the channel 

dimension. Then, use the 𝑓3×3 convolution to organize the fused high pixel feature maps to obtain the 

final reconstructed high-resolution image. The pseudo code of this algorithm is in Algorithm 2. 
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Algorithm 2: Dual inverse channel subpixel convolution algorithm 

1 function DICSC( x ); 

 Input: Deep feature maps 

 Output: Dual inverse channel fusion feature map 

2 if x = 0 then 

3  return 0; 

4 else 

5  if x = 𝐹𝑀
+ then 

6  𝐼𝑈𝑝
+ = 𝑓𝑈𝑝(𝑥); 

7  end 

8  if x = 𝐹𝑀
− then 

9  𝐼𝑈𝑝
− = 𝑓𝑈𝑝(𝑥); 

10  end 

11  𝑥1 = 𝐶𝑜𝑛𝑐𝑎𝑡[𝐼𝑈𝑝
+ , 𝐼𝑈𝑝

− ] 

12  𝑥2 = 𝑓3×3(𝑥1) 

13  return 𝑥2; 

14 end 

2.4. Loss function 

The L1-paradigm loss function is used to constrain the model at the pixel level to make the 

reconstructed high-resolution image as close as possible to the real high-resolution image by 

calculating the error of pixel values at the corresponding pixel positions in the reconstructed high-

resolution image (SR) and the real high-resolution image (HR) [36], and, due to the good performance 

of the L1-paradigm loss function in the description of the details, most of the image hyper pixel 

algorithms nowadays use the L1-paradigm loss function to guide the model training. The L1-paradigm 

loss function is used to guide the model training, so this paper also adopts the L1-paradigm loss 

function to optimize the network parameters. For a given training set of traffic sign images, 

{𝐼𝐿𝑅
𝑖 , 𝐼𝐻𝑅

𝑖 }
𝑖=1

𝑀
 contains M pairs of low and high-resolution images, and the specific expression of the 

loss function is 

( )
1

1
1

1 M
i i

HR SR
iML I I
=

= − ,         (9) 

where 𝜃  denotes the set of parameters to be learned in the network 𝜃 = (𝜔1, 𝑏1; 𝜔2, 𝑏2; ⋯ ; 𝜔𝑛, 𝑏𝑛) , 

including the weights 𝜔𝑖 and bias 𝑏𝑖 of each network layer, HR denotes the ith real high-resolution 

image, and 𝐼𝑆𝑅
𝑖  denotes the ith super-resolution image after the algorithm reconstruction is completed. 

3. Experimental setup and interpretation of evaluation indicators 

3.1. Experimental platform and parameter settings 

The experimental hardware environment for the model training test in this paper is as follows: the 

CPU of the computer is a 12th Gen Intel® Core™ i5-12600KF 3.70GHz, the system memory is 16 
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GB, and the graphics card is an NVIDIA GeForce RTX 3070 GPU with 8 GB of video memory capacity. 

The software environment is the Windows 10 operating system, Pycharm compilation environment, 

PyTorch1.12 deep learning framework, CUDA 11.6 accelerated computing platform, Anaconda 3.0 

environment manager, and the programming language is Python 3.8. After many experimental 

explorations, the in-depth traffic sign image hyperpixel reconstruction network model proposed in this 

paper and important hyperparameters are summarized, and we find that the model achieves stable and 

reliable performance when the model parameters are set as in Table 1. 

Table 1. Experimental setup. 

Set item parameter 

Iteration 200 

Batch size 4 

Initial learning rate 2e-4 

Min learning rate (2e-4)*0.01 

Optimizer Adam 

momentum 0.9 

Weight decay 0 

Learning rate decay type COS 

thread 4 

Up-sample multiple 2/4 

3.2. Objective evaluation metrics for image super-resolution reconstruction algorithms 

Objective evaluation metrics assess image quality through mathematical models and algorithms, 

which have the advantages of simplicity, efficiency, and reflecting the real phenomenon, among which 

the full-reference type evaluation metrics Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity 

(SSIM) are the most popular objective evaluation metrics being used [37]. Therefore, this paper 

experimentally adopts the PSNR and SSIM metrics to measure the reconstruction quality of traffic 

sign images. 

