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Abstract: A good pulse control strategy should depend on the numbers of pests and natural enemies
as determined via an integrated pest control strategy. Taking this into consideration, here, a nonlinear
impulsive predator-prey model with improved Leslie-Gower and Beddington-DeAngelis functional
response terms is qualitatively analyzed. The existence of a periodic solution for pest eradication has
been obtained and the critical condition of global asymptotic stability has been established by using the
impulsive differential equation Floquet theory. Furthermore, the conditions for the lasting survival of
the system has been proved by applying a comparison theorem for differential equations. Additionally,
a stable positive periodic solution has been obtained by applying bifurcation theory. To understand how
nonlinear pulses affect the dynamic behavior of a system, MATLAB was used to conduct numerical
simulations to show that the model has very complex dynamical behavior.
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1. Introduction

In recent years, predator-prey systems with integrated pest control have been extensively studied to
realize the effective control of pests [1–4]. Generally, IPM (Integrated Pest Management) mainly uses
chemical control, biological control and artificial control to establish an efficient comprehensive system
to control pests. Among them, biological control is mainly the use of natural enemies, which involves
their harvesting and capture pests, while chemical control is the use of pesticides and other chemicals
to quickly kill pests in large quantities. Regarding implementing pest control, the combination of two
strategies can yield an optimal control strategy [5, 6].

The functional response is defined as the number of prey killed by a predator per unit of time, and
it describes the amount of biological transfer between different trophic levels, i.e., the effects of the
predator population on the prey. Many scholars have considered predator-prey models with different

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024702


14455

functional responses from many aspects. For example, the nonlinear functional response first appeared
in the Lotka-Volterra [7] predation system. Also, Wang et al. [8] and Cheng et al. [9] considered
Holling-I functional responses in a predator-prey model; Luo et al. [10] and Liu et al. [11] focused
on Holling type II functional responses. Other scholars [12, 13] studied the Holling-III functional
response; through their research, it was found that functional response terms not only rely on prey
behavior, but they are also related to predator activity. Wang [14] researched the predator-prey model
with ratio-dependent functional response terms, and by applying a ratio-dependent functional response,
it was found that the predator density could not be zero, i.e., the predator and prey could not be extinct
at the same time. Thus, the Beddington-DeAngelis functional response term [15, 16] has garnered
much attention.

To facilitate research, many scholars have set the periodic release of natural enemies in the pest-
natural enemy system as an invariant constant [17]; in fact, pest outbreaks are generally transient,
uncertain and unpredictable, so pest control strategies incorporate pulse disturbances to simulate the
effects of the sudden change of actual factors on the state of the system. Moreover, many anthropogenic
phenomena in nature can be described by impulsive differential equations, and these phenomena
include fishing and stocking in fish farming, spraying pesticides in agriculture the regular release of
natural enemies, insulin injection in diabetes, etc. In [18, 19], the authors considered a predator-prey
model with linear pulses, employing modified versions of the Leslie-Gower and Holling-II functional
responses, but these impulse effects tend to be nonlinear. However, the excessive use of pesticides
or biological predators can potentially yield significant damage to the environment and economy.
Nonetheless, optimal impulse control management requires that the IPM rely on the densities of
both pests and natural enemies in the field; therefore, predator-prey models with nonlinear impulse
control are more practical and reasonable. To investigate how nonlinear impulse control affects the
dynamic behavior of a system, in [20], Li et al. studied a predator-prey model with nonlinear pulses
and a Beddington-DeAngelis functional response, finding that the models with nonlinear impulse
control exhibit richer dynamic behavior than those with linear pulses. The Leslie-Gower functional
response is an important functional response, which means that the predator population does not
unlimitedly grow because of the limitations of natural resources, and many predators do not live on
just one kind of food. The authors of [21, 22] studied the dynamic behavior of predatory models
with Leslie-Gower and Holling-II terms. However, these studies applied the assumption that the
impulse control is linear or constant. Because the outbreak of pests and diseases occurs rapidly, it
is difficult for many countries or regions, which have limited capacity for agricultural resources such
as pesticides, labor, and biological resources, to effectively control an outbreak of pests. In order to
take the resource limitation into account, the instant killing rate should be a monotonically increasing
saturation function, and the natural enemies that are released should be based on the current pest
and prey densities in the field. With the goal of realizing optimal pulse management, we studied a
nonlinear impulsive control predator-prey model with a Leslie-Gower term and Beddington-DeAngelis
term, which more comprehensively consider the effects of human control and environmental factors on
population density:
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dx
dt

= (r1 − bx(t) −
αy(t)

a1 + a2x(t) + a3y(t)
)x(t), t , nT,

dy
dt

= (r2 −
βy(t)

x(t) + k
)y(t), t , nT,

x(t+) = (1 −
δx(t)

x(t) + h
)x(t), t = nT,

y(t+) = qy(t) +
w1x(t)

1 + θx(t)
+ w2, t = nT,

(1.1)

where x(t) and y(t) are the populations of pests and natural enemies at time t, respectively α, β, a1, a2, a3,
k, h, q, θ, δ, w1,w2 are model parameters that assume only positive values, r1, r2 represent the birth
rates of pests and natural enemies, b describes the intraspecific competition for pests, δ measures
the maximum rate at which pests are killed by spraying insecticides (0 < δ ≤ 1), h is the semi-
saturation constant, w1,w2 denote the maximum releases of predators based on prey density and
predator population density, and αx(t)y(t)

a1+a2 x(t)+a3y(t) is the B-D functional response term; IPM strategies are
adopted at each discrete time point.

