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Abstract: In this research paper, we discussed some geometric axioms of a relativistic string cloud
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from the conformal η-Ricci soliton. Furthermore, we examine the harmonic relevance of conformal
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the Schrödinger-Ricci equation.

Keywords: conformal η-Ricci soliton; string cloud spacetime; strange quark matter; φ(Ric)-vector
field; Schrödinger-Ricci equation
Mathematics Subject Classification: 53B30, 53C44, 53C50, 53C80

1. Introduction

The general theory of relativity (GTR) states that space curves because of matter. In an attempt
to provide an explanation for events that Newtonian physics might not be able to adequately explain,
Einstein put forth radical revisions to the way that people think about time, space, and gravity. Einstein
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attempted to find a unified field theory, in which the properties of all matter and energy could be
expressed in a single Eq (1.1).

Einstein formulated the GTR in 1915, which explains how the force of gravity arises from the
curvature of spacetime caused by mass. The famous Einstein field equation (EFEs) represents the
gravitational field equation that governs the scale of spacetime. Within Einstein’s equation, the
cosmological constant is commonly used to describe the present state of the universe. Moreover, a
version of Einstein’s gravitational field equation without the cosmological constant can be expressed
as stated in [1].

S −
R
2

g = κT , (1.1)

where g denotes the Riemannian metric and T is the energy-momentum tensor.
In order to achieve Einstein’s objective of a static universe, the Ricci tensor S and scalar curvature

R of spacetime play crucial roles. The gravitational constant, denoted as κ, is chosen to be 8πG, where
G represents the universal gravitational constant.

Moreover, the importance of GTR is rich with possibilities for further exploration. Mathematical
relativists seek to understand the nature of singularities and the fundamental properties of Einstein’s
equations, while numerical relativists run increasingly powerful computer simulations such as those
describing merging black holes [2].

There are several results that open important applications in connection with another concept for
example eigenproblems [3]. The eigenproblem was first formulated as a result of research on rigid
body motion, which is directly related to planet motion. The general goal of an eigenproblem is to
minimize, within certain bounds, the greatest eigenvalue of a matrix that relies affinely on a variable.
The topic was studied by Euler [4], Lagrange [5], Laplace [6], Fourier [7], and Cauchy [8].

In addition, to gain the necessary S and R, as well as incorporate the cosmological constant,
one must employ Einstein’s equation. This equation provides the mathematical framework for
understanding the relationship between the distribution of matter and energy in the universe and the
curvature of spacetime.

Alternatively, the universe can be described using a one-dimensional entity known as a string. These
cosmic strings, which can exist throughout the universe, are believed to have a significant connection
to the ongoing expansion of the universe [9]. String theory, which predicts quantum gravity, interprets
particles and the fundamental forces as vibrations of tiny, super-symmetric strings. Consequently,
investigations into the gravitational effects of string-like matter have emerged.

To explore the relationship between black hole entropy and string state counting, Letelier initially
examined general solutions of string clouds that exhibit spherical symmetry [10]. These solutions
were then extended to Einstein-Gauss-Bonnet theory in the Letelier spacetime [12] and third-order
Lovelock gravity [13]. Additionally, numerous other extended solutions have been investigated in this
context [14–16].

The spacetime framework in the GTR and cosmology both involve the representation of a time-
constrained, four-dimensional connected Lorentzian manifold. This particular classification of pseudo-
Riemannian manifolds with a Lorentzian metric of signature (−,+,+,+) is essential in GTR [1,17]. In
order to analyze the behavior of vectors within this manifold, the geometry of Lorentzian manifolds is
introduced, making them a powerful tool for studying GTR.
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If the Ricci tensor takes a specific form, Lorentzian manifolds are referred to as quasi-Einstein
manifolds, and in the context of perfect fluid spacetime, they are known as perfect fluid spacetime
[18, 19].

S = A1g + A2η ⊗ η. (1.2)

In this context, the presence of scalars A1 and A2 is notable, along with the existence of a 1-form η

that shares metric properties with a unit time-like vector field. Furthermore, the spacetime manifold is
characterized as a Lorentzian manifold, permitting the existence of a vector field that resembles time.

Chaki laid out the concept of a generalized quasi-Einstein manifold (GQE) [20].

