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Abstract: In this article, the investigation into the Lie symmetry algebra of the geodesic equations
of the canonical connection on a Lie group was continued. The key ideas of Lie group, Lie algebra,
linear connection, and symmetry were quickly reviewed. The focus was on those Lie groups whose Lie
algebra was six-dimensional solvable and indecomposable and for which the nilradical was abelian and
had a one-dimensional center. Based on the list of Lie algebras compiled by Turkowski, there were
eight algebras to consider that were denoted by A6,20–A6,27. For each Lie algebra, a comprehensive
symmetry analysis of the system of geodesic equations was carried out. For each symmetry Lie algebra,
the nilradical and a complement to the nilradical inside the radical, as well as a semi-simple factor, were
identified.
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1. Introduction

Any Lie group is equipped with a natural linear connection ∇, and therefore, a canonical system of
geodesic equations. This connection was introduced in 1926 by Cartan and Schouten [1]. Recently, a
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lot of work has been done on the symmetries of the geodesic equations of the canonical connection.
Ghanam and Thompson considered the problem for all three and four-dimensional indecomposable
Lie algebras [2]. They also considered six-dimensional nilpotent Lie algebras [3]. Almusawa et al. [4]
considered the probelm for the five-dimensional indecomposable Lie algebras with co-dimension one
abelian nilradical.

Recently, Almutiben et al. considered the problem for the case where the nilradical is of
co-dimension two. In dimension four, there is only one such indecompsable Lie algebra with
co-dimensional two nilradical, namely, A4,12 in the Winternitz list [5]. In dimension five, there are
three five-dimensional Lie algebras with co-dimension two abelian nilradical. These algebras are
A5,33–A5,35 in [5]. In all these cases, a comprehensive analysis of the symmetries of the geodesic
equations was performed. Almutiben et al. [6] also considered the problem for the six-dimensional
solvable indecomposable Lie algebras. Following the classification given by Turkowski [7], there are
forty classes of non-isomorphic six-dimensional Lie algebras. Among these forty algebras, the first
nineteen A6,1–A6,19 have a four-dimensional, or equivalently co-dimension two, abelian nilradical and
a two-dimensional abelian complement. Almutiben et al has given a comprehensive analysis of the
symmetries in these nineteen cases [6] .

In this paper, we continue to study the symmetries corresponding to the eight algebras A6,20–A6,27

in [7]. These algebras are characterized by the property that they have a four-dimensional abelian
nilradical and a one-dimensional center.

An outline of the paper is as follows: In Section 2, we provide some background material that helps
to motivate our analysis. We do not give very specific details, but do provide some useful references.
In Section 3, we give the definition of the canonical connection ∇ on a Lie group and a summary of
its properties. In Section 4, we review the symmetries of differential equations and the Lie invariance
condition. In Section 5, for each algebra A6,20–A6,27 in Turkowski’s list, we give the geodesic equations,
a basis for the symmetry algebra in terms of vector fields, and, finally, we identify the symmetry Lie
algebra in terms of the nilradical and its complement. We will use ⋊ to denote a semi-direct product
and ⊕ for the direct sum of algebras.

2. Background concepts

In order to motivate some of the material, we shall sketch a few of the key ideas encountered below.
We shall be considering certain systems of second order ordinary differential equations. The space of
independent variables that occur serve as a system of local coordinates on a Lie group G. We shall take
for granted the basic definitions and properties of Lie groups. One may think of a Lie group as being
an object that is intermediate between a vector space and a differentiable manifold. In particular, on a
Lie group, one may make sense of various geometric objects (vector fields and one-forms primarily)
as being left or right invariant. We refer the reader to [8–10] for readable introductions to the topic,
that will be helpful in understanding the present article. In addition, these references help to explain
the relationship between Lie groups and Lie algebras in a pragmatic way. Although the differential
equations treated here technically “live” on a Lie group, in practice, all of our calculations are done at
the Lie algebra level. Another more advanced source that covers the same material is [11].

As regarding precise definitions related to Lie algebras, we refer in the first instance to [12] and also
to [11]. For a solvable Lie algebra, one should think roughly of a subspace of upper triangular matrices
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and for a nilpotent Lie algebra, a subspace of the strictly upper triangular matrices. Nonetheless,
abelian sub-algebras are nilpotent, so subspaces of diagonal matrices are also nilpotent.

An important construct that we shall make use of is the semi-direct product of Lie algebras. The
idea can be understood in various ways, but perhaps the simplest is to say that an algebra is a semi-
direct product of Lie algebras if it is a vector space direct sum of a sub-algebra and an ideal. Solvable,
not nilpotent, Lie algebras are only semi-direct products when there is an abelian complement to the
nilradical. In this article, we shall be concerned with the Lie algebras A6,20–A6,27 in [7]. Of these eight
classes, only three, A6,22, A6,23, A6,27 for which ϵ = 0, are semi-direct products. However, we shall see
the appearance of semi-direct products again when we analyze the symmetry algebras in Section 5.
In general, a symmetry algebra need not be solvable, but rather will have a Levi decomposition, that
is, it will be a semi-direct product of a solvable ideal (that itself may or may not be a semi-direct
product) and a semi-simple sub-algebra. All of the algebras A6,20–A6,27 studied in Section 5, produce
semi-simple sub-algebras.

Concerning the definition of a linear connection, one may refer to [11] among a host of many
excellent references. In relation to the current paper, one really only needs to understand that a linear
connection produces a system of second order ordinary differential equations, the geodesics. These
systems are similar to equations encountered in particle mechanics; the simplest example arises from
the flat connection on Euclidean space (in arbitrary dimension), and the corresponding differential
equations are the equations of motion of a free particle. More general connections introduce, as well
as second order terms, first order terms that are quadratic in velocities.

Finally, we come to the notion of symmetry of a differential equation. Lie’s original idea was that
a differential equation that could be integrated explicitly must possess an underlying symmetry. By
the term “symmetry”, we understand a change of variables may be both independent and dependent
variables, such that after applying a finite transformation, the differential equation remains invariant.
For a determined system of ordinary differential equations, and later, partial differential equations, the
set of such symmetries comprises what was to become known as a Lie transformation group. Very
quickly it was realized that the underlying structure need not be associated to a differential equation at
all, and led to the idea of an abstract Lie group. It was also understood by Lie and his contemporaries,
that it would be virtually impossible to calculate Lie transformation groups explicitly, even in some of
the simplest cases. That circumstance led Lie to another great insight: that it would be far easier to work
at the infinitesimal level and find not the Lie group, but rather its Lie algebra. In fact, Lie frequently
uses the term “group”, whereas today we would be more careful and refer to the “Lie algebra”.

In this work, Lie groups and Lie algebras appear at two levels. First of all, the differential equations
that we study constitute an intrinsic part of the Lie group on which they are defined. Second, the set of
symmetries of the differential equations itself forms a Lie group. However, the relationship between
the two Lie groups and, more importantly, their associated Lie algebras is not a simple one in general.
It is only in the case where the first Lie algebra has a trivial center that one can be sure that the first
Lie algebra is isomorphic to a sub-algebra of the second; the sub-algebra in question is then either the
algebra of left or right-invariant vector fields. In fact, the Lie algebras studied below in Section 5 all
have a one-dimensional center.
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3. The canonical connection on Lie groups

On left-invariant vector fields X and Y , the canonical symmetric connection ∇ on a Lie group G is
defined by

∇XY =
1
2

[X,Y], (3.1)

and then extended to arbitrary vector fields using linearity and the Leibnitz rule. The connection ∇ is
left-invariant. One could just as well use right-invariant vector fields to define ∇, but one must check
that ∇ is well-defined. Properties of the canonical connection have been studied in [11], and we will
summarize them in the following proposition:

Proposition 1. For the canonical connection defined by (3.1):

(1) The torsion is zero.
(2) The curvature tensor R is given by R(X,Y)Z = 1

4 [[X,Y],Z].
(3) The curvature tensor R is covariantly constant.
(4) The curvature tensor R is zero if, and only if, the Lie algebra is two-step nilpotent.
(5) The Ricci tensor is symmetric and in fact a multiple of the Killing form.
(6) The Ricci tensor is bi-invariant.