2. Global stability of periodic solutions

First, we give some notations, definitions and lemmas which will be useful for our main results.
Assume that

R+ = [0,+∞),R2
+ = {X = (x(t), y(t))|x(t), y(t) ≥ 0},

V0 = {V : R+ × R2
+ → R+}

are continuous on (nT, (n + 1)T ] and f = ( f1, f2)T is the right-hand mapping of the first two equations
of the system (1.1); obviously, the smoothness of f guarantees the existence of a unique solution. The
following lemma [23, 24] is given.

Lemma 2.1. Let X(t) = (x(t), y(t)) be a solution of system (1.1), and if the initial value X(0+) ≥ 0, then
X(t) ≥ 0 for all t ≥ 0; furthermore, if X(0+) > 0, then X(t) > 0 for all t ≥ 0.

Proof. Obviously for y(t), through scaling we have the following:
dy(t)

dt
= (r2 −

βy(t)
x(t) + k

)y(t), t , nT,

y(t+) ≥ qy(t) + w2, t = nT.
(2.1)

It is easy to see that

y(t) ≥ y(0+) exp
∫ t

0
(r2 −

βy(s)
x(s) + k

)ds

for t ∈ (0,T ].
At time t = T , y(T +) = qy(T ) + w2 > qy(T ) > 0; thus, when t ∈ (T, 2T ], the initial value becomes

y(T +) ≥ 0. For x(t), through scaling we get the following:
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dx(t)

dt
= (r1 − bx(t) −

αy(t)
a1 + a2x(t) + a3y(t)

)x(t), t , nT,

x(t+) > (1 − δ)x(t), t = nT.
(2.2)

Thus, we have

x(t) ≥ x(0+) exp
∫ t

0
(r1 − bx(s) −

αy(s)
a1 + a2x(s) + a3y(s)

)ds,

for t ∈ (0,T ].
At time t = T , x(T +) > (1−δ)x(T ) > 0; thus, when t ∈ (T, 2T ], the initial value becomes x(T +) ≥ 0.
Similar to the previous proof we can determine when X(0+) ≥ 0 and X(t) ≥ 0 for all t ≥ 0. Similarly,

when X(0+) > 0 we can get that X(t) > 0 for all t > 0. �

Lemma 2.2. Define g : R+ × R+ → R as continuous on (nT, (n + 1)T ] when n ∈ Z+, u ∈ R+, and

lim
(t,y)→(nT +,u)

g(t, y) = g(nT +, u),

ψn : R+ → R+ is a non-decreasing mapping; suppose that the following inequalities hold:D+V(t, x) ≤ g(t,V(t, x)), t , nT,

V(t, x) ≤ ψn(V(t, x)), t = nT,
(2.3)

and that the impulsive differential equations given by
du(t)

dt
= g(t, u(t)), t , nT,

u(t+) = ψn(u(t)), t = nT,

u(0+) = u0 > 0,

(2.4)

have a maximum solution r(t) ∈ [0,+∞); when t ≥ 0 and V(0+, x0) ≤ u0, we have that V(t, x) ≤ r(t).
The elimination of pest populations is an important goal of IPM strategies; therefore, studying the

existence and global stability of periodic solutions plays a crucial role in the investigation of their
dynamic behavior. Thus, we consider the subsystem of (1.1):

dy(t)
dt

= (r2 −
β

k
y(t))y(t), t , nT,

y(t+) = qy(t) + w2, t = nT.
(2.5)

Now, we shall give the basic properties of the subsystem:

Theorem 2.3. If 1−q exp(r2T ) < 0, system (2.5) has a globally asymptotically stable periodic solution

y∗(t) =
r2y∗er2(t−nT )

r2 −
β

k y∗(1 − er2(t−nT ))
, t ∈ (nT, (n + 1)T ], (2.6)

where y∗ = A +
√

A2 + B with A = w2
2 +

r2(1−qer2T )
2 β

k (1−er2T )
and B = r2w2

−
β
k (1−er2T )

as two positive constants.
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Proof. By applying the idea of variable separation and difference equations to solve the system (2.5),
we have

y((n + 1)T ) =
r2y(nT +)er2T

r2 −
β

k y(nT +)(1 − er2T )
, (2.7)

and y((n + 1)T +) = qy((n + 1)T ) + w2; then, the following equation is obtained

y((n + 1)T +) = qy((n + 1)T ) + w2 = q
r2y(nT +)er2T

r2 −
β

k y(nT +)(1 − er2T )
+ w2. (2.8)

Let y(nT +) = y((n + 1)T +) = y∗. Substituting y∗ into the above equation yields the following
quadratic equation:

y∗2 + (−w2 +
r2(1 − qer2T )

−
β

k (1 − er2T )
)y∗ +

r2w2
β

k (1 − er2T )
= 0. (2.9)

We have that y∗ = A +
√

A2 + B, where

A =
w2

2
+

r2(1 − qer2T )

2β

k (1 − er2T )
, B =

r2w2

−
β

k (1 − er2T )
.