Definition 1.1. [20] A non-flat Riemannian manifold (Mn, g) (n > 2) is said to be a generalized
quasi-Einstein Lorentzian manifold (GQE) if its Ricci tensor S of type (0, 2) is nonzero and satisfies
the expression

S = A1g + A2η ⊗ η + A3θ ⊗ θ, (1.3)

wherein A1, A2 and A3 are scalars of which A2 , 0, A3 , 0 and η, θ are 1-from such that

g(p, γ) = η(p), g(p, ζ) = θ(p)

for any vector field p ∈ χ(Mn, g).
The unit vectors γ and ζ, associated with the 1-forms η and θ respectively, are mutually orthogonal.

Furthermore, γ and ζ serve as the generators of the manifold. When A3 = 0, the manifold (Mn, g)
simplifies to a perfect fluid spacetime.

Formally, the GTR can be reformulated using the effective momentum tensor [21]. This momentum
tensor describes the energy density, isotropic pressure, anisotropic pressure, and energy flow in the
presence of a suitable time-like vector field [17]. As suggested by [22] and [23], the structure of the
momentum tensor resembles that of an imperfect fluid, specifically a viscous fluid spacetime’s energy-
momentum tensor. This concept of imperfect fluid spacetime extends beyond the conventional model
and provides additional features that can be utilized in models such as perfect fluid spacetime.

In contrast, physical matter symmetry in the GTR is specifically related to spacetime geometry.
More specifically, the classification of solutions to Einstein’s field equations is typically made simpler
by the metric of symmetry. Soliton, which is related to the geometrical flow of spacetime geometry, is
a significant symmetry [24].

Hamilton [25] first time introduced the concept of Ricci flow in 1988. The limit of the solutions
to the Ricci flow is revealed to be the Ricci soliton. Moreover, the classification of solutions that are
self-similar to geometric flows has received a lot of attention recently.

In [26], Fischer introduced a novel geometric flow called conformal Ricci flow, which is a
modification of the classical Ricci flow. This variant replaces the unit volume constraint in the original
equation with a scalar curvature constraint. A specific set of solutions, where the metric evolves
through dilation and diffeomorphisms, plays a crucial role in studying the singularities of the flow
as they serve as acceptable models for singularities. These solutions are also referred to as solitons.

The equation for the conformal Ricci flow, as demonstrated in [26], is given by:
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∂

∂t
g(t) = −2Sg(t) −

(
P +

2
n

)
g(t). (1.4)

Here, R(g) = −1 represents the scalar curvature of the manifold (Mn, g), and P is a non-dynamical
scalar field, which is dependent on time t, and the dimension of the manifold is denoted by n.

The Navier-Stokes equations of fluid mechanics are equivalent to the conformal Ricci flow
equations, and as a result, the time-dependent scalar field P is referred to as a conformal pressure,
which, like the actual physical pressure in fluid mechanics, maintains the fluid’s incompressibility. The
conformal Ricci flow equations’ equilibrium points are Einstein metrics with the Einstein constant.
−1
n .

In 2015, Basu and Bhattacharyya [27] introduced the concept of a conformal Ricci soliton, and the
corresponding equation is given as follows.

1
2
LFg + S +

[
Λ −

(
P
2
+

1
n

)]
g = 0. (1.5)

If the data (g, F,Λ −
(
P + 2

n

)
) satisfies the Eq (1.5), it is referred to as a conformal Ricci soliton on

M [29]. In this context, Λ represents a real constant, and LF denotes the Lie derivative operator along
the vector field F. The conformal Ricci soliton can be classified as shrinking, steady, or expanding if

1) Λ < 0,
2) Λ = 0 and
3) Λ > 0, respectively.

A more general concept known as conformal η-Ricci soliton (conformal η-RS) was introduced by
Siddiqi [28] and is denoted by the following expression.

LFg + 2S +
[
2Λ −

(
P +

2
n

)]
g + 2Ωη ⊗ η = 0, (1.6)

wherein LF is the Lie derivative along the direction of the soliton vector field F, S is the Ricci tensor,
n is the dimension of the manifold, Ω is a real constant. The conformal η-Ricci soliton in particular
simplifies to the conformal Ricci soliton if Ω = 0 [32].