4. Symmetries of the geodesic equations

In this section, we explain the algorithm for finding the Lie symmetries of the geodesic equations.
In local coordinates and in dimension n, the geodesic equations are given by

d2xi

dt2 + Γ
i
jk

dx j

dt
dxk

dt
= 0, (4.1)

where Γi
jk are the connection components or Christoffel symbols, where i, j, k = 1, ..., n. In dimension

six, let’s take our coordinates to be t, p, q, x, y, z,w, where t is the independent variable and p, q, x, y, z,w
are the dependant variables, so are functions of t. Define Γ to be

Γ = T
∂

∂t
+ P
∂

∂p
+ Q
∂

∂q
+ X
∂

∂x
+ Y
∂

∂y
+ Z
∂

∂z
+W

∂

∂w
, (4.2)

where T, P,Q, X,Y,Z, and W are unknown functions of (t, p, q, x, y, z,w). The first prolongation Γ1 and
second prolongation Γ2 of Γ are given by

Γ1 = Γ + Pt
∂

∂ ṗ
+ Qt

∂

∂q̇
+ Xt

∂

∂ẋ
+ Yt
∂

∂ẏ
+ Zt
∂

∂ż
+Wt

∂

∂ẇ
, (4.3)

Γ2 = Γ1 + Ptt
∂

∂ p̈
+ Qtt

∂

∂q̈
+ Xtt

∂

∂ẍ
+ Ytt

∂

∂ÿ
+ Ztt

∂

∂z̈
+Wtt

∂

∂ẅ
, (4.4)
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where

Pt = Dt(P) − ṗDt(T ), Ptt = Dt(Pt) − p̈Dt(T ),
Qt = Dt(Q) − q̇Dt(T ), Qtt = Dt(Qt) − q̈Dt(T ),
Xt = Dt(X) − ẋDt(T ), Xtt = Dt(Xt) − ẍDt(T ),
Yt = Dt(Y) − ẏDt(T ), Ytt = Dt(Yt) − ÿDt(T ),
Zt = Dt(Z) − żDt(T ), Ztt = Dt(Zt) − z̈Dt(T ),

Wt = Dt(W) − ẇDt(T ), Wtt = Dt(Wt) − ẅDt(T ),

(4.5)

and Dt is given by

Dt =
∂

∂t
+ ṗ
∂

∂p
+ q̇
∂

∂q
+ ẋ
∂

∂x
+ ẏ
∂

∂y
+ ż
∂

∂z
+ ẇ
∂

∂w
+ p̈
∂

∂ṗ
+ q̈
∂

∂q̇
+ ẍ
∂

∂ẋ
+ ÿ
∂

∂ẏ
+ z̈
∂

∂ż
+ ẅ
∂

∂ẇ
. (4.6)

Finally, Γ is said to be a Lie symmetry of the system of the geodesic equations if

Γ2(∆(2)
i )|

∆
(2)
i =0 = 0, (4.7)

where

∆
(2)
i =

d2xi

dt2 − f i(t, xi), i = 1, 2, ..., 6. (4.8)

Equation (4.7) is called the Lie invariance condition. We equate the coefficients of the linearly
independent derivation terms to zero, and this yields to an over-determined system of partial differential
equations. For a good reference on symmetries of differential equations, we refer the reader to [13].

5. Lie symmetry algebras of A6,20–A6,27

In this section, we consider the eight six-dimensional Lie algebras with co-dimension two nilradical
and one-dimensional center, A6,20–A6,27 in [7]. For each Lie algebra, we will list the nonzero brackets,
the system of the geodesic equations and, the symmetry vector fields. Finally, we analyze the symmetry
Lie algebra in terms of its nilradical, complement, and semi-simple sub-algebra.

5.1. Algebra Aab
6,20 (ab: a2 + b2 , 0)

The nonzero brackets for the algebra Aab
6,20 are given by

[e1, e4] = ae4, [e1, e6] = e6, [e2, e4] = be4, [e1, e2] = e3, [e2, e5] = e5. (5.1)

The geodesic equations are given by

p̈ = ṗ(aż + bẇ), q̈ = q̇ż, ẍ = ẋẇ, ÿ = żẇ, z̈ = 0, ẅ = 0. (5.2)

For the general case Aa,0,b,0
6,20 , the symmetry Lie algebra is spanned by:

e1 = Dw, e2 = Dz, e3 = tDt, e4 = Dt, e5 = tDy,

e6 = Dp, e7 = Dy, e8 = Dq, e9 = Dx, e10 = pDp,

e11 = wDt, e12 = zDt, e13 = wDy, e14 = zDy, e15 = qDq,

e16 = xDx, e17 = ezDq, e18 = ewDx, e19 = (wz − 2y)Dt, e20 = (wz − 2y)Dy,

e21 = ebweazDp.

(5.3)
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We make the following change of basis:

e1 = e4, e2 = e6, e3 = e7, e4 = e8, e5 = e9,

e6 = e11, e7 = e12, e8 = e13, e9 = e14, e10 = e17,

e11 = e18, e12 = e21, e13 = e1 +
e14
2 , e14 = e2 +

e13
2 , e15 = e3 −

e20
2 ,

e16 = e10, e17 = e15, e18 = e16, e19 = e3 +
e20
2 , e20 = e5,

e21 = e19.

(5.4)

The nonzero brackets of the symmetry algebra are given by

[e1, e15] = e1, [e1, e19] = e1, [e1, e20] = e3, [e2, e16] = e2,

[e3, e15] = e3, [e3, e19] = −e3, [e3, e21] = −2e1, [e4, e17] = e4,

[e5, e18] = e5, [e6, e13] = −e1, [e6, e15] = e6, [e6, e19] = e6,

[e6, e20] = e8, [e7, e14] = −e1, [e7, e15] = e7, [e7, e19] = e7,

[e7, e20] = e9, [e8, e13] = −e3, [e8, e15] = e8, [e8, e19] = −e8,

[e8, e21] = −2e6, [e9, e14] = −e3, [e9, e15] = e9, [e9, e19] = −e9,

[e9, e21] = −2e7, [e10, e14] = −e10, [e10, e17] = e10, [e11, e13] = −e11,

[e11, e18] = e11, [e12, e13] = −be12, [e12, e14] = −ae12, [e12, e16] = e12,

[e19, e20] = 2e20, [e19, e21] = −2e21, [e20, e21] = −2e19.

(5.5)

We describe the symmetry algebra by the following proposition:

Proposition 2. The symmetry Lie algebra is a twenty-one-dimensional Lie algebra. It is a semi-direct
product of eighteen-dimensional solvable Lie algebra and sl(2,R). The solvable part is (R12 ⋊ R6) a
semi-direct product of R12 and R6. Therefore, the symmetry algebra can be identified as (R12 ⋊ R6) ⋊
sl(2,R).

5.2. Algebra Aa
6,21

The nonzero brackets for the algebra Aa
6,21 are given by

[e1, e4] = e4, [e1, e5] = e6, [e2, e4] = ae4, [e2, e5] = e5, [e2, e6] = e6, [e1, e2] = e3. (5.6)

The geodesic equations are given by

p̈ = ṗ(ż + aẇ), q̈ = ẇ(q̇ − xż) + żẋ, ẍ = ẋẇ, ÿ = żẇ, z̈ = 0, ẅ = 0. (5.7)

For the general case Aa,0
6,21, the symmetry Lie algebra is spanned by

e1 = Dt, e2 = tDy, e3 = Dy, e4 = Dp,

e5 = Dq, e6 = Dz, e7 = Dw, e8 = tDt,

e9 = pDp, e10 = wDt, e11 = zDt, e12 = wDy,

e13 = zDy, e14 = xDq, e15 = zDq + Dx, e16 = qDq + xDx,

e17 = ewDq, e18 = ewDx, e19 = (wz − 2y)Dt, e20 = (wz − 2y)Dy,

e21 = eawezDp.