Apparently when 1 − qer2T < 0, system (2.5) has a periodic solution y∗(t) for the case with pests.
According to the above analysis, we can easily get the expression for the unique pest-free periodic

solution of system (1.1), i.e., (0, y∗(t)). In what follows, we will give the sufficient condition for the
global stability of the pest-free periodic solution (0, y∗(t)) of system (1.1). �

Theorem 2.4. The periodic solution (0, y∗(t)) of the system (1.1) is locally asymptotically stable for
the case with pests if

T = Tmax <
α

r1(a1
β

k + a3r2)
ln

a1r2 −
β

k a1y∗ + (a1
β

k + a3r2)er2T y∗

a1r2 + a3r2y∗
. (2.10)

Proof. Here we first demonstrate the local stability of the periodic solution for pests.
The local stability of the periodic solution for pests may be determined by considering the behavior

of small-amplitude perturbations (u(t), v(t)) of the solution. Define u(t) = x(t), v(t) = y(t)− y∗(t), where
u(t), v(t) are small perturbations. After neglecting the higher-order terms, it can be written as(

u(t)
v(t)

)
= ϕ(t)

(
u(0)
v(0)

)
, 0 ≤ t < T, (2.11)

where ϕ(t) satisfies
dϕ(t)

dt
=

r1 −
αy∗(t)

a1+a3y∗(t) 0
∗ r2 −

2β
k y∗(t)

 · ϕ(t), (2.12)

and ϕ(0) = I is the identity matrix. Hence, the fundamental solution matrix is given by

ϕ(t) =

e
∫ T

0 r1−
α

a1+a3y∗(t) ·y
∗(t)dt 0

∗ e
∫ T

0 r2−
2β
k y∗(t)dt

 . (2.13)
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Then, linearizing the third and fourth equation of system (1.1), we have(
u(nT +)
u(nT +)

)
=

(
1 0
λ1 q

) (
u(nT )
v(nT )

)
= A(T )

(
u(nT )
v(nT )

)
. (2.14)

Let

M = A(T )ϕ(T ) =

e
∫ T

0 r1−
α

a1+a3y∗(t) ·y
∗(t)dt 0

∗ qe
∫ T

0 r2−
2β
k y∗(t)dt

 . (2.15)

If each eigenvalue of M has an absolute value that is less than one, the solution is locally stable; note
that (*) is not important, so it is not considered. Below we define

λ1 = exp(
∫ T

0
r1 −

α

a1 + a3y∗(t)
· y∗(t)dt), λ2 = q exp(

∫ T

0
r2 −

2β
k

y∗(t)dt), (2.16)

as two eigenvalues of the matrix M because
kr2

β
− y∗(1 + er2(t−nT )) <

kr2

β
− y∗

=
kr2

β
− (

w2

2
+

kr2(1 − qer2T )
2β(1 − er2T )

+

√
(
w2

2
+

kr2(1 − qer2T )
2β(1 − er2T )

)
2

+
kr2w2

β(er2T − 1)
)

<
kr2

β
−

w2

2
−

kr2

2β
−

kr2

2β

= −
w2

2
< 0,

r2 −
2β
k

y∗(t) = r2

kr2
β
− y∗(1 + er2(t−nT ))

kr2
β
− y∗(1 − er2(t−nT ))

< 0. (2.17)

It is easy to see that λ2 < 1, according to the Floquet theory for impulsive differential equations,
(0, y∗(t)) is locally stable if

T <
α

a3r2 +
β

k a1
ln

a1r2 −
β

k a1 + (a2r2 +
β

k a1)er2T y∗

a1r2 + a3r2y∗
. (2.18)

Next, we will prove the global attraction of the periodic solution for pests. Just prove that the
arbitrary solution (x(t), y(t)) tends to (0, y∗(t)) when t → ∞.

(1) Prove that x(t)→ 0.
Since x = r1

b , it follows that dx
dt < 0; then 0 < x < r1

b . Take a small enough ε > 0 so that

η
∆
= exp(

∫ T

0
r1 −

α(y∗(t) − ε)
a1 + a2(k + ε) + a3(y∗(t) − ε)

)dt < 1. (2.19)

It follows from the system (1.1) that
dx(t)

dt
= (r1 − bx(t) −

αy(t)
a1 + a2x(t) + a3y(t)

)x(t)

≤ (r1 −
αy(t)

a1 + a2x(t) + a3y(t)
)x(t)

≤ (r1 −
α(y∗(t) − ε)

a1 + a2(k + ε) + a3(y∗(t) − ε)
)x(t),

(2.20)
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further, we consider the following impulsive differential equation:
dx(t)

dt
≤ (r1 −

α(y∗(t) − ε)
a1 + a2(k + ε) + a3(y∗(t) − ε)

)x(t), t , nT,

x(t+) = (1 −
δx(t)

x(t) + h
)x(t), t = nT.