Authors in [29] investigated spacetime in terms of the Ricci soliton. Blaga used η-Ricci and η-
Einstein solitons to show the features of the ideal fluid spacetime in [30]. Venkatesha and Aruna also
addressed about Ricci solitons on ideal fluid spacetime in [31]. Siddiqi [28] presented the concept
of conformal η-Ricci solitons in 2018. Some properties of perfect fluid spacetime with almost Ricci-
Bourguignon soliton and conformal η-Ricci solitons were investigated by Siddiqi and his coauthors
in [32, 33]. Furthermore, using Ricci-Yamabe solitions and Ricci soliton, respectively, Siddiqi et
al. investigated thermodynamical fluid spacetime [34] and magneto-fluid spacetime [35]. In [36],
Alkhaldi et al. also worked on conformal η-Ricci solitons. Alkhaldi and collaborators [37] have
recently explored Ricci-Yamabe solitons on imperfect fluid generalized Robertson Walker spacetime.

As a result, motivated by previous research, we investigate relativistic string cloud spacetime
attached to strange quark matter in terms of a conformal η-Ricci soliton in this paper.
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2. String cloud spacetime

This section discusses the essential characteristics of the spacetime filled with the energy-
momentum tensor of the string cloud type, referred to as “string cloud spacetime” [11]. It is widely
recognized that space matter can be understood as a fluid capable of encompassing various substances
within spacetime, such as density and string tension [12]. The energy-momentum tensor associated
with the string cloud plays a significant role in standard cosmological models, where the material
composition of the universe is modeled as behaving akin to a string cloud spacetime [38]. Furthermore,
when considering a perfect fluid spacetime, the presence of heat conduction and viscosity is absent.
However, for the purposes of this study, we propose the assumption that the growth of spacetime is
influenced by the energy-momentum tensor of the string cloud [9].

As seen in the following equation, the string cloud energy-momentum tensor [9, 38]

T (p, q) = ρη(p)η(q) − λθ(p)θ(q), (2.1)

where p, q ∈ χ(M4, g), ρ is the energy density for the string cloud fluid with particles attached to them,
the string tension is λ, and they are connected by

ρ = ρ0 + λ, (2.2)

wherein ρ0 is the rest energy density of particles.
The concept of a compact star or a quark star, which is sustained by the degenerate pressure of quark

matter, has been raised for a star that is smaller than neutron stars. Numerous authors have studied such
a quark star. According to Alcock et al. [39] and Haensel et al. [40], some neutron stars may actually be
weird stars made completely of strange materials. Researcher Cheng et al. [41] explored the features
of strange quark stars. Yavuz et al. [42] examined the strange quark matter that is connected to the
string cloud in a spacetime that is spherically symmetric and allows conformal motion.

The equation of state (EoS) employed to model quark matter is often based on the phenomenological
bag model. In this model, quarks are conceptualized as a degenerate Fermi gas confined to a region of
space with vacuum energy density Ved. Within the framework of this model, the quark matter consists
of electrons, massless quarks u, massive quarks s, and quarks d. According to the bag model [43],
when quarks are massless and noninteracting, there will be a quark pressure present.

pQ =
ρQ

3
, (2.3)

where ρQ is the quark energy density.
In addition, the total energy density and the total pressure are given as

ρt = ρQ + Ved, (2.4)

pt = pQ − Ved. (2.5)

The strange quark matter EoS is [44, 47]

pt =
1
3

(ρt − 4Ved). (2.6)
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Various vibrational models [45] are seen as different masses or spins because the string is free to
vibrate. We shall therefore focus on quarks rather than the particles in the cloud of string. In this
instance, we obtain from (2.2)

ρ = ρQ + λ + Ved. (2.7)

We can deduce the energy-momentum tensor for the strange quark matter attached to the string
cloud from (2.1) and (2.7) by writing [42].

T (p, q) = (ρQ + λ + Ved)η(p)η(q) − λθ(p)θ(q), (2.8)

where η(p) is the string’s four-velocity and θ(p) is the direction vector of the anisotropy. Moreover,
string cloud spacetime attached to strange quark matter, admitting the unit space-like vector field θ

perpendicular to the unit time-like vector field η, such that

η(p) = g(p, γ) and θ(q) = g(q, ζ)

are two nonzero 1-form. Also, γ and ζ are orthogonal vector fields that hold

g(γ, γ) = −1 = η(γ) and g(ζ, ζ) = 1 = θ(ζ), g(ζ, γ) = 0.