(5.8)
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We make the following change of basis:

e1 = e1, e2 = e3, e3 = e4, e4 = e5, e5 = e10, e6 = e11,

e7 = e12, e8 = e13, e9 = e14, e10 = e15, e11 = e17, e12 = e18,

e13 = e21, e14 = e6 +
e21
2 , e15 = e7 +

e13
2 , e16 = e8 −

e20
2 , e17 = e9, e18 = e16,

e19 = e2, e20 = e8 +
e20
2 , e21 = e19.

(5.9)

The nonzero brackets of the symmetry algebra are given by:

[e1, e15] = −e1, [e1, e18] = e1, [e2, e18] = e2, [e3, e5] = e1,

[e3, e15] = −e3, [e3, e18] = e3, [e4, e5] = e2, [e4, e14] = −e2,

[e4, e18] = e4, [e6, e14] = −e9, [e6, e16] = e6, [e6, e19] = e8,

[e6, e20] = e6, [e7, e15] = −e10, [e7, e16] = e7, [e7, e20] = −e7,

[e7, e21] = −2e12, [e8, e14] = −e10, [e8, e16] = e8, [e8, e20] = −e8,

[e8, e21] = −2e6, [e9, e16] = e9, [e9, e19] = e10, [e9, e20] = e9,

[e10, e16] = e10, [e10, e20] = −e10, [e10, e21] = −2e9, [e11, e17] = e11,

[e12, e15] = −e9, [e12, e16] = e12, [e12, e19] = e7, [e12, e20] = e12,

[e13, e14] = −e13, [e13, e15] = −ae13, [e13, e17] = e13, [e19, e20] = −2e19,

[e19, e21] = −2e20, [e20, e21] = −2e21.

(5.10)

We describe the symmetry algebra by the following proposition:

Proposition 3. The symmetry Lie algebra is a twenty-one-dimensional Lie algebra. It is a semi-direct
product of eighteen-dimensional solvable Lie algebra and sl(2,R). The nilradical is
thirteen-dimensional decomposable Lie algebra. In fact, the nilradical is a direct sum of A5,1 in
Winternitz [5] and R8. The nilradical has a five-dimensional abelian complement. Therefore, the
symmetry algebra can be identified as

((A5,1 ⊕ R
8) ⋊ R5) ⋊ sl(2,R),

where the nonzero brackets of A5.1 are given by

[e3, e5] = e1, [e4, e5] = e2. (5.11)

5.3. Algebra Aaϵ
6,22 (aϵ: a2 + ϵ2 , 0, ϵ = 0, 1)

The nonzero brackets for the algebra Aaϵ
6,22 are given by

[e1, e3] = e3, [e1, e5] = e6, [e2, e4] = e4, [e2, e3] = ae3, [e1, e2] = ϵe5. (5.12)

5.3.1. Aϵ=0
6,22

The geodesic equations are given by

p̈ = żẏ, q̈ = ẇq̇, ẍ = ẋ(ż + aẇ), ÿ = 0, z̈ = 0, ẅ = 0. (5.13)
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For the general case Aa,0,ϵ=0
6,22 , the symmetry Lie algebra is spanned by

e1 = Dy, e2 = Dw, e3 = Dz, e4 = tDt,

e5 = Dx, e6 = Dt, e7 = tDp, e8 = Dp,

e9 = Dq, e10 = xDx, e11 = wDt, e12 = yDt,

e13 = zDt, e14 = wDp, e15 = yDp, e16 = zDp,

e17 = qDq, e18 = pDp + yDy, e19 = ewDq, e20 =
z2

2 Dp + zDy,

e21 =
zt
2 Dp + tDy, e22 = (yz − 2p)Dt, e23 = (yz − 2p)Dp, e24 =

wz
2 Dp + wDy,

e25 = eawezDx, e26 = ( yz2

2 − pz)Dp + (yz − 2p)Dy.

(5.14)

We consider the following change of basis:

e1 = e1, e2 = e5, e3 = e6, e4 = e8, e5 = e9,

e6 = e11, e7 = e13, e8 = e14, e9 = e16, e10 = e19,

e11 = e20, e12 = e24, e13 = e25, e14 = e2, e15 = e3 +
e15
2 ,

e16 = e4 + e18, e17 = e10, e18 = e17, e19 = e4 +
e23
2 , e20 = e7,

e21 = e12, e22 = e15, e23 = e18 + e23, e24 = e21, e25 = e22,

e26 = e26.

(5.15)

The nonzero brackets of the symmetry algebra are given by

[e1, e15] = e4
2 , [e1, e16] = e1, [e1, e19] = e9

2 ,

[e1, e21] = e3, [e1, e22] = e4, [e1, e23] = e1 + e9,

[e1, e25] = e7, [e1, e26] = e11, [e2, e17] = e2,

[e3, e16] = e3, [e3, e19] = e3, [e3, e20] = e4,

[e3, e24] = e1 +
e9
2 , [e4, e16] = e4, [e4, e19] = −e4,

[e4, e23] = −e4, [e4, e25] = −2e3, [e4, e26] = −2e1 − e9,

[e5, e18] = e5, [e6, e14] = −e3, [e6, e16] = e6,

[e6, e19] = e6, [e6, e20] = e8, [e6, e24] = e12,

[e7, e15] = −e3, [e7, e16] = e7, [e7, e19] = e7,

[e7, e20] = e9, [e7, e24] = e11, [e8, e14] = −e4,

[e8, e16] = e8, [e8, e19] = −e8, [e8, e23] = −e8,

[e8, e25] = −2e6, [e8, e26] = −2e12, [e9, e15] = −e4,

[e9, e16] = e9, [e9, e19] = −e9, [e9, e23] = −e9,

[e9, e25] = −2e7, [e9, e26] = −2e11, [e10, e14] = −e10,

[e10, e18] = e10, [e11, e15] = −e1 −
9
2 , [e11, e16] = e11,

[e11, e21] = e7, [e11, e22] = e9, [e11, e23] = e11,

[e12, e14] = −e1 −
9
2 , [e12, e16] = e12, [e12, e21] = e6,

[e12, e22] = e8, [e12, e23] = e12, [e13, e14] = −ae13,

[e13, e15] = −e13, [e13, e17] = e13, [e19, e20] = 2e20,

[e19, e21] = −e21, [e19, e22] = e22, [e19, e24] = e24,

[e19, e25] = −2e25, [e19, e26] = −e26, [e20, e21] = −e22,

[e20, e23] = −e20, [e20, e25] = −2e19, [e20, e26] = −2e24,

[e21, e23] = −e21, [e21, e24] = −e19 + e23, [e21, e26] = −e25,

[e22, e23] = −2e22, [e22, e24] = −e20, [e22, e25] = −2e21,

[e22, e26] = −2e23, [e23, e24] = −e24, [e23, e25] = −e25,

[e23, e26] = −2e26, [e24, e25] = −e26.

(5.16)
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We describe the symmetry algebra by the following proposition:

Proposition 4. The symmetry Lie algebra is a twenty-six-dimensional Lie algebra. It is a semi-direct
product of an eighteen-dimensional solvable Lie algebra and sl(3,R). The solvable part is (R13 ⋊ R5),
a semi-direct product of R13 and R5. Therefore, the symmetry algebra can be identified as (R13 ⋊ R5) ⋊
sl(3,R).