(2.21)

By applying the impulsive differential equation theorem and the comparison theorem, within the
interval ((nT ), (n + 1)T ), we get

x((n + 1)T ) ≤ x(nT ) exp(
∫ T

0
r1 −

α(y∗(t) − ε)
a1 + a2(k + ε) + a3(y∗(t) − ε)

dt)

≤ x(nT )η.
(2.22)

Then, x(nT ) ≤ x(0+)ηn and x(nT )→ 0 as n→ ∞. Therefore x(t)→ 0 as t → 0.

(2) Prove that y(t)→ y∗(t).
From above x(t) → 0 as t → ∞ for any ε1 > 0. Additionally, there must exist a T1 > 0, such that

0 < x(t) < ε1 and t > T1. Without loss of generality, we may assume that 0 < x(t) < ε1 for all t > 0;
from system (2.5) we have

y(t)(r2 −
βy(t)

k
) <

dy(t)
dt

= (r2 −
βy(t)

x(t) + k
)y(t) < y(t)(r2 −

βy(t)
ε1 + k

). (2.23)

Then we consider the following equations
dz1(t)

dt
= (r2 −

β

k
z1(t))z1(t), t , nT,

z1(t+) = qz1(t)w2, t = nT,
(2.24)

and 
dz2(t)

dt
= (r2 −

β

ε1 + k
z2(t))z2(t), t , nT,

z2(t+) = qz2(t)w2, t = nT,
(2.25)

where

z∗1(t) = y∗(t) =
r2z∗1(1 − er2(t−nT ))

r2 −
β

k z∗1(1 − er2(t−nT ))
, z1

∗ = A1 +

√
A1

2 + B1,

A1 =
w2

2
+

kr2(1 − qer2T )
2β(1 − er2T )

, B1 =
−kr2w2

β(1 − er2T )
,

and

z∗2(t) =
r2z∗2er2(t−nT ))

r2 −
β

ε1+k z∗2(1 − er2(t−nT ))
, z2

∗ = A2 +

√
A2

2 + B2,

A2 =
w2

2
+

(k + ε1)r2(1 − qer2T )
2β(1 − er2T )

, B2 =
−(k + ε1)r2w2

β(1 − er2T )
.

For arbitrarily small ε2 > 0, according to the comparison theorem we have

z1
∗(t) − ε2 < y(t) < z2

∗(t) + ε2.

Let ε1 → 0 as t → ∞; we have that y∗(t) − ε2 < y(t) < y∗(t) + ε2; hence, y(t) → y∗(t) for t large
enough. Thus the proof is completed. �
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3. Permanence

In order to understand the long-term survival of the prey and predator populations, it is important
to investigate the permanence of system (1.1). First, we give the definition of permanence as follows:

Definition 3.1. The system (1.1) is permanent if there exists M ≥ m > 0 for any solution (x(t), y(t))
of (1.1) with x0 > 0 such that

m ≤ lim
t→∞

inf x(t) ≤ lim
t→∞

sup x(t) ≤ M,m ≤ lim
t→∞

inf y(t) ≤ lim
t→∞

sup y(t) ≤ M. (3.1)

Theorem 3.2. System (1.1) is permanent if

T >
α

r1(a1
β

k + a3r2)
ln

a1r2 −
β

k a1y∗ + (a1
β

k + a3r2)er2T y∗

a1r2 + a3r2y∗
. (3.2)

Proof. Suppose that (x(t), y(t)) is any solution of system (1.1). Apparently, given the above analysis,
we have that x < M1 <

r1
b for t large enough. For convenience, let x(t) ≤ M for any t > 0. Then,

from Theorem 2.4, we can easily obtain that y∗(t) − ε2 < y(t) < y∗(t) + ε2 for t large enough. Let
m2 = y∗(t) − ε2 and M2 = y∗(t) + ε2; then we have that m2 ≤ y(t) ≤ M2.

Assume that y(t) ≥ m2 for any t > 0. We need to prove that there exists a positive constant m1 such
that x(t) ≥ m1 when t is large enough. We will prove it in two steps:

1) Take a positive number m3 > 0 and ε3 > 0 arbitrarily small enough. Let

η2 = exp((r − bm3 −
αε3

a1
)T −

α

a1

k + a3

β
ln

r2 −
β

k+m3
z∗3(1 − exp(r2T ))

r2
) > 1, (3.3)

where
z∗3 =

√
A2

3 + B3

and

A =
w2

2
+

r2(1 − qer2T )

2 β

k+m3
(1 − er2T )

, B =
r2w2

−
β

k+m3
(1 − er2T )

.