3.2.1. Peak signal-to-noise ratio 

PSNR is an important image evaluation metric that evaluates the degree of distortion of the 

reconstructed image at the pixel level by calculating the error between the pixel values of the 

corresponding pixel positions of the reconstructed SR image and the real HR image. PSNR is measured 

in dB, and the value of PSNR is directly proportional to the quality of the reconstructed image. The 

larger the value the better the reconstructed quality, and it is calculated as 

2

10
10log IPSNR

MSE

MAX 
 =
 
 

,        (10) 

where 𝑀𝐴𝑋𝐼 is the maximum pixel value of the real image, and 𝑀𝑆𝐸 represents the average value 

of the energy of the difference between the real image and the noise image. 
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3.2.2. Structural similarity 

SSIM is also an important evaluation index of image super-resolution reconstruction performance, 

which is based on the existence of strong correlations in natural images. These correlations carry 

important information about the structure of the object in the human visual scene by detecting whether 

the structural information is altered or not to perceive the approximation information of the image 

distortion and to measure the similarity between the two images. SSIM is mainly composed of the 

information in three parts: luminance, contrast, and structure between the images. The SSIM measures 

the similarity between two images. The metric is more in line with the human visual system, and the 

closer the value is to 1 the better the image reconstruction performance. 

( )
( )( )

( )( )
1 2

2 2 2 2

1 2

2 2
,

xyx y

x y

SSIM x y
c c

c c 

  

   

+ +
=

+ + + +
,     (11) 

where x, y represent the real traffic sign image and the reconstructed traffic sign image by the algorithm, 

respectively; 𝜇𝑥, 𝜇𝑦  denote the average gray scale value of the real and reconstructed traffic sign 

images, respectively; 𝛿𝑥𝑦 denotes the covariance of x and y; 𝛿𝑥 represents the variance of the real 

image; 𝛿𝑦 represents the variance of the reconstructed image; 𝑐1 = (𝑘1𝐿)2 , 𝑐2 = (𝑘2𝐿)2  are 

constants used to maintain stability; L is the dynamic range of the pixel values; 𝑘1 = 0.01; and 𝑘2 =

0.03. The mean is used as an estimate of brightness, the standard deviation as an estimate of contrast, 

and the covariance as a measure of structural similarity. 

4. Experimental results and analysis 

4.1. Analysis of objective indicators 

To verify the performance of the algorithms in this paper, mainstream representative image super-

resolution reconstruction algorithms are selected to do comparison experiments, which contain the 

traditional classical bicubic interpolation method Bicubic [38] and the early excellent deep learning 

methods SRCNN, VDSR, DRRN, RCAN, and CDC mentioned in the review section, as well as the 

newly released deep learning based reconstruction algorithms CVA, TTSR, MICU, etc. which are 

trained to the same experimental subjects under the same experimental conditions, and performance 

comparison experiments with 2x and 4x downsampling rates are conducted on the test set of different 

periods at early morning, noon, and night, and different bad weather scenarios on rainy and foggy days. 

Table 2 records the comparison results of this paper's image reconstruction algorithm with other 

representative algorithms on the image reconstruction quality evaluation metrics, PSNR and SSIM, on 

the test set of five types of scenarios that lead to dim and blurred traffic signs. Observing the results in 

Table 2, it can be found that the super-resolution reconstruction performance PSNR and SSIM metrics 

of image reconstruction are better than other algorithms at different downsampling magnification tests. 

Specifically, when the magnification is small, the advantage of the algorithm proposed in this paper 

over other algorithms is not obvious, due to the 2 times downsampling rate of the LR image still 

retaining a large amount of pixel structure information, that is, the image is not dimmed and blurred 

much, this means that super-resolution reconstruction of LR images with 2-fold downsampling is less 
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difficult, while reconstruction of LR images with 4-fold downsampling is more difficult. At this time, 

this paper algorithm to test the performance of super-resolution reconstruction of the obtained PSNR 

and SSIM indicators are significantly higher than other algorithms, indicating that the image super-

pixel reconstruction algorithm proposed in this paper has obvious advantages in the performance of 

reconstruction of traffic sign images with worse visibility. 