Considering the Eqs (1.1) and (2.8), we can derive the EFEs for a relativistic string cloud spacetime
coupled with strange quark matter as follows:

S(p, q) =
R
2

g(p, q) + κ(ρQ + λ + Ved)η(p)η(q) − κλθ(p)θ(q). (2.9)

Equation (2.9) follows that the relativistic string cloud spacetime attached with strange quark matter
under consideration is a Lorentzian (GQE)4 manifold with R

2 , κ(ρQ + λ + Ved), and κλ as associated
scalars, η, and θ as associated 1-forms.

The relativistic string cloud spacetime connected to strange quark matter is characterized by the
presence of the vacuum energy density Ved, the quark energy density of the fluid ρ, and the string
tension λ, all of which satisfy the EFEs. Therefore, we can express the following.

Theorem 2.1. A string cloud spacetime attached with strange quark matter obeys the EFEs with
vacuum energy density Ved, the quark energy density of the fluid ρ and the string tension λ is a (GQE)4-
spacetime.

Following the contraction of Eq (2.9), we find the following:

Theorem 2.2. If a string cloud spacetime attached with strange quark matter obeying the EFEs with
vacuum energy density Ved and quark energy density ρQ, then the scalar curvature is

R = −κ(ρQ + Ved). (2.10)

The conclusions of Theorems 2.1 and 2.2 can be summarized as follows:

Corollary 2.3. A string cloud spacetime attached with strange quark matter obeys the EFEs with
constant scalar curvature R is a bulk viscous fluid spacetime [46].
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Since γ and ζ are orthogonal unit vector fields and g(γ, ζ) = 0, we obtain

S(p, γ) = (A1 + A2)η(p), (2.11)

S(p, ζ) = (A1 + A3)θ(p), (2.12)

where A1 =
R
2 , A2 = κ(ρQ + λ + Ved), and A3 = −κλ.

Now, in view of (2.2) and (2.10) one can state the following.

Theorem 2.4. If a string cloud spacetime attached with strange quark matter obeys EFEs with
constant scalar curvature R and satisfies relation (2.2), then under this situation energy density ρ
of the cloud fluid is 1

2

(
3ρ0 +

R

κ

)
and string tension λ is 1

2

(
ρ0 +

R

κ

)
.

Next, in light of (2.3)–(2.6), we turn up the following values:

ρQ = −

(R
κ
+ Ved

)
, pQ = −

1
3

(R
κ
+ Ved

)
, (2.13)

and
ρt = −

R
κ
, pt = −

1
3

(R
κ
− 4Ved

)
. (2.14)

Thus, we can articulate the following results.

Theorem 2.5. In the bag model, if a relativistic string cloud spacetime attached with strange quark
matter obeys EFEs, then the quark energy density ρQ and quark pressure pQ are governed by (2.13).

Corollary 2.6. If a relativistic string cloud spacetime attached with strange quark matter obeys EoS
for strange quark matter, then the total energy density ρt and total pressure pt are governed by (2.14).

3. Conformal η-Ricci soliton on string cloud spacetime attached with strange quark matter

This section deals with conformal η-RS on string cloud spacetime attached with strange quark
matter with a φ(Ric)-vector field. Therefore, we suggest the subsequent definition.

Definition 3.1. A vector field φ on a Riemannian manifold M is said to be a φ(Ric)-vector field if it
satisfies [48]

∇uφ = σRic u, (3.1)

where ∇ is the Levi-Civita connection, σ is a constant, and Ric is the Ricci operator defined by

S(p, q) = g(Ric p, q).

If σ , 0 and σ = 0 in (3.1), then the vector field φ is said to be a proper φ(Ric)-vector field and
covariantly constant, respectively.