Next we will prove that there must exist a t3 > 0. Set x(t3) ≥ m3 for t > t3. Otherwise, from
Theorem 2.4, we obtain that y(t) ≤ z3(t)andz3(t)→ z∗3(t) as t → ∞, where z3(t) is the solution of
system (3.4). 

dz3(t)
dt

= z3(t)(r2 −
β

k + m3
z3(t)), t , nT,

z3(t+) ≤ qz3(t) +
w1m3

1 + θm3
+ w2, t = nT,

(3.4)

and

z∗3(t) =
r2z∗3 exp(r2(t − nT ))

r2 −
β

k+m3
z∗3(1 − exp(r2(t − nT )))

, t ∈ (nT, (n + 1)T ), n ∈ Z+. (3.5)

Thus there is a T1 such that y(t) ≤ z3(t) ≤ z∗3(t) + ε3 as t > T1. Therefore we establish (3.6) as
below: 

dx(t)
dt
≥ x(t)(r1 − bm3 −

α(z∗3(t) + ε3)
a1

), t , nT,

x(t+) = (1 −
δx(t)

x(t) + h
)x(t), t = nT.

(3.6)
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Let N ∈ Z+,NT > T ; integrating (3.6) on (nT, (n + 1)T ), n ≥ N, we have∫ (n+1)T

nT

dx(t)
x(t)

dt ≥
∫ (n+1)T

nT
(r1 − bm3 −

α(z∗3(t) + ε3)
a1

)dt,

ln x((n + 1)T ) − ln x(nT ) ≥
∫ (n+1)T

nT
(r1 − bm3 −

α(z∗3(t) + ε3)
a1

)dt,

ln
x((n + 1)T )

x(nT )
≥

∫ (n+1)T

nT
(r1 − bm3 −

α(z∗3(t) + ε3)
a1

)dt,

x((n + 1)T ) ≥ x(nT ) exp (
∫ (n+1)T

nT
(r1 − bm3 −

α(z∗3(t) + ε3)
a1

)dt)

≥ x(nT ) exp((r − bm3 −
αε3

a1
)T −

α

a1

k + a3

β
ln

r2 −
β

k+m3
z∗3(1 − exp(r2T ))

r2
)).

(3.7)

Then, given (3.3), substituting the right-hand side of (3.7) with η2, we get that x((n + 1)T ) ≥ x(nT )η2.
Then x((N + n)T ) > x(nT )ηn

2 → ∞ as n→ ∞, which is a contradiction; hence, there must exist a t3 > 0
such that x(t3) ≥ m3.

2) Assume that x(t) ≥ m3 for all t > t3 and prove that the conclusion holds; otherwise, let t∗ =

inf t > t3, x(t) < m3, and we have that x(t) ≥ m3 as t ∈ [t3, t∗]. It is divided into the following two cases:
points in time of impulse and no impulse.

Case (1): t∗ = nT, n1 ∈ Z+. We have that q1m1 ≤ q1x(t∗) = x(t∗+) ≤ m3. Select n2, n3 ∈ Z+ such that

(1 −
δ

h
)n2 exp(ρn2T )ηn3 > 1,

where ρ = r1 − bm3 −
α
a1

M2 < 0. Let T ′ = n2T + n3T ; there must exist a t4 ∈ (t∗, t∗ + T ′) such that
x(t4) ≥ m3. Otherwise, assume that x(t) < m3 for any t ∈ (t∗, t∗ + T ′); since (3.4) has an initial solution
z3(t∗+) = y(t∗+), we can get

y(t) < z3(t) ≤ z3
∗(t) + ε3, t ∈ [t∗ + n2T, t∗ + T ′].

According to the above, we know that

x(t∗ + T ′) ≥ x(t∗ + n2T )ηn3 .

Since y(t) ≤ M2, when t ∈ [t∗, t∗ + n2T ], we have
dx(t)

dt
≥ x(t)(r − bm3 −

α

a1
M2), t , nT,

x(t+) = (1 −
δx(t)

x(t) + h
)x(t), t = nT.

(3.8)

Integrating (3.8) on the interval [t∗, t∗ + n2T ], we obtain

x(t∗ + n2T ) ≥ (1 −
δ

h
)n2−1 exp(ρn2T )x(t∗+)

= (1 −
δ

h
)n2 exp(ρn2T )x(t∗)

≥ m3(1 −
δ

h
)n2 exp(ρn2T ).

(3.9)
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So,

x(t∗ + T ′) ≥ x(t∗ + n2T )ηn3 = m3(1 −
δ

h
)n2 exp(ρn2T )ηn3 > m3, (3.10)

which contradicts the above assumption and means that there must exist a t4 ∈ (t∗, t∗ + T ′) such that
x(t4) > m3.

Let t̄ = inf{t > t∗, x(t) ≥ m3}; we have that x(t) < m3 when t ∈ (t∗, t̄] and x(t̄) = m3. Assume that
t̄ = inf{t > t∗, x(t) ≥ m3}; from (3.8), it follows that

x(t) ≥ x(t∗+)(1 −
δ

h
)k−1 exp(ρ(t − t∗))

≥ m3(1 −
δ

h
)n2+n3 exp(ρ(n2 + n3)T ) = m′1, t ∈ (t∗, t̄). (3.11)

Therefore we get that x(t) ≥ m1
′ for t ∈ (t∗, t̄] when t > t̄. We can still prove that the conclusion

x(t̄) ≥ m3 holds by employing the same method as above.

Case (2): t∗ , nT, n ∈ Z+. Then x(t) ≥ m3 for t ∈ [t3, t∗) and x(t∗) = m3. Assume that

t∗ ∈
(
n′1T, (n′1 + 1)T

]
, n′1 ∈ Z+ for t ∈

(
(t∗, (n′1 + 1)T )

)
.