5.3.2. Aϵ=1
6,22

The geodesic equations are given by

p̈ = ṗ(aż + ẇ), q̈ = q̇ż, ẍ = ẏẇ, ÿ = żẇ, z̈ = 0, ẅ = 0. (5.17)

For the general case Aa,0,ϵ=1
6,22 , the symmetry Lie algebra is spanned by

e1 = Dt, e2 = tDx, e3 = Dp, e4 = Dx,

e5 = Dy, e6 = Dq, e7 = Dw, e8 = Dz,

e9 = tDt, e10 = pDp, e11 = wDt, e12 = zDt,

e13 = zDx, e14 = wDx, e15 = qDq, e16 = yDx + zDy,

e17 = ezDq, e18 = twDx + 2tDy, e19 =
w2

2 Dx + wDy, e20 = wzDx + 2zDy,

e21 = (yz − 2y)Dt, e22 = eweazDp, e23 = (wy − w2z
2 )Dx + (−wz + 2y)Dy.

(5.18)

We consider the following change of basis:

e1 = e1, e2 = e2, e3 = e3, e4 = e4, e5 = e5,

e6 = e6, e7 = e11, e8 = e12, e9 = e13, e10 = e14,

e11 = e16, e12 = e17, e13 = e19, e14 = e20, e15 = e22,

e16 = e7, e17 = e8, e18 = e9 +
e23
2 , e19 = e10, e20 = e15,

e21 = e9 −
e23
2 , e22 = e18, e23 = e21.

(5.19)

The nonzero brackets of the symmetry algebra are given by

[e1, e2] = e4, [e1, e18] = e1, [e1, e21] = e1,

[e1, e22] = e10 + 2e5, [e2, e7] = −e10, [e2, e8] = −e9,

[e2, e18] = −e2, [e2, e21] = −e2, [e2, e23] = 2e11 − e14,

[e3, e19] = e3, [e5, e11] = e4, [e5, e18] = e5 +
e10
2 ,

[e5, e21] = −e5 −
e10
2 , [e5, e23] = −2e1, [e6, e20] = e6,

[e7, e16] = −e1, [e7, e18] = e7, [e7, e21] = e7,

[e7, e22] = 2e13, [e8, e17] = −e1, [e8, e18] = e8,

[e8, e21] = e8, [e8, e22] = e14, [e9, e17] = −e4,

[e10, e16] = −e4, [e11, e13] = −e10, [e11, e14] = −e9,

[e11, e17] = −e5, [e11, e18] = −e11 + e14, [e11, e21] = e11 − e14,

[e11, e22] = −2e2, [e11, e23] = −2e8, [e12, e17] = −e12,

[e12, e20] = e12, [e13, e16] = −e10 − e5, [e13, e18] = e18,

[e13, e21] = −e13, [e13, e23] = −2e7, [e14, e16] = −e9,

[e14, e17] = −e10 − 2e5, [e14, e18] = e14, [e14, e21] = −e14,

[e14, e23] = −4e8, [e15, e16] = −e15, [e15, e17] = −ae15,

[e15, e19] = e15, [e16, e18] = e11
2 −

e14
2 , [e16, e21] = − e11

2 +
e14
2 ,

[e16, e22] = e2, [e16, e23] = e8, [e17, e18] = − e13
2 ,

[e17, e21] = e13
2 , [e17, e23] = e7, [e21, e22] = 2e22,

[e21, e23] = −2e23, [e22, e23] = −4e21.

(5.20)
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We describe the symmetry algebra by the following proposition:

Proposition 5. The symmetry Lie algebra is a twenty-three-dimensional Lie algebra. It is a semi-direct
product of twenty-dimensional solvable Lie algebra and sl(2,R). The solvable part is (R15⋊R5), a semi-
direct product of R15 and R5. Therefore, the symmetry algebra can be identified as (R15⋊R5)⋊ sl(2,R).

5.4. Algebra Aaϵ
6,23(aϵ: a ≥ 0, ϵ = 0, 1)

The nonzero brackets for the algebra Aaϵ
6,23 are given by

[e1, e3] = e3, [e1, e4] = e4, [e1, e5] = e6, [e2, e3] = e4,

[e2, e4] = −e3, [e2, e5] = ae6, [e1, e2] = ϵe5.
(5.21)

5.4.1. Case 1: Aa,ϵ=0
6,23

The geodesic equations when ϵ = 0 are given by

p̈ = ṗż − q̇ẇ, q̈ = ṗẇ + q̇ż, ẍ = ẏ(ż + aẇ), ÿ = 0, z̈ = 0, ẅ = 0. (5.22)

The symmetry Lie algebra is spanned by

e1 = Dt, e2 = Dp,

e3 = Dq, e4 = tDx,

e5 = Dx, e6 = Dy,

e7 = Dw, e8 = Dz,

e9 = tDt, e10 = wDt,

e11 = yDt, e12 = zDt,

e13 = yDx, e14 = zDx,

e15 = wDx, e16 = pDp + qDq,

e17 = xDx + yDy, e18 = qDp − pDq,

e19 =
t(aw+z)

2 Dx + tDy, e20 = ((aw + z)y − 2x)Dx,

e21 =
w(aw+z)

2 Dx + wDy, e22 =
z(aw+z)

2 Dx + zDy,

e23 =
((aw+z)y−2x)

a Dt, e24 = cos (w)ezDp + sin (w)ezDq,

e25 = sin (w)ezDp − cos (w)ezDq, e26 =
( aw

2 +
z
2 )(awy+yz−2x)

a Dx +
((aw+z)y−2x)

a Dy.

(5.23)

We consider the following change of basis:

e1 = e1, e2 = e2, e3 = e3, e4 = e5, e5 = e6, e6 = e10,

e7 = e12, e8 = e14, e9 = e15, e10 = e21, e11 = e22, e12 = e24,

e13 = e25, e14 = e7 +
ae13

2 , e15 = e8 +
e13
2 , e16 = e9 + e17, e17 = e16, e18 = e18,

e19 = e4, e20 = e9 +
e20
2 , e21 = e11, e22 = e13, e23 = e17 + e20, e24 = e19,

e25 = e23, e26 = e26.

(5.24)
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The nonzero brackets of the symmetry algebra are given by

[e1, e16] = e1, [e1, e19] = e4, [e1, e20] = e1,

[e1, e24] = ae9
2 + e5 +

e8
2 , [e2, e17] = e2, [e2, e18] = −e3,

[e3, e17] = e3, [e3, e18] = e2, [e4, e16] = e4,

[e4, e20] = −e4, [e4, e23] = −e4, [e4, e25] = −2e1
a ,

[e4, e26] = −e9 −
e8
a −

2e5
a , [e5, e14] = ae4

2 , [e5, e15] = e4
2 ,

[e5, e16] = e5, [e5, e20] = ae9
2 +

e8
2 , [e5, e21] = e1,

[e5, e22] = e4, [e5, e23] = ae9 + e5 + e8, [e5, e25] = e7
a + e6,

[e5, e26] = e11
a + e10, [e6, e14] = −e1, [e6, e16] = e6,

[e6, e19] = e9, [e6, e20] = e6, [e6, e24] = e10,

[e7, e15] = −e1, [e7, e16] = e7, [e7, e19] = e8,

[e7, e20] = e7, [e7, e24] = e11, [e8, e15] = −e4,

[e8, e16] = e8, [e8, e20] = −e8, [e8, e23] = −e8,

[e8, e25] = −2e7
a , [e8, e26] = −2e11

a , [e9, e14] = −e4,

[e9, e16] = e9, [e9, e20] = −e9, [e9, e23] = −e9,

[e9, e25] = −2e6
a , [e9, e26] = −2e10

a , [e10, e14] = −ae9
2 − e5 −

e8
2 ,

[e10, e16] = e10, [e10, e21] = e6, [e10, e22] = e9,

[e10, e23] = e10, [e11, e15] = −ae9
2 − e5 −

e8
2 , [e11, e16] = e11,

[e11, e21] = e7, [e11, e22] = e8, [e11, e23] = e11.