It follows from the definition of the Lie derivative and from (3.1) that one has

(Lφg)(p, q) = 2σS(p, q). (3.2)
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Adopting (3.2) and (2.9) in (1.6), we turn up

S(p, q) =
α

σ
g(p, q) +

β

σ
η(p)η(q) +

δ

σ
θ(p)θ(q), (3.3)

where α = −
(
Λ −

(
P
2 +

1
4

)
+ A

2

)
, β = −

(
Ω + B

2

)
, and δ = −C

2 are scalars. Thus, in light of (1.3), the
following outcome can be stated.

Theorem 3.2. If a string cloud spacetime (M4, g) attached with strange quark matter obeying the
EFEs admitting a conformal η-RS (M4, g, φ,Λ,Ω), such that the vector field is a proper φ(Ric)-vector
field, then (M4, g, φ,Λ,Ω) is a (GQE)4 spacetime.

Now, putting u = v = γ and using (2.9) and (3.3) together, we find

Λ =
R
2

(
σ −

1
2

)
+ κ(ρQ + λ + Ved)

(
σ +

1
2

)
+ Ω −

(
P
2
+

1
4

)
. (3.4)

Thus, one can articulate the following results.

Theorem 3.3. If a string cloud spacetime (M4, g) attached with strange quark matter with a unit time-
like proper φ(Ric)-vector field γ admits a conformal η-RS (M4, g, γ = φ,Λ,Ω), then the conformal
η-Ricci soliton is shrinking, steady or expanding as

1) R
2

(
σ − 1

2

)
+ κ(ρQ + λ + Ved)

(
σ + 1

2

)
+ Ω <

(
P
2 +

1
4

)
,

2) R
2

(
σ − 1

2

)
+ κ(ρQ + λ + Ved)

(
σ + 1

2

)
+ Ω >

(
P
2 +

1
4

)
, and

3) R
2

(
σ − 1

2

)
+ κ(ρQ + λ + Ved)

(
σ + 1

2

)
+ Ω =

(
P
2 +

1
4

)
, respectively.

Corollary 3.4. If a relativistic string cloud spacetime (M4, g) attached with strange quark matter with a
unit time-like covariantly constant φ(Ric)-vector field γ admits a conformal η-RS (M4, g, γ = φ,Λ,Ω),
then the conformal η-Ricci soliton is shrinking, steady or expanding as

1)
(
κ(ρQ+λ+Ved)

2 + Ω
)
<

(
P
2 +

1
4 +

A
2

)
,

2)
(
κ(ρQ+λ+Ved)

2 + Ω
)
>

(
P
2 +

1
4 +

A
2

)
, and

3)
(
κ(ρQ+λ+Ved)

2 + Ω
)
=

(
P
2 +

1
4 +

A
2

)
, respectively.

4. Physical significance of conformal pressure

Given that time-dependent scalar field, P is known as the conformal pressure and that the true
physical pressure in fluid mechanics is what keeps the fluids in compressibility. The conformal pressure
P ≥ 0 is negative outside of an equilibrium point and zero inside. Moreover, the metric g is an
equilibrium point or Einstein, providing a nonlinear restoring force (for more details, see [26]).

Now, Theorem 3.2 and Eq (3.4) entail the following:
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Theorem 4.1. If a string cloud spacetime (M4, g) attached with strange quark matter obeys the EFEs
admitting a conformal η-RS (M4, g, φ,Λ,Ω), such that the unit time-like vector field is a proper φ(Ric)-
vector field, then, the conformal pressure is

P =
R
2

(
σ −

1
2

)
+ κ(ρQ + λ + Ved)

(
σ +

1
2

)
+ 2Ω − 2(Λ + 1). (4.1)

Theorem 4.2. If a string cloud spacetime (M4, g) attached with strange quark matter obeying the
EFEs admitting a conformal η-RS (M4, g, φ,Λ,Ω), such that the unit time-like vector field is a proper
φ(Ric)-vector field, then, the metric g is an equilibrium point or Einstein, if and only if,

R
2

(
σ −

1
2

)
+ κ(ρQ + λ + Ved)

(
σ +

1
2

)
+ 2Ω = 2(Λ + 1). (4.2)

Corollary 4.3. If a relativistic string cloud spacetime (M4, g) attached with strange quark matter obeys
the Einstein’s field equation admitting an expanding conformal η-RS (M4, g, φ,Λ < 0,Ω), with a unit
time-like proper φ(Ric)-vector field, then the conformal pressure is positive.