There are two possible cases for x(t).

(H1): If x(t) < m3 for all t ∈ (t∗(n′1 + 1)T ], it is similar to Case (1). We can prove that there exists
a t5 ∈

[
(n′1 + 1)T, (n′1 + 1)T + T ′

]
such that x(t5) ≥ m3. Otherwise assume that x(t) < m3 for all

t ∈
[
(n′1 + 1)T, (n′1 + 1) + T ′

]
. Consider the initial solution z3((n′1 + 1)T ∗) = y((n′1 + 1)T ∗) of (3.4) with

the initial values on
[
t∗, (n′1 + 1 + n2 + n3)T + T ′

]
; we get that

x((n′1 + 1 + n2 + n3)T ) ≥ x((n′1 + 1 + n2)T )η2
n3 . (3.12)

Integrating (3.8), we have

x((n′1 + 1 + n2)T )η2
n3 ≥ m3(1 −

δ

h
)n2 exp(ρ(1 + n2)T ). (3.13)

Therefore,

x((n′1 + 1 + n2 + n3)T ) ≥ m3(1 −
δ

h
)n2 exp(ρ(1 + n2)T ) > m3. (3.14)

This contradicts the assumption.
Let t̂ = inf {t > t∗, x(t) > m3}. We have that x(t) < m3 when t ∈ (t∗, t̂) and x(t̂) = m3. For t ∈ (t∗, t̂),

suppose that
t ∈ (t∗ + (l − 1)T, t∗ + lT ), l ≤ n2 + n3, l ∈ Z+.

We have

x(t) ≥ m3(1 −
δ

h
)l−1 exp(ρlT )

≥ m3(1 −
δ

h
)n2+n3 exp(ρ(1 + n2 + n3)T ) = m1 < m′1. (3.15)

Thus, x(t̂) ≥ m3 for t > t̂. By repeating the above steps we can obtain that x(t) ≥ m1 as t ≥ t3.
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(H2): If there exists a t ∈ (t∗, (n′1 + 1)T ), we have that x(t) ≥ m3. Let t′ = inf {t > t∗, x(t) > m3} such
that x(t) < m3, t ∈ [t∗, t′), but x(t′) = m3 when t ∈ [t∗, t′); thus, we get

x(t) ≥ x(t∗) exp((t − t∗)ρ) ≥ m3 exp(Tρ) > m1,

since x(t̂) ≥ m3. By repeating the steps above we can obtain that x(t) ≥ m1 as t > t3. In summary, when
t ≥ t3, we can prove that x(t) ≥ m3. �

4. Bifurcation

Next, we will research the existence of a nontrivial solution near the pest-eradication solution by
applying the bifurcation theorem of Rabinowitz.

Theorem 4.1. System (1.1) has a positive nontrivial periodic solution when T = T ∗, and it is
supercritical if αa2 ≤ 4ba1a3.

Proof. It is computationally convenient to exchange x and y and change the period T to τ.

dx
dt

= (r2 −
βx(t)

y(t) + k
)x(t), t , nT,

dy(t)
dt

= (r1 − by(t) −
αx(t)

a1 + a2y(t) + a3x(t)
)y(t), t , nT,

x(t+) = qx(t) +
w1y(t)

1 + θy(t)
+ w2, t = nT,

y(t+) = (1 −
δy(t)

y(t) + h
)y(t), t = nT,

(4.1)

let Φ be the solution of the non-impulsive system associated with system (4.1); also, we get that
X(t) = Φ(t, X0) with X0 = X(0). Define the mappings Θ1,Θ2 : R2 → R2 by

Θ1(x, y) = qx +
w1y

1 + θy
+ w2,

Θ2(x, y) = (1 −
δy

y + h
)y,

ζ(t) = (y∗(t), 0),

(4.2)

and the mappings F1, F2 : R2 → R2 by

F1(x, y) = (r2 −
βx(t)

y(t) + k
)x(t),

F2(x, y) = (r1 − by(t) −
αx(t)

a1 + a2y(t) + a3x(t)
)y(t).

(4.3)

Thus, by computation, we get

d′0 = 1 − (
∂Θ2

∂y
·
∂Φ2

∂y
)(τ0,X0) = 1 − (1 −

δy(y + 2h)
(y + h)2 ) exp(

∫ τ0

0
r1 −

αy∗(t)
a1 + a3y∗(t)

dt), (4.4)
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where τ0 is the root of d0
′ = 0. In fact, it is easy to see that d0

′ is equivalent to τ0 = T ∗.

a′0 = 1 − (
∂Θ1

∂x
·
∂Φ1

∂x
)(τ0,X0)

= 1 − q exp(
∫ τ0

0
r2 −

2βy∗(t)
k

dt) > 0,

b′0 = −(
∂Θ1

∂x
·
∂Φ1

∂y
+
∂Θ2

∂y
·
∂Φ2

∂y
)(τ0,X0)

= −(q
∂Φ1

∂y
+

1
(1 + θy)2

∂Φ2

∂y
),

∂2Φ2(τ0, X0)
∂x∂y

=

∫ τ0

0
exp(

∫ τ0

s

∂F2(ζ(t))
∂y

dt)
∂2F2(ζ(t))
∂x∂y

exp(
∫ s

0

∂F2(ζ(t))
∂y

dt)ds

= −

∫ τ0

0
exp(

∫ τ0

s

∂F2(ζ(t))
∂y

dt)
αa1

(a1 + a3y∗(t))2 exp(
∫ s

0

∂F2(ζ(t))
∂y

dt)ds

< 0.