Table 2. Comparison of PSNR and SSIM of different algorithms for five environments 

with traffic sign test set scaling factor of 2/4 times. 

Measure Model Morning Noon Night Rain Fog Mean 

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

x 2 Bicubic 19.254/0.684 16.548/0.473 23.821/0.617 23.168/0.627 20.397/0.358 20.567/0.557 

SRCNN 21.041/0.722 18.528/0.597 25.281/0.703 24.906/0.682 22.657/0.444 22.483/0.650 

VDSR 22.384/0.718 19.954/0.624 25.328/0.718 25.286/0.704 22.914/0.483 23.164/0.679 

DRRN 22.594/0.701 20.185/0.683 25.89/0.724 25.824/0.714 23.345/0.516 23.964/0.686 

RCAN 22.867/0.716 20.675/0.709 25.973/0.728 26.627/0.721 23.728/0.594 24.428/0.701 

CDC 23.673/0.720 21.159/0.718 26.004/0.730 26.991/0.728 24.297/0.602 24.872/0.704 

CVA 23.743/0.717 22.312/0.719 26.174/0.728 27.094/0.654 24.341/0.602 24.733/0.684 

TTSR 23.792/0.721 22.427/0.720 26.206/0.731 27.137/0.696 24.479/0.604 24.808/0.694 

MICU 24.291/0.722 22.513/0.726 26.297/0.733 27.208/0.712 24.608/0.605 24.983/0.700 

Ours 24.346/0.724 22.685/0.730 26.311/0.739 27.270/0.730 24.902/0.606 25.103/0.706 

x 4 Bicubic 15.349/0.473 14.148/0.386 19.164/0.463 20.491/0.601 18.412/0.218 17.631/0.496 

SRCNN 17.880/0.560 15.854/0.465 20.822/0.574 21.096/0.653 19.031/0.294 18.937/0.589 

VDSR 18.237/0.558 16.672/0.493 21.197/0.587 21.639/0.648 19.753/0.342 19.426/0.569 

DRRN 18.549/0.567 16.872/0.506 21.468/0.601 21.948/0.653 20.088/0.387 19.708/0.581 

RCAN 18.934/0.561 17.394/0.514 21.897/0.604 22.681/0.671 20.473/0.406 20.187/0.604 

CDC 19.619/0.572 17.918/0.539 22.161/0.618 23.017/0.669 20.943/0.417 20.884/0.647 

CVA 19.706/0.577 17.975/0.541 22.187/0.617 23.064/0.0.673 21.084/0.416 20.803/0.565 

TTSR 19.743/0.584 18.039/0.548 22.203/0.619 23.137/0.679 21.103/0.420 20.845/0.570 

MICU 19.802/0.590 18.107/0.550 22.326/0.622 23.207/0.681 21.132/0.423 20.915/0.573 

Ours 19.809/0.595 18.129/0.558 22.351/0.620 23.250/0.686 21.191/0.422 20.946/0.656 

4.2. Subjective visual analysis 

To observe more intuitively the performance of the proposed traffic sign image super-resolution 

reconstruction algorithm with other algorithms in human subjective vision, the test images of traffic 

signs in five different environments used in the Experiment 4.1 section are visualized for comparative 

analysis. Since the PSNR and SSIM metrics after image reconstruction of different algorithms have 

been recorded in Section 4.1, only the visual effect graphs of the reconstructed images are shown in 

this section and analyzed comparatively. Figures 7–11 show the comparison maps of the super-

resolution reconstruction effect of the traffic sign test set images in five environments, namely, early 

morning, midday with strong illumination, nighttime under lights, rainy day, and foggy day, 

respectively, after 4-fold downsampling. Figure 7 shows the reconstruction effect of each algorithm in 

the morning when there is no sunlight irradiation, and this paper’s algorithm reconstruction of the 
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traffic sign text is closest to the high-resolution image, slightly clearer than the original HR image, 

compared with other algorithms. Figure 8 shows the visualization of the reconstruction effect of the 

traffic sign at noon with strong light reflection, and this paper’s algorithm and the recently released 