In addition, we turn an interesting corollary for a dynamical system.

Corollary 4.4. If a string cloud spacetime (M4, g) attached with strange quark matter obeys the EFEs
admitting a conformal η-RS (M4, g, φ,Λ,Ω) with a time-like proper φ(Ric)-vector field, then the metric
g is an equilibrium point and acts as a nonlinear restoring force.

5. Generalized Liouville equation of a relativistic string cloud spacetime attached with strange
quark matter

Let (M4, g) be a relativistic string cloud spacetime attached with strange quark matter and
(g, γ,Λ,Ω) be a conformal η-RS in (M4, g). From (1.6) and (2.9), we get[

−
κ(ρQ + Ved)

2
+ Λ −

1
2

(
P +

1
2

)]
g(u, v) + [κ(ρQ + λ + Ved) + Ω]η(u)η(v) (5.1)

−κλθ(u)θ(v) +
1
2

g(∇uγ, v) + g(u,∇vγ) = 0.

for any u, v ∈ χ(M).
After contracting (5.1), we obtain:

Div(γ) = 4Λ + Ω − κ[(3ρQ − 3Ved) − λ] − (2P + 1). (5.2)

Next, we have the following remark.

Remark. With a smooth function ψ ∈ C∞(M4, g) and a vector field ν, a straightforward calculation
gives

Div(ψν) = π(dψ) + ψDivν. (5.3)
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The function ψ ∈ C∞(M4, g) is said to be a last multiplier of vector field ν with respect to g if
div(ψν) = 0. The corresponding equation

π(dlogψ) = −Div(ν) (5.4)

is said to be the generalized Liouville equation of the vector field ν with respect to g (for more details
see [49, 50]).

Now, extrapolate from the statement and equation above (5.3), and we gain the following result.

Theorem 5.1. Let (M4, g) be a relativistic string cloud spacetime attached with strange quark matter
admitting a conformal η-RS (g, γ,Λ,Ω) with a unit time-like vector field γ and ψ is the last multiplier
of γ, and let η be the g-dual 1-form of the vector field γ, then the generalized Liouville equation of a
string cloud spacetime attached with strange quark matter satisfied by ψ and γ is

γ(dlnψ) = κ[(3ρQ − 3Ved) − λ] + (2P + 1) − (4Λ + Ω). (5.5)

Corollary 5.2. Let (M4, g) be a relativistic string cloud spacetime attached with strange quark matter
admitting a conformal η-RS (g, γ,Λ,Ω) with a unit time-like vector field γ and ψ is the last multiplier
of γ, and let η be the g-dual 1-form of the vector field γ. If the vector field γ is incompressible or
Killing, then the conformal η-RS is expanding, steady, and shrinking as

(i) κ
4 [

(
3ρQ − 3Ved) − λ] + (2P+1)

4

)
< Ω

4 ,

(ii) κ
4 [

(
3ρQ − 3Ved) − λ] + (2P+1)

4

)
> Ω

4 , and

(iii) κ
4 [

(
3ρQ − 3Ved) − λ] + (2P+1)

4

)
= Ω4 , respectively.

6. Harmonic characteristics of conformal η-Ricci soliton in string cloud spacetime attached
with strange quark matter

In this last section, we characterized conformal η-Ricci soliton on string cloud spacetime attached
with strange quark matter in some specific conditions when the g-dual of γ, the 1-form η, is a
harmonic or Schrödinger-Ricci harmonic. Additionally, we provide a condition that is both necessary
and sufficient for η to be a solution of the Schrödinger-Ricci equation.