[e12, e14] = e13, [e12, e15] = −e12, [e12, e17] = e12,

[e12, e18] = e13, [e13, e14] = −e12, [e13, e15] = −e13,

[e13, e17] = e13, [e13, e18] = −e12, [e19, e20] = −2e19,

[e19, e21] = −e22, [e19, e23] = −e19, [e19, e25] = −2e20
a ,

[e19, e26] = −2e24
a , [e20, e21] = −e21, [e20, e22] = e22,

[e20, e24] = e24, [e20, e25] = −2e25, [e20, e26] = −e26,

[e21, e23] = −e21, [e21, e24] = −e20 + e23, [e21, e26] = −e25,

[e22, e23] = −2e22, [e22, e24] = −e19, [e22, e25] = −2e21
a ,

[e22, e26] = −2e23
a , [e23, e24] = −e24, [e23, e25] = −e25,

[e23, e26] = −2e26, [e24, e25] = −e26.

(5.25)

We describe the symmetry algebra by the following proposition:

Proposition 6. The symmetry Lie algebra is a twenty-six- dimensional Lie algebra. It is a semi-direct
product of eighteen-dimensional solvable Lie algebra and sl(3,R). The solvable part is (R13 ⋊ R5), a
semi-direct product of R13 and R5. Therefore, the symmetry algebra can be identified as (R13 ⋊ R5) ⋊
sl(3,R).

5.5. Case 2: Aa,ϵ=1
6,23

5.5.1. Aa,0,ϵ=1
6,23

For Aa,0,ϵ=1
6,23 , the geodesic equations are given by

p̈ = ṗż + ẇq̇, q̈ = −ṗẇ + q̇ż, ẍ = ẏ(ż + aẇ),
ÿ = ż(ż + aẇ), z̈ = 0, ẅ = 0.

(5.26)
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The symmetry Lie algebra is spanned by

e1 = Dw, e2 = Dq, e3 = Dp,

e4 = Dy, e5 = tDx, e6 = Dz,

e7 = Dx, e8 = tDt, e9 = Dt,

e10 = wDx, e11 = zDx, e12 = wDt,

e13 = zDt, e14 = yDx + zDy, e15 = pDp + qDq,

e16 = −qDp + pDq, e17 =
t(aw+z)Dx

2 + tDy, e18 =
(awz+z2−2y)Dx

a ,

e19 =
(awz+z2−2y)Dt

a , e20 =
( a2w2

2 −
z2
2 +y)Dx

a + wDy, e21 = sin(w)ezDp + cos(w)ezDq,

e22 = − cos(w)ezDp + sin(w)ezDq, e23 =
( aw

2 +
z
2 )(awz+z2−2y)Dx

a +
(awz+z2−2y)Dy

a .

(5.27)

We consider the following change of basis:

e1 = e4, e2 = e5, e3 = e7, e4 = e9, e5 = e10,

e6 = e11, e7 = e12, e8 = e13, e9 = e14, e10 = e18,

e11 = e20, e12 = e2, e13 = e3, e14 = e21, e15 = e22,

e16 = e1, e17 = e6, e18 = e8 −
ae23

2 , e19 = e15, e20 = e16,

e21 = e8 +
ae23

2 , e22 = e17, e23 = e19.

(5.28)

The nonzero brackets of the symmetry algebra are given by

[e1, e9] = e3, [e1, e10] = −2e3
a ,

[e1, e11] = e3
a , [e1, e18] = e6

2 +
ae5
2 + e1,

[e1, e21] = − e6
2 −

ae5
2 − e1, [e1, e23] = −2e4

2 ,

[e2, e4] = −e3, [e2, e7] = −e5,

[e2, e8] = −e6, [e2, e18] = −e2,

[e2, e21] = −e2, [e2, e23] = −e10,

[e4, e18] = e4, [e4, e21] = e4,

[e4, e22] = e6
2 +

ae5
2 + e1, [e5, e16] = −e3,

[e6, e17] = −e3, [e7, e16] = −e4,

[e7, e18] = e7, [e7, e21] = e7,

[e7, e22] = e10
2 + e11, [e8, e17] = −e4,

[e8, e18] = e8, [e8, e21] = e8,

[e8, e22] = ae10
2 + e9, [e9, e10] = −2e6

a ,

[e9, e11] = e6
a − e5, [e9, e17] = −e1,

[e9, e18] = ae10 + e9, [e9, e21] = −ae10 − e9,

[e9, e22] = −e2, [e9, e23] = −2e8
a ,

[e10, e11] = 2e5
a , [e10, e16] = −e6,

[e10, e17] = −2e6
a − e5, [e10, e18] = −e10,

[e10, e21] = e10, [e10, e22] = 2e2
a ,

[e11, e16] = −ae5 − e1, [e11, e17] = e6
a ,

[e11, e18] = e10 + e11, [e11, e21] = −e10 − e11,

[e11, e22] = − e2
a , [e11, e23] = −2e7

a ,

[e12, e19] = e12, [e12, e20] = −e13,

[e13, e19] = e13, [e13, e20] = e12,

[e14, e16] = e15, [e14, e17] = −e14,

[e14, e19] = e14, [e14, e20] = e15.

(5.29)

AIMS Mathematics Volume 9, Issue 6, 14504–14524.



14516

[e15, e16] = −e14, [e15, e17] = −e15,

[e15, e19] = e15, [e15, e20] = −e14,

[e16, e18] = −a2e10
2 −

ae9
2 , [e16, e21] = a2e10

2 +
ae9
2 ,

[e16, e22] = ae2
2 , [e16, e23] = e8

[e17, e18] = −ae11
2 − ae10 − e9, [e17, e21] = ae11

2 + ae10 + e9,

[e17, e22] = e2
2 , [e17, e23] = 2e8

a + e7,

[e21, e22] = 2e22, [e21, e23] = −2e23,

[e22, e23] = −2e21
a .

(5.30)

We describe the symmetry algebra by the following proposition:

Proposition 7. The symmetry Lie algebra is a twenty-three- dimensional semi-direct product of twenty-
dimensional solvable Lie algebra S 1,20 and sl(2,R). The nilradical a fifteen-dimensional nilpotant Lie
algebra N1,11 ⊕ R

4, which is a direct sum of N1,11, an eleven-dimensional nilpotent Lie algebra, and
a four-dimensional abelian Lie algebra R4. The complement to the nilradical is a four-dimensional
non-abelian. Therefore, the symmetry Lie algebra can be identified as S 1,20 ⋊ sl(2,R).

5.6. Algebra A6,24

The nonzero brackets for the algebra A6,24 are given by

[e1, e5] = e5 + e6, [e1, e6] = e6, [e2, e4] = e4, [e1, e2] = e3. (5.31)

The geodesic equations are given by

p̈ = ṗż, q̈ = ẇ(q̇ + ẋ), ẍ = ẋẇ, ÿ = żẇ, z̈ = 0, ẅ = 0. (5.32)

The symmetry Lie algebra is spanned by

e1 = Dt, e2 = tDy, e3 = Dy,

e4 = Dp, e5 = Dq, e6 = Dx,

e7 = Dz, e8 = Dw, e9 = tDt,

e10 = pDp, e11 = wDt, e12 = zDt,

e13 = wDy, e14 = zDy, e15 = xDq,

e16 = qDq + xDx, e17 = ewDq, e18 = ezDp,

e19 = (wz − 2y)Dt, e20 = (wz − 2y)Dy, e21 = (w − 1)ewDq + ewDx.