CVA, TTSR, and MICU algorithms have better reconstruction results, and compared to this paper's 

image these are softer, indicating that there is more detailed information. Figure 9 shows the 

reconstruction effect of different algorithms for traffic signs under the influence of multiple light 

sources at night, and it can be seen that the CDC, CVA, TTSR, and MICU algorithms can identify the 

content of “Jiaoda East Road”, while for other algorithms the text of the traffic signs is fuzzier and 

more difficult to recognize, and thus this paper’s algorithm has the highest clarity and strongest 

visibility. Figure 10 shows the foggy weather traffic signs and present white mask fuzzy state. It tests 

this paper’s algorithm and other algorithms in the important traffic signs pattern reconstruction effect, 

and the test results show that, it prohibits the sounding of horns and prohibit overtaking and other signs 

in the "15" characters. This paper’s algorithm in the reconstruction of the edges of the more clearly, 

and there are no jagged edges. Figure 11 is a comparison of the reconstruction effect of the fuzzy traffic 

sign image under a high-speed driving environment in the rain, and this paper's algorithm is closest to 

the original HR image in terms of color, brightness, and clarity, and thus it can be easier to identify the 

traffic sign on the signage prompt information. 

 

Figure 7. Comparison of the 4-fold reconstruction rate between this algorithm and other 

algorithms in a morning light environment. 

 

Figure 8. Comparison of the effect of the 4-fold reconstruction rate between this algorithm 

and other algorithms under a midday strong illumination environment. 
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Figure 9. Comparison of the effect of this paper’s algorithm and other algorithms’ 4-fold 

reconstruction rate at night under a poor line-of-sight environment. 

 

Figure 10. Comparison of the effect of the 4-fold reconstruction rate between this 

algorithm and other algorithms in a foggy visibility reduction environment. 

 

Figure 11. Comparison of the effect of this algorithm and other algorithms’ 4-fold 

reconstruction rate on rainy days and bad weather environments. 

To compare the quality of deep learning algorithms in the reconstruction of high-frequency 

information such as texture, details, edges, and other high-frequency information of feature maps of 

deep networks, calling the torchvision.utils.save_image method in PyTorch allows observing the image 

of feature layers in any layer of the network to study the network’s ability to learn the features and the 



14542 

AIMS Mathematics  Volume 9, Issue 6, 14525–14548. 

effect of the representation of the network. In this paper, we use this method in the last layer of the 

model reconstruction layer. The latest MICU algorithm with better performance is selected to compare 

the feature map details with the 2-fold reconstruction rate of this paper’s algorithm to observe the 

reconstruction effect of the deep learning model on high-frequency detail information, and the 

comparison results are shown in Figure 12. Observation of Figure 12 finds that the high-frequency 

detail information features of this paper's algorithm are more obvious than the MICU algorithm; the 

details, textures, and edges are clearer and the pixels are more coherent, which indicates that this 

paper's algorithm has a better reconstruction effect in the detailed texture part. 

 

Figure 12. Comparison of the details of the feature maps of the last up-sampled layer of 

the reconstructed layer. 

To further compare the effect of different reconstruction algorithms on random image 

reconstruction in natural scenes, the images in the test set are arbitrarily selected for 4-fold double-

three times interpolation downsampling to obtain a low-resolution image, and then the low-resolution 

image is reconstructed into a super-resolution image using the traditional method, the early deep 

learning method, and the recently published reconstruction method. The reconstructed image is 

compared with the original high-resolution image to observe the reconstruction effect, as shown in 

Figure 13. 