(4.5)

By the same method, we have

∂2Φ2(τ0, X0)
∂y2 =

∫ τ0

0
exp(

∫ τ0

s

∂F2(ζ(t))
∂y

dt)
∂2F2(ζ(t))

∂y2 exp(
∫ s

0

∂F2(ζ(t))
∂y

dt)ds

+

∫ τ0

0
(exp(

∫ τ0

s

∂F2(ζ(t))
∂y

dt)
∂2F2(ζ(s))
∂y∂x

×

∫ s

0
exp(

∫ s

v

∂F1(ζ(t))
∂x

dt)
∂F1(ζ(s))

∂y
exp(

∫ v

0

∂F2(ζ(t))
∂y

dt)dv)ds

=

∫ τ0

0
exp(

∫ τ0

s

∂F2(ζ(t))
∂y

dt)(−2b +
2αa2y ∗ (t)

(a1 + a3y ∗ (t))2 ) exp(
∫ s

0

∂F2(ζ(t))
∂y

dt)ds

−

∫ τ0

0
exp(

∫ τ0

s

∂F2(ζ(t))
∂y

dt)
αa1

(a1 + a3y ∗ (t))2

×

∫ s

0
exp(

∫ s

v

∂F1(ζ(t))
∂x

dt)
βy ∗ (t)2

k2 exp(
∫ v

0

∂F2(ζ(t))
∂y

dt)dv,

∂2Φ2(τ0, X0)
∂τ∂y

=
∂F2(ζ(τ0))

∂y
exp(

∫ τ0

0

∂F2(ζ(t))
∂y

dt)

= (r1 −
αy∗(t)

a1 + a3y∗(t)
) exp(

∫ τ0

0
(r1 −

αy∗(t)
a1 + a3y∗(t)

)), (4.6)

so we can get

B =
∂2Θ2

∂x∂y
(
∂Φ1(τ0, X0)

∂τ
+
∂Φ1(τ0, X0)

∂x
1

a0
′

∂Θ1(τ0, X0)
∂τ

)
∂Φ2(τ0, X0)

∂y

−
∂Θ2

∂y
(
∂2Φ2(τ0, X0)

∂x∂y
1

a0
′

∂Θ1

∂x
∂Φ1(τ0, X0)

∂τ
+
∂2Φ2(τ0, X0)

∂τ∂y
)

= −(1 −
yδ(y + 2h)

(y + h)2 )(
∂2Φ2(τ0, X0)

∂x∂y
1

a0
′
qy∗

′

(τ0)
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+ (r1 −
αy∗(t)

a1 + a3y∗(t)
) exp(

∫ τ0

0
(r1 −

αy∗(t)
a1 + a3y ∗ (t)

))),

C = −2
∂2Θ2

∂x∂y
(
a0
′

b0
′

∂Φ1(τ0, X0)
∂x

+
∂Φ1(τ0, X0)

∂y
)
∂Φ2(τ0, X0)

∂y
−
∂2Θ2

∂y2 (
∂Φ2(τ0, X0)

∂y
)2

+ 2
a0
′

b0
′

∂Θ2

∂y
∂2Φ2(τ0, X0)

∂x∂y
−
∂Θ2

∂y
∂2Φ2(τ0, X0)

∂y2 )

= −
2δ
h

(exp
(∫ t

0

∂F2(ζ(t))
∂y

dt
)
)2 + 2

a0
′

b0
′ (1 −

δy(y + 2h)
(y + h)2 )

∂2Φ2

∂x∂y
− (1 −

δy(y + 2h)
(y + h)2 )

∂2Φ2

∂y2 . (4.7)

To determine the sign of B and C, first assume that

ρ(t) = r1 −
αy∗(t)

a1 + a3y∗(t)

which implies that

ρ′(t) =
αa1y∗

′

(t)
(a1 + a3y∗(t))2 > 0.

Then, ρ(t) is a strictly increasing function. Given that d0
′ = 0, since∫ τ0

0
ρ(t)dt = ln(1/(1 −

δy(y + 2h)
(y + h)2 )) > 0,

it is obvious that ρ(τ0) > 0; so, ∂2Φ2(τ0,X0)
∂y∂τ0

> 0 and B < 0. Through analysis, we define the following:

$(t) = −2b +
2αa2t

(a1 + a3t)2 .

Apparently −2b + 2αa2t
(a1+a3t)2 ≤ 0 only such that αa2 ≤ 4ba1a3. This means that

$(y∗(t)) = −2b +
2αa2y∗(t)

(a1 + a3y∗(t))2 ≤ 0

for all y∗(t) > 0. So we get
∂2Φ(τ0, X0)

∂y2 < 0.