(5.33)

We consider the following change of basis:

e1 = e5, e2 = e17, e3 = e6, e4 = e21,

e5 = e15, e6 = e1, e7 = e3, e8 = e4,

e9 = e11, e10 = e12, e11 = e13, e12 = e14,

e13 = e18, e14 = e7 +
e13
2 , e15 = e8 +

e14
2 , e16 = e9 −

e20
2 ,

e17 = e10, e18 = e16, e19 = e2, e20 = e9 +
e20
2 ,

e21 = e19,

(5.34)
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and the nonzero brackets of the symmetry algebra are given by

[e1, e18] = e1, [e2, e15] = −e2, [e2, e18] = e2, [e3, e5] = e1,

[e3, e18] = e3, [e4, e5] = e2, [e4, e15] = −e2 − e4, [e4, e18] = e4,

[e6, e16] = e6, [e6, e19] = e7, [e6, e20] = e6, [e7, e16] = e7,

[e7, e20] = −e7, [e7, e21] = −2e6, [e8, e17] = e8, [e9, e15] = −e6,

[e9, e16] = e9, [e9, e19] = e11, [e9, e20] = e9, [e10, e14] = −e6,

[e10, e16] = e10, [e10, e19] = e12, [e10, e20] = e10, [e11, e15] = −e7,

[e11, e16] = e11, [e11, e20] = −e11, [e11, e21] = −2e9, [e12, e14] = −e7,

[e12, e16] = e12, [e12, e20] = −e12, [e12, e21] = −2e10, [e13, e14] = −e13,

[e13, e17] = e13, [e19, e20] = −2e19, [e19, e21] = −2e20, [e20, e21] = −2e21.

(5.35)

We describe the symmetry algebra by the following proposition:

Proposition 8. The symmetry Lie algebra is a twenty-one-dimensional Lie algebra. It is a semi-direct
product of an eighteen-dimensional solvable Lie algebra and sl(2,R). The nilradical is a thirteen-
dimensional decomposable Lie algebra. In fact, the nilradical is a direct sum of A5,1 in Winternitz [5]
and R8. The nilradical has a five-dimensional abelian complement. Therefore, the symmetry algebra
can be identified as ((A5,1 ⊕ R

8) ⋊ R5) ⋊ sl(2,R), where the nonzero brackets of A5.1 are given by

[e3, e5] = e1, [e4, e5] = e2. (5.36)

5.7. Algebra Aab
6,25 (ab: a2 + b2 , 0)

The nonzero brackets for the algebra Aab
6,25 are given by

[e1, e4] = ae4, [e1, e5] = e6, [e1, e6] = −e5, [e2, e4] = be4,

[e2, e5] = e5, [e2, e6] = e6, [e1, e2] = e3.
(5.37)

The geodesic equations are given by

p̈ = ṗ(bẇ + aż), q̈ = −ẇż, ẍ = ẋż − ẏẇ, ÿ = ẋẇ − ẏż, z̈ = 0, ẅ = 0. (5.38)

For the general case Aa,0,b,0
6,25 , the symmetry Lie algebra is spanned by

e1 = Dt, e2 = tDq, e3 = Dq,

e4 = Dy, e5 = Dx, e6 = Dp,

e7 = Dw, e8 = Dz, e9 = tDt,

e10 = pDp, e11 = wDq, e12 = zDq,

e13 = wDt, e14 = zDt, e15 = xDx + yDy,

e16 = (wz + 2q)Dq, e17 = (wz + 2q)Dt, e18 = ebweazDp.

(5.39)

We implement the following change of basis:

e1 = e1, e2 = e3, e3 = e13, e4 = e11,

e5 = −e7 +
be8
a , e6 = e4, e7 = e5, e8 = e6,

e9 = e11 +
ae12

b , e10 = e13 +
ae14

b , e11 = e18, e12 = e8 −
e11
2 ,

e13 = e9 +
e16
2 , e14 = e10, e15 = e15, e16 = e2,

e17 = e9 −
e16
2 , e18 = e17,

(5.40)
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and the nonzero brackets of the symmetry algebra are given by

[e1, e13] = e1, [e1, e16] = e2, [e1, e17] = e1,

[e2, e13] = e2, [e2, e17] = −e2, [e2, e18] = 2e1,

[e3, e5] = e1, [e3, e13] = e3, [e3, e16] = e4,

[e3, e17] = e3, [e4, e5] = e2, [e4, e13] = e4,

[e4, e17] = −e4, [e4, e18] = 2e3, [e5, e12] = e2
2 ,

[e5, e13] = −be9
2a +

be4
a , [e5, e17] = be9

2a −
be4
a , [e5, e18] = −be10

a +
2be3

a ,

[e6, e15] = e6, [e7, e15] = e7, [e8, e14] = e8,

[e9, e12] = −ae2
b , [e9, e13] = e9, [e9, e17] = −e9,

[e9, e18] = 2e10, [e10, e12] = −ae1
b , [e10, e13] = e10,

[e10, e16] = e9, [e10, e17] = e10, [e11, e12] = −ae11,

[e11, e14] = e11, [e16, e17] = −2e16, [e16, e18] = 2e17,

[e17, e18] = −2e18.

(5.41)

We describe the symmetry algebra by the following proposition:.

Proposition 9. The symmetry Lie algebra is an eighteen-dimensional Lie algebra. It is a semi-direct
product of fifteen-dimensional solvable Lie algebra and sl(2,R). The nilradical is an
eleven-dimensional decomposable Lie algebra. In fact, the nilradical is a direct sum of A5,1 in
Winternitz [5] and R6. The nilradical has a four-dimensional abelian complement. Therefore, the
symmetry algebra can be identified as ((A5,1 ⊕ R

4) ⋊ R5) ⋊ sl(2,R), where the nonzero brackets of A5.1

are given by
[e3, e5] = e1, [e4, e5] = e2. (5.42)

5.8. Algebra Aa
6,26

The nonzero brackets for the algebra Aa
6,26 are given by

[e1, e5] = ae5 + e6, [e1, e6] = ae6 − e5, [e2, e4] = e4, [e1, e2] = e3. (5.43)

The geodesic equations are given by

p̈ = ṗż, q̈ = ẇż, ẍ = ẇ(aẋ − ẏ), ÿ = ẇ(ẋ + aẏ), z̈ = 0, ẅ = 0. (5.44)

For the general case Aa,0
6,26, the symmetry Lie algebra is spanned by

e1 = Dt, e2 = tDq, e3 = Dq, e4 = Dx,

e5 = Dp, e6 = Dy, e7 = Dz, e8 = Dw,

e9 = tDt, e10 = pDp, e11 = wDq, e12 = zDq,

e13 = wDt, e14 = zDt, e15 = xDx + yDy, e16 = ezDp,

e17 = yDx − xDy, e18 = (wz + 2q)Dq, e19 = (wz + 2q)Dt,

e20 = eaw cos(w)Dx + eaw sin(w)Dy, e21 = eaw sin(w)Dx − eaw cos(w)Dy.

(5.45)

We consider the following change of basis:

e1 = e1, e2 = e3, e3 = e4, e4 = e5, e5 = e6,

e6 = e11, e7 = e12, e8 = e13, e9 = e14, e10 = e16,

e11 = e20, e12 = e21, e13 = e7 +
e11
2 , e14 = e8 +

e12
2 , e15 = e9 −

e18
2 ,

e16 = e10, e17 = e15, e18 = e17, e19 = e2, e20 = e9 +
e18
2 ,

e21 = e19.

(5.46)
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The nonzero brackets of the symmetry algebra are given by

[e1, e15] = e1, [e1, e19] = e2, [e1, e20] = e1,

[e2, e15] = e2, [e2, e20] = −e2, [e2, e21] = −2e1,

[e3, e17] = e3, [e3, e18] = −e5, [e4, e16] = e4,

[e5, e17] = e5, [e5, e18] = e3, [e6, e14] = −e2,

[e6, e15] = e6, [e6, e20] = −e6, [e6, e21] = −2e8,

[e7, e13] = −e2, [e7, e15] = e7, [e7, e20] = −e7,

[e7, e21] = −2e9, [e8, e14] = −e1, [e8, e15] = e8,

[e8, e19] = e6, [e8, e20] = e8, [e9, e13] = −e1,

[e9, e15] = e9, [e9, e19] = e7, [e9, e20] = e9,

[e10, e13] = −e10, [e10, e16] = e10, [e11, e14] = −ae11 + e12,

[e11, e17] = e11, [e11, e18] = e12, [e12, e14] = −ae12 − e11,

[e12, e17] = e12, [e12, e18] = −e11, [e19, e20] = −2e19,

[e19, e21] = −2e20, [e20, e21] = −2e21.