 

Figure 13. Effect of different algorithms in reconstructing 4-fold downsampled low-

resolution images in randomized natural scenes. 

In Figure 13, the first row of images is reconstructed by different algorithms, the second row of 
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low-resolution images simulated by the three times interpolation downsampling method, the second 

row of images is overall very fuzzy where it is difficult to recognize the traffic signs and text in the 

picture. Observing the first row of reconstructed images by different algorithms, it can be seen that the 

traditional Bicubic algorithm reconstructs the image with very poor effect, and the legibility is even 

lower than that of the four times downsampled images. The SRCNN and CDC methods are earlier 

deep learning methods, and the reconstruction effect is significantly improved, but there is still an 

obvious fuzzy visual sensation, and the detailed reconstruction effect needs to be further improved. 

The CVA, TTSR, and MICU models are the latest image super-resolution reconstruction algorithms 

based on the deep learning method, and their image reconstruction quality is significantly better than 

the earlier SRCNN and CDC methods in terms of clarity, light and dark coordination, detailed texture, 

and other aspects, but the text recognition clarity still needs to further improvement. Finally, for the 

method proposed in this paper, it can be seen that for foggy days, the reconstruction effect is still better, 

the text and traffic signs are clearer. Compared with the latest proposed reconstruction algorithms, this 

method has a better practical visual reconstruction effect. 

From the comparative results of these experiments, the algorithm in this paper outperforms the 

earlier mainstream representative algorithms and the latest released algorithms in terms of objective 

indexes and subjective visual effects in the task of super-resolution reconstruction of dimly lit blurred 

traffic sign images. The fusion of multi-layer network features effectively integrates the high-

frequency information with the high-level semantic information, which provides the reconstruction 

layer with rich detailed texture edge features and semantic recognition features. The dual inverse 

channel sub-pixel convolutional up-sampling strategy provides the reconstructed image with richer 

pixel and spatial information, which can make full use of the different levels of network fusion to 

reconstruct the detailed edges and subtle texture structures. 

4.3. Ablation experiments 

To demonstrate the strong contribution of the Attention Residual module (AR), the Important 

Feature Fusion Strategy (IFFS) at the heterogeneous network layer, and the Dual Inverse Channel 

Subpixel Convolutional Algorithm (DICSC) to the overall network model reconstruction performance, 

the following experiments provide a point-by-point comparison of the three improvement components 

by the control variable method. In this experiment, different model PSNR and SSIM values are 

computed using the difficult 4-fold super-resolution for the traffic sign test set images, and the image 

super-pixel reconstruction network model combined with six convolutional feature extraction modules 

and sub-pixel convolutional upsampling modules is used as the baseline model; model a indicates that 

the attentional residuals module is used without the feature fusion strategy and the dual inverse channel 

sub-pixel convolution method; model b indicates that the feature fusion strategy without using the 

attention residual module and the dual inverse channel subpixel convolution method; model c indicates 

that the dual inverse channel subpixel convolution up-sampling method is used without using the 

attention residual module and the feature fusion strategy; model d (Ours) is the final model proposed 

in this paper, which contains the attention residual module, the feature fusion strategy, and the dual 

inverse channel subpixel convolution up-sampling method, and the results of the ablation experiments 

are shown in Table 3. 
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Table 3. Effect of different modules on model performance. 

Module Model Morning Noon Night Rain Fog Mean 

AR IFFS DICSC x4 x4 x4 x4 x4 x4 

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

× × × Standard 17.654/0.439 16.957/0.483 21.049/0.538 21.791/0.583 19.860/0.399 18.884/0.532 

√ × × a 18.568/0.532 17.323/0.520 21.639/0.599 22.664/0.631 20.291/0.407 19.591/0.607 

× √ × b 18.554/0.539 17.309/0.518 21.597/0.583 22.667/0.636 20.285/0.401 19.579/0.586 

× × √ c 18.574/0.547 17.316/0.529 21.623/0.591 22.672/0.643 20.294/0.408 19.582/0.599 