From (4.7) we have that C > 0.
In summary, BC < 0, and there is a supercritical bifurcation when T = T ∗. �

5. Numerical simulation

In order to confirm our theoretical results and facilitate interpretation, we will focus on the complex
dynamics. The properties of dynamic systems can be obtained by conducting bifurcation analysis.

First, the influence of impulse period T on the dynamic characteristics of the system was studied.
From Figure 1, we can ascertain that dynamic behaviors of system (1.1) become increasingly
complicated as parameter T increases, and these include behaviors such as period-doubling bifurcation,
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period-halving bifurcation, chaotic bands, meanwhile, multiple attractors may coexist with the same T .
Figure 2 shows that the pest free periodic solution has global stability when the impulse period stays
below some threshold value in (A,B), and that different attractors can coexist with the same T = 2.5
when we select different initial values i.e., (x0, y0) = (1.3, 2.1), (x0, y0) = (3.5, 6.8) in (C,D,E,F). The
different solutions coexist for a wide range of parameters, which suggests that the final steady state of
pest and predator populations depends on their initial densities, and these results confirm that changes
in the impulse period T can greatly alter the dynamics of the system (1.1).

Figure 1. Bifurcation diagrams for system (1.1) with respect to T . The parameter values
are as follows: r1 = 7.65; r2 = 2; b = 0.12; k = 5; a1 = 5; a2 = 1; a3 = 0.00001; alpha =

2.5; beta = 0.75; h = 0.27; q = 0.45; theta = 12.5; detal = 0.1; w1 = 1.25; w2 = 1.2.
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Figure 2. The different periodic solutions of system (1.1). The parameter values are identical
to those in Figure 1.

It can be ascertained from Figure 3 that the nonlinear impulse parameter w1 affect the dynamics
of the system (1.1), and that with the increase of parameter w1, the system (1.1) undergoes period-
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doubling bifurcation, chaotic bifurcation, period-halving bifurcation and multi-stability. Figure 4
shows that attractors with different amplitudes appeared at w1 = 10.2. Therefore, the initial values
of both pest and predator populations are critical.

The results shown in Figure 5 reveal how the maximal release of predators, denoted by w2 affects
the dynamics of system (1.1). The properties of the positive periodic solution are maintained until
w2 = 2.9, at which point a period-doubling bifurcation occurs. Additionally, as w2 increases, a series
of period bifurcations cause the system (1.1) to move from periodicity to chaos. However, when
w2 ≥ 20.2, the chaos disappears.

Figure 3. Bifurcation diagrams for system (1.1) with respect to w1. The parameter values
are as follows: r1 = 7.65; r2 = 2; b = 0.12; k = 5; a1 = 5; a2 = 1; a3 = 0.00001;α = 2.5; β =

0.75; h = 0.27; q = 0.45; theta = 12.5; detal = 0.1; w2 = 1.2.
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Figure 4. Two coexisting attractors for system (1.1) with w1 = 10.2; the other parameter
values are identical to those in Figure 3.
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Figure 5. Bifurcation diagrams for system (1.1) with respect to w2, where w1 = 7.85,T =

5.5; the other parameters are identical to those in Figure 1.

6. Conclusions

Regarding the predator-prey systems with an integrated pest management scheme, the impulse
control strategies in many previous studies were linear, while ignoring the influence of nonlinear
impulse on pest control such as the effects of limited resources. The number of natural enemies to
be released must be based on the densities of the pest and predator populations in the field, so we have
provided a nonlinear impulsive control predator-prey model with Leslie-Gower and B-D terms. The
global stability of the pest extinction periodic solution of system (1.1) has been studied by applying
the Floquet theory for differential equations and the comparison theorem, and the conditions for the
permanence of system (1.1) has been obtained in detail. We have also proven that a nontrivial periodic
solution can be obtained via a supercritical bifurcation once a threshold condition is reached within the
context of bifurcation theory. In order to reveal how nonlinear impulses affect successful pest control
strategies, we performed numerical simulations to show that system (1.1) has very complex dynamic
behaviors, such as period-halving bifurcations, period-doubling bifurcation, chaos, and non-unique
attractors. Comparing the bifurcation diagrams for parameters w1 and w2, it was found that small
perturbations can cause periodic oscillations of different amplitudes and periods in the populations of
pests and natural enemies, that is, the influence of nonlinear impulses on the dynamic behavior of the
model is very sensitive, which shows that the predator-prey models with nonlinear impulses have richer
dynamic properties. These bifurcation diagrams show that impulse period, insecticide dose, and initial
population densities are critical to successful control strategies.

In view of these results, we believe that systems with nonlinear impulsive control are more
reasonable and have more complex dynamic behavior than systems with linear impulsive control.
Furthermore, nonlinear impulsive control should be taken into account when investigating predator-
prey systems with IPM. However, a more realistic case is that the density dependent releasing function
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should depend on the densities of the prey and predator populations, i.e., the higher the density of pests
or the lower the density of predators in the field, the higher the number of predators that should be
released and vice versa. We will work on this in the near future.
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