(5.47)

We describe the symmetry algebra by the following proposition:

Proposition 10. The symmetry Lie algebra is a twenty-one-dimensional Lie algebra. It is a
semi-direct product of an eighteen-dimensional solvable Lie algebra and sl(2,R). The nilradical is
twelve-dimensional abelian Lie algebra and has a six-dimensional abelian complement. Therefore,
the symmetry algebra can be identified as: (R12 ⋊ R6) ⋊ sl(2,R).

5.8.1. Case 1: Aa=0
6,26

The symmetry Lie algebra is spanned by

e1 = Dt, e2 = tDq, e3 = Dq,

e4 = Dp, e5 = Dx, e6 = Dy,

e7 = Dz, e8 = Dw, e9 = tDt,

e10 = pDp, e11 = wDq, e12 = zDp,

e13 = wDt, e14 = zDt, e15 = xDx + yDy,

e16 = ezDp, e17 = yDx − xDy, e18 = cos(w)Dx + sin(w)Dy,

e19 = (wz − 2q)Dq, e20 = (wz − 2q)Dt, e21 = sin(w)Dx − cos(w)Dy,

e22 = (− cos(w)y + x sin(w))Dx + (− cos(w)x − y sin(w))Dy,

e23 = (cos(w)x + y sin(w))Dx + (− cos(w)y + x sin(w))Dy.

(5.48)
We implement the following change of basis

e1 = e1, e2 = e3, e3 = e4, e4 = e5,

e5 = e6, e6 = e11, e7 = e12, e8 = e13,

e9 = e14, e10 = e16, e11 = e18, e12 = e21,

e13 = e7 +
e11
2 , e14 = e8 −

e17
2 +

e12
2 , e15 = e9 −

e19
2 , e16 = e10,

e17 = e15, e18 = e2, e19 = e9 +
e19
2 , e20 = e20,

e21 = e17, e22 = e22, e23 = e23,

(5.49)
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and the nonzero brackets of the symmetry algebra are given by

[e1, e15] = e1, [e1, e18] = e2, [e1, e19] = −e1, [e2, e15] = e2,

[e2, e19] = −e2, [e2, e20] = −2e1, [e3, e16] = e3, [e4, e14] = e5
2 ,

[e4, e17] = e4, [e4, e21] = −e5, [e4, e22] = e12, [e4, e23] = e11,

[e5, e14] = − e4
2 , [e5, e17] = e5, [e5, e21] = e4, [e5, e22] = −e11,

[e5, e23] = e12, [e6, e14] = −e2, [e6, e15] = e6, [e6, e19] = −e6,

[e6, e20] = −2e8, [e7, e13] = −e2, [e7, e15] = e7, [e7, e19] = −e7,

[e7, e20] = −2e9, [e8, e14] = −e1, [e8, e15] = e8, [e8, e18] = e6,

[e8, e19] = e8, [e9, e13] = −e1, [e9, e15] = e9, [e9, e18] = e7,

[e9, e19] = e9, [e10, e13] = −e10, [e10, e16] = e10, [e11, e14] = e12
2 ,

[e11, e17] = e11, [e11, e21] = e12, [e11, e22] = −e5, [e11, e23] = e4,

[e12, e14] = − e11
2 , [e12, e17] = e12, [e12, e21] = −e11, [e12, e22] = e4,

[e12, e23] = e5, [e18, e19] = −e18, [e18, e20] = −2e19, [e19, e20] = −2e20,

[e21, e22] = 2e23, [e21, e23] = −2e22, [e22, e23] = −2e21.

(5.50)

We describe the symmetry algebra by the following proposition:

Proposition 11. The symmetry Lie algebra is a twenty-three-dimensional Lie algebra. It is a
semi-direct product of a seventeen-dimensional solvable Lie algebra and two copies of sl(2,R).
Furthermore, the symmetry Lie algebra has a twelve-dimensional abelian nilradical and
five-dimensional abelian complement. Therefore, the symmetry algebra can be identified as

(R12 ⋊ R5) ⋊ (sl(2,R) ⊕ sl(2,R)).

5.9. Algebra Aϵ6,27: (ϵ = 0, 1)

The nonzero brackets for the algebra Aϵ6,27 are given by

[e1, e3] = e4, [e1, e5] = e6, [e1, e6] = −e5, [e2, e5] = e5, [e2, e6] = e6, [e1, e2] = ϵe3. (5.51)

5.9.1. Aϵ=0
6,27

The geodesic equations where ϵ = 0 are given by

p̈ = ṗẇ − q̇ż, q̈ = ṗż + q̇ẇ, ẍ = 0, ÿ = ẋż, z̈ = 0, ẅ = 0. (5.52)

The symmetry Lie algebra is spanned by

e1 = Dt, e2 = tDy,

e3 = Dy, e4 = Dp,

e5 = Dq, e6 = Dx,

e7 = Dw, e8 = Dz,

e9 = tDt, e10 = wDt,

e11 = xDt, e12 = zDt,

e13 = wDy, e14 = xDy,

e15 = zDy, e16 = pDp + qDq,

e17 = xDx + yDy, e18 = qDp − pDq,

e19 = tDx +
tz
2 Dy, e20 = zDx +

z2

2 Dy,

e21 = (xz − 2y)Dt, e22 = (xz − 2y)Dy,

e23 = wDx +
wz
2 Dy, e24 = ew cos(z)Dp + ew sin(z)Dq,

e25 = ew sin(z)Dp − ew cos(z)Dq, e26 = (xz − 2y)Dx + ( xz2

2 − yz)Dy.

(5.53)
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We implement the following change of basis:

e1 = e1, e2 = e3, e3 = e4, e4 = e5,

e5 = e6, e6 = e10, e7 = e12, e8 = e13,

e9 = e15, e10 = e20, e11 = e23, e12 = e24,

e13 = e25, e14 = e7, e15 = e8 +
e14
2 , e16 = e9 + e17,

e17 = e16, e18 = e18, e19 = e2, e20 = e9 +
e22
2 ,

e21 = e11, e22 = e14, e23 = e17 + e22, e24 = e19,

e25 = e21, e26 = e26,

(5.54)

and the nonzero brackets of the symmetry algebra are given by

[e1, e16] = e1, [e1, e19] = e2, [e1, e20] = e1,

[e1, e24] = e5 +
e9
2 , [e2, e16] = e2, [e2, e20] = −e2,

[e2, e23] = −e2, [e2, e25] = −2e1, [e2, e26] = −2e5 − e9,

[e3, e17] = e3, [e3, e18] = −e4, [e4, e17] = e4,

[e4, e18] = e3, [e5, e15] = e2
2 , [e5, e16] = e5,

[e5, e20] = e9
2 , [e5, e21] = e1, [e5, e22] = e2,

[e5, e23] = e5 + e9, [e5, e25] = e7, [e5, e26] = e10,

[e6, e14] = −e1, [e6, e16] = e6, [e6, e19] = e8,

[e6, e20] = e6, [e6, e24] = e11, [e7, e15] = −e1,

[e7, e16] = e7, [e7, e19] = e9, [e7, e20] = e7,

[e7, e24] = e10, [e8, e14] = −e2, [e8, e16] = e8,

[e8, e20] = −e8, [e8, e23] = −e8, [e8, e25] = −2e6,

[e8, e26] = −2e11, [e9, e15] = −e2, [e9, e16] = e9,

[e9, e20] = −e9, [e9, e23] = −e9, [e9, e25] = −2e7,

[e9, e26] = −2e10, [e10, e15] = −e5 −
e9
2 , [e10, e16] = e10,

[e10, e21] = e7, [e10, e22] = e9, [e10, e23] = e10,

[e11, e14] = −e5 −
e9
2 , [e11, e16] = e11, [e11, e21] = e6,

[e11, e22] = e8, [e11, e23] = e11, [e12, e14] = −e12,

[e12, e15] = e13, [e12, e17] = e12, [e12, e18] = e13,

[e13, e14] = −e13, [e13, e15] = −e12, [e13, e17] = e13,

[e13, e18] = −e12, [e19, e20] = −2e19, [e19, e21] = −e22,

[e19, e23] = −e19, [e19, e25] = −2e20, [e19, e26] = −2e24,

[e20, e21] = −e21, [e20, e22] = e22, [e20, e24] = e24,

[e20, e25] = −2e25, [e20, e26] = −e26, [e21, e23] = −e21,

[e21, e24] = −e20 + e23, [e21, e26] = −e25, [e22, e23] = −2e22,

[e22, e24] = −e19, [e22, e25] = −2e21, [e22, e26] = −2e23,

[e23, e24] = −e24, [e23, e25] = −e25, [e23, e26] = −2e26,

[e24, e25] = −e26.