√ √ √ Ours 19.809/0.595 18.129/0.558 22.351/0.620 23.250/0.686 21.191/0.422 20.946/0.656 

Observing and analyzing the experimental results in Table 3, to verify the importance of the attention residual module in the process of feature 

extraction, the residual connection avoids the problem of gradient vanishing in the process of backpropagation, and at the same time ensures that 

the high-frequency information features are effectively retained. The attention mechanism strengthens the expression of the important features and 

reduces the amount of the low-frequency redundant information transmission to optimize the feature extraction ability, which can be supported by 

the significant improvement of the evaluation indexes in the model as compared to the baseline models, and the PSNR and SSIM evaluation 

indexes can also be corroborated. Similarly, observing that the evaluation indexes of model b and model c are both improved compared to the 

baseline model indicates that the feature fusion strategy in model b and the dual inverse channel sub-pixel convolutional up-sampling method in 

model c both play an active role in enriching the reconstruction layer with detailed high-frequency and high-semantic information, enhancing the 

reconstruction performance, and the fusion of important features in different feature layers. The dual inverse channel sub-pixel convolution method 

enriches the detailed edge pixels and ensures multiple spatial information in the unit expansion region, which ultimately improves the visibility of 

the local physical properties of the image, such as the details and textures. Finally, when all the modules work together, the PSNR and SSIM reach 

the highest level of 20.946dB and 0.656, respectively, which is a better performance than using any of the modules singularly. This shows that 

each module has its advantages and also promote each other to make the overall model reach the best state.  
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5. Statement of conclusions and limitations 

In this paper, a super-resolution reconstruction algorithm for dim fuzzy traffic sign images is 

proposed, which incorporates three main functional modules, namely, an attention residual network, 

important feature fusion module, and double inverse channel sub-pixel convolution structure. The 

attention residual network is designed for the main feature extraction, which adopts the residual 

bottleneck structure to deepen the network to improve the nonlinear expression ability and fit more 

complex features while avoiding the gradient disappearance that leads to the model failure, and the 

attention mechanism strengthens the expression of important high-frequency information and 

suppresses the propagation of redundant information. In addition, the important hierarchical feature 

fusion module adequately fuses the important features of different feature layers, and the high-

frequency and high-semantic features are combined with the important features of different layers. The 

high-frequency features and high-semantic features are fully fused to enrich the reconstructed feature 

layer and improve the expression of detailed texture features. Finally, the dual inverse channel sub-

pixel convolution algorithm is used for up-sampling to realize super-resolution reconstruction of the 

image, which makes the spatial layout of pixels in the reconstructed image more reasonable, attenuates 

the obvious pixel misalignment phenomenon, and makes the image visibility stronger. The 

experimental evaluation of the proposed algorithm model was carried out on the Chinese traffic sign 

image dataset, and the experiments show that this paper’s algorithm achieves better performance on 

the traffic sign image dataset which is more difficult to recognize. Compared with other algorithms, it 

performs better in both objective evaluation indexes and subjective visualization, and this paper’s 

algorithm has a better reconstruction effect in the edge details, and it has a better practical visualization 

effect. The method in this paper improves the accuracy of gray and fuzzy traffic sign recognition in 

complex and harsh environments, which improves the reliability of safe driving aids and enriches 

human-computer interaction technology in automatic driving. 

The research in this paper has some limitations. The experimental subjects in this paper do not 

consider a wider range of geographical traffic signage, as well as the effects of more seasons, climates, 

periods, inclement weather, and other environments on the quality of super-resolution reconstruction 

of traffic sign images, and the model's generalization ability needs to be further verified. In addition, 

this paper did not select all the reconstruction algorithms released in the last three years for 

performance comparison and only selected three of the newer released models for comparative 

experiments, so it is not possible to determine the performance of all the image super-resolution 

reconstruction algorithms in this field. In subsequent work, a wider range of traffic sign image training 

data will be collected and other reconstruction algorithms will be verified for their performance on the 

task of super-resolution reconstruction of traffic sign images. 
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