Let η be the g-dual 1-form of the given unit time-like vector field γ, with g(p, γ) = η(p) and
g(γ, γ) = −1, then γ is said to be the solution of the Schrödinger-Ricci equation if it holds

Div(Lγ) = 0, (6.1)

where Lγg is the Lie derivative in the direction of vector field γ. In [51], Chow et al. studied the
divergence of the Lie derivative such that

Div(Lγg) = (∆ + S)(γ) + d(Div(γ)), (6.2)

where ∆ indicates the Laplace-Hodge operator with respect to the metric g and S is the Ricci curvature
tensor field. Now, by the definition of conformal η-RS, we have

Lγg + 2S + (2Λ − (P +
2
n

))g + 2Ωη ⊗ η = 0. (6.3)
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After calculating the trace of the Eq (6.3), we get

Div(γ) + R + 4Λ − (4P + 2) + Ω |γ|2 = 0, (6.4)

wherein R is the scalar curvature. By using a direct calculation, we find

Div(η ⊗ η) = Div(γ)η + ∇γη. (6.5)

Using (6.2) and estimating the divergence of (6.3), we find

Div(Lγg) + d(R) + 2Ω[Div(γ)η + ∇γη] = 0. (6.6)

Schrödinger-Ricci solution: We assert that a 1-form π is a solution of the Schrödinger-Ricci equation,
if

(∆ + S)(π) + d(Div(π)) = 0. (6.7)

As a result, we have the following.

Theorem 6.1. If (g, γ,Λ,Ω) is a conformal η-RS in a string cloud spacetime (M4, g) attached with
strange quark matter with η being the g-dual of the time-like vector field γ, then η is a solution of the
Schrödinger-Ricci equation if, and only if,

d(ρQ + Ved) =
2Ω
−κ

{
[4Λ − (4P + 2) − κ(ρQ + Ved)]η − ∇γη

}
. (6.8)

Proof. Applying (6.3)–(6.5), and (2.10), and in light of the formula

2Div(S) = d(R),

it continues that η is a solution of the Schrödinger-Ricci equation if, and only if (6.6) satisfies.

Schrödinger-Ricci harmonic forms: We assert that a 1-form π is a Schrödinger-Ricci harmonic form
if [52]

(∆ + S)(π) = 0. (6.9)

In addition, if Ω = 0, which yields the conformal Ricci soliton or

∇γη = [4Λ − (4P + 2) − κ(ρQ + Ved)]η, (6.10)

implies that Ω = 4Λ − (4P + 2) − κ(ρQ + Ved). As a result, we get the following outcome.

Theorem 6.2. If (g, γ,Λ,Ω) is a conformal η-RS in a string cloud spacetime (M4, g) attached with
strange quark matter with η being the g-dual of the time-like vector field γ, then, η is the Schrödinger-
Ricci harmonic form if and only if Ω = 0, which produces conformal RS or

∇γη = [4Λ − (4P + 2) − κ(ρQ + Ved)]η, (6.11)

which implies that Ω = 4Λ − (4P + 2) − κ(ρQ + Ved).
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7. Example of a spacetime admitting conformal η-Ricci soliton

Example 7.1. Let M =
{
(x, y, z, t) ∈ R4 : t , 0

}
, where (x, y, z, t) are the standard coordinates of R4.

Let (e1, e2, e3, e4), be the set of linearly independent vector fields of M defined as

e1 = t
(
∂

∂x
+ y

∂

∂y

)
, e2 = t

∂

∂y
, e3 = t

(
∂

∂y
+
∂

∂z

)
, e4 = (t)3 ∂

∂t
.

Let g be the Riemannian metric M defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1, g(e4, e4) = −1, g(ei, e j) = 0, for i , j, i, j = 1, 2, 3, 4.

Let η be the 1-form defined by η(Z) = g(Z, e4) for any Z ∈ χ(M). Also, let φ be the (1, 1) tensor
field, defined by

φ(e1) = e1, φ(e2) = e2, φ(e3) = e3, φ(e4) = 0, ξ = (t)3 ∂

∂t
.

Let∇ be the Levi-Civita connection with respect to the Lorentzian metric g. Thus, using the linearity
of φ and g, we have

[e1, e2] = −(t)e2, [e1, e4] = −(t)2e1, [e2, e4] = −(t)2e2, [e3, e4] = −(t)2e3.

Then, for e4 = ξ and using Koszul’s formula for the Lorentzian metric g, we have

∇e1e1 = −(t)2e4, ∇e2e1 = te2, ∇e1e4 = −(t)2e1, ∇e2e4 = −(t)2e2,

∇e3e4 = −(t)2e3, ∇e3e3 = −(t)2e4,∇e2e2 = −(t)2e4 − te1. (7.1)

From (7.1), we find that the structure (φ, ξ, η, g) is a Lorentzian structure on M. Consequently,
M4(φ, ξ, η, g) is a Lorentzian manifold (four dimensional spacetime model).