(5.55)

We describe the symmetry algebra by the following proposition:

Proposition 12. The symmetry Lie algebra is a twenty-six-dimensional semi-direct product of an
eighteen solvable Lie algebra and eight-dimensional semi-simple sl(3,R). Furthermore, the symmetry
Lie algebra has a thirteen-dimensional abelian nilradical. Therefore, the symmetry algebra can be
identified as: (R13 ⋊ R5) ⋊ sl(3,R).
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5.9.2. Aϵ=1
6,27

The geodesic equations where ϵ = 1 are given by

p̈ = q̇ẇ, q̈ = żẇ, ẍ = żẋ − ẇẏ, ÿ = żẏ + ẇẋ, z̈ = 0, ẅ = 0. (5.56)

The symmetry Lie algebra is spanned by

e1 = Dz, e2 = Dp, e3 = Dx, e4 = Dw,

e5 = Dy, e6 = Dq, e7 = tDt, e8 = Dt,

e9 = tDp, e10 = zDp, e11 = wDp, e12 = wDt,

e13 = zDt, e14 = qDp + zDq, e15 = xDx + yDy, e16 = yDx − xDy,

e17 = twDp + 2tDq, e18 =
w2

2 Dp + wDq, e19 = wzDp + 2zDq, e20 = (wz − 2q)Dt,

e21 = ez cos(w)Dx + ez sin(w)Dy, e22 = ez sin(w)Dx − ez cos(w)Dy,

e23 = (qw − zw2

2 )Dp + (−wz + 2q)Dq.

(5.57)

We implement the following change of basis:

e1 = e2, e2 = e6, e3 = e8, e4 = e9,

e5 = e10, e6 = e11, e7 = e12, e8 = e13,

e9 = e14, e10 = e18, e11 = e19, e12 = e3,

e13 = e5, e14 = e21, e15 = e22, e16 = e1,

e17 = e4, e18 = e7 +
e23
2 , e19 = e15, e20 = e16,

e21 = e7 −
e23
2 , e22 = e17, e23 = e20,

(5.58)

and the nonzero brackets of the symmetry algebra are given by

[e2, e9] = e1, [e2, e18] = e2 +
e6
2 , [e2, e21] = −e2 −

e6
2 ,

[e2, e23] = −2e3, [e3, e4] = e1, [e3, e18] = e3,

[e3, e21] = e3, [e3, e22] = 2e2 + e6, [e4, e7] = −e6,

[e4, e8] = −e5, [e4, e18] = −e4, [e4, e21] = −e4,

[e4, e23] = −e11 + 2e9, [e5, e16] = −e1, [e6, e17] = −e1,

[e7, e17] = −e3, [e7, e18] = e7, [e7, e21] = e7,

[e7, e22] = 2e10, [e8, e16] = −e3, [e8, e18] = e8,

[e8, e21] = e8, [e8, e22] = e11, [e9, e10] = −e6,

[e9, e11] = −2e5, [e9, e16] = −e2, [e9, e18] = e11 − e9,

[e9, e21] = −e11 + e9, [e9, e22] = −2e4, [e9, e23] = −2e8,

[e10, e17] = −e2 − e6, [e10, e18] = e10, [e10, e21] = −e10,

[e10, e23] = −2e7, [e11, e16] = −2e2 − e6, [e11, e17] = −e5,

[e11, e18] = e11, [e11, e21] = −e11, [e11, e23] = −4e8,

[e12, e19] = e12, [e12, e20] = −e13, [e13, e19] = e13,

[e13, e20] = e12, [e14, e16] = −e14, [e14, e17] = e15,

[e14, e19] = e14, [e14, e20] = e15, [e15, e16] = −e15,

[e15, e17] = −e14, [e15, e19] = e15, [e15, e20] = −e14,

[e16, e18] = − e10
2 , [e16, e21] = e10

2 , [e16, e23] = e7,

[e17, e18] = − e11
2 +

e9
2 , [e17, e21] = e11

2 −
e9
2 , [e17, e22] = e4,

[e17, e23] = e8, [e21, e22] = 2e22, [e21, e23] = −2e23,

[e22, e23] = −4e21.

(5.59)

We describe the symmetry algebra by the following proposition:
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Proposition 13. The symmetry Lie algebra is a twenty-three-dimensional semi-direct product of
twenty-dimensional solvable Lie algebra S 2,20, and sl(2,R). The nilradical is a fifteen-dimensional
nilpotant Lie algebra N2,11 ⊕ R

4, which is a direct sum of N2,11, an eleven-dimensional nilpotent Lie
algebra, and a four-dimensional abelian Lie algebra R4. The complement of the nilradical is
four-dimensional non-abelian. Therefore, the symmetry Lie algebra can be identified as
S 2,20 ⋊ sl(2,R).

6. Conclusions and future work

In this work, we have investigated the symmetry Lie algebra of the geodesic equations of the
canonical connection on a Lie group corresponding to the eight classes of Lie algebra A6,20–A6,27

in [7]. In each case, we list the nonzero brackets of the given Lie algebra, the geodesic equations, and
a basis for the symmetry Lie algebra in terms of vector fields. For every symmetry Lie algebra, we
identify its nilradical, solvable complement, and semi-simple factor; a summary of our results is given
in Table 1. In future work, we plan to study the symmetry Lie algebras for the rest of the
six-dimensional Lie algebras A6,28–A6,40 in [7]. The results help to put symmetry Lie algebras into
context since they are of very high dimension. It remains to use the symmetries to help integrate the
geodesic equations. Another useful by-product is the construction of many large dimensional Levi
decomposition Lie algebras, which is a topic of independent interest.

Table 1. Six-dimensional Lie algebras and identification of the symmetry algebra.

Six-dimensional Lie algebras Dimension Identification

Aab
6,20 (ab : a2 + b2 , 0) 21 (R12 ⋊ R6) ⋊ sl(2,R)

Aa
6,21 21 ((A5,1 ⊕ R

8) ⋊ R5) ⋊ sl(2,R)
Aϵ=0

6,22 26 (R13 ⋊ R5) ⋊ sl(3,R)
Aϵ=1

6,22 23 (R15 ⋊ R5) ⋊ sl(2,R)
Aa,ϵ=0

6,23 26 (R13 ⋊ R5) ⋊ sl(3,R)
Aa,ϵ=1

6,23 23 S 1,20 ⋊ sl(2,R)
A6,24 21 ((A5.1 ⊕ R

8) ⋊ R5) ⋊ sl(2,R)
Aab

6,25 (ab : a2 + b2 , 0) 18 ((A5,1 ⊕ R
4) ⋊ R5) ⋊ sl(2,R)

Aa
6,26 21 (R12 ⋊ R6) ⋊ sl(2,R)

Aa=0
6,26 23 (R12 ⋊ R5) ⋊ (sl(2,R) ⊕ sl(2,R))

Aϵ=0
6,27 26 (R13 ⋊ R5) ⋊ sl(3,R)

Aϵ=1
6,27 23 S 2,20 ⋊ sl(2,R)
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