The nonvanishing components of Riemannian curvature and the Ricci tensors are given by

R(e1, e4)e1 = (t)4e4, R(e2, e4)e2 = (t)4e4, R(e3, e4)e3 = (t)4e4,

R(e1, e3)e3 = (t)4e1, R(e1, e3)e1 = −(t)4e3, R(e2, e3)e2 = −(t)4e3,

R(e1, e4)e4 = (t)4e1, R(e2, e4)e4 = (t)4e2, R(e1, e2)e2 = [(t)4 − (t)2]e1,

R(e2, e3)e3 = (t)4e2, R(e3, e4)e4 = (t)4e3, R(e1, e2)e1 = −[(t)4 − (t)2]e2.

From the above expression of the curvature tensor, we can easily calculate the non-vanishing
components of the Ricci tensor S

S (e1, e1) = 3(t)4 − (t)2, S (e2, e2) = 3(t)4 − (t)2.

Similarly, we have
S (e3, e3) = 3(t)4, S (e4, e4) = 3(t)4. (7.2)

Therefore,
r = S (e1, e1) + S (e2, e2) + S (e3, e3) + S (e4, e4) = 2[6(t)4 − (t)2].
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Now, from Eq (1.6), we obtain

2[g(ei, ei) + η(ei)η(ei)] + 2S (ei, ei) +
(
2Λ −

(
P +

2
n

))
g(ei, ei) + 2Ωη(ei)η(ei) = 0,

for all i ∈ {1, 2, 3, 4}, and we have

2[(1 + δi4] + 2
{
3(t)4 − (t)2

}
+ [2µ − (P +

2
n

))] + 2ωδi4 = 0,

for all i ∈ {1, 2, 3, 4}. We get: Λ = −[3(t4 − (t)2] + (P − 1
2 )], P = Λ + [3(t4 − (t)2] − 1

2 ), and Ω = −3
2 .

Thus, the data (g, ξ,Λ,Ω) is a conformal η-Ricci soliton on (M4, ϕ, ξ, η, g), which is expanding if
−[3(t4 − (t)2] < (P − 1

2 ), shrinking if −[3(t4 − (t)2] > (P − 1
2 ), or steady if [3(t4 − (t)2] + (P − 1

2 )] = 0.

8. Conclusions

This research paper focused on the investigation of various geometric aspects within the framework
of a relativistic string cloud spacetime attached with strange quark matter. Several key results were
obtained and discussed in the context of this study.

To begin, we determined the existence of a conformal η-Ricci soliton on the relativistic string cloud
spacetime when combined with strange quark matter and a φ(Ric)-vector field. This finding highlights
the presence of a specific geometric structure that exhibits soliton-like behavior in the conformal
setting.

Moreover, we explored the physical significance of the conformal pressure P in relation to the
conformal η-Ricci soliton with the same vector field. By establishing this connection, we gained
insights into the role of conformal pressure in the behavior and properties of the soliton on the string
cloud spacetime.

Furthermore, we deduced a generalized Liouville equation derived from the conformal η-Ricci
soliton. This equation provides a deeper understanding of the underlying dynamics and relationships
associated with the soliton and its geometric properties.

Additionally, we investigated the harmonic relevance of the conformal η-Ricci soliton on the string
cloud spacetime attached with strange quark matter by introducing a harmonic potential function ψ.
This analysis shed light on the harmonic aspects and potential energy considerations associated with
the soliton within the studied spacetime.

Finally, we established necessary and sufficient conditions for the 1-form η, which represents the
g-dual of the vector field γ on the string cloud spacetime attached with strange quark matter, to be
a solution for the Schrödinger-Ricci equation. This condition provides insights into the relationship
between the geometric properties of spacetime and the underlying mathematical equations.

In summary, this research paper contributes to the understanding of the geometric axioms and
properties within the framework of a relativistic string cloud spacetime attached with strange quark
matter. The obtained results deepen our knowledge of the soliton behavior, conformal pressure,
harmonic relevance, and Schrödinger-Ricci equation in this particular context. These findings pave
the way for further investigations and potential applications in the field of theoretical physics.
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