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1. Introduction

Let M1,M2 . . . ,Ms ∈ R
n×n, and let u1(z), u2(z), . . . , us(z) : Rn → Rn, be s nonlinear mappings. The

definition of the vertical nonlinear complementarity problem (abbreviated as VNCP) is: Find z ∈ Rn

such that
ri = Miz + ui(z), 1 ≤ i ≤ s, with min{z, r1, . . . , rs} = 0. (1.1)

Here, the minimum operation is taken component-wise.
The VNCP has many applications in generalized Leontief input-output models, control theory,

nonlinear networks, contact problems in lubrication, and so on; e.g., see [11, 18, 34, 35, 39].
Taking ui(z) = ui ∈ R

n, 1 ≤ i ≤ s, the VNCP reduces to the vertical linear complementarity
problem (abbreviated as VLCP) [9, 20, 40]. Further, taking s = 1, the VLCP reduces to the linear
complementarity problem (abbreviated as LCP) [10].
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In earlier literatures, there were some iterative methods for such problems. In [39],
the Mangasarian’s general iterative algorithm was constructed to solve the VLCP. Solving an
approximation equation of the nonlinear complementarity problem by a continuation method can
be extended to solve the VNCP; see [8]. Furthermore, in [37] the authors approximated the
equivalent minimum equation of the VNCP by a sequence of aggregation functions, and found the zero
solution of the approximated problems. Moreover, some interior-point methods were applied to solve
complementarity problems, such as LCP [24, 29], nonlinear complementarity problems (abbreviated
as NCP) [36] and horizontal LCP [46]. In recent years, modulus-based matrix splitting (abbreviated as
MMS) iteration methods have gained popularity for numerical solutions to various complementarity
problems. References [2, 12, 15, 16] detail their application to the LCP, while [13, 32, 50] focus
on the horizontal LCP. The second-order cone LCP is discussed in [27], implicit complementarity
problems in [7, 14, 25], quasi-complementarity problem in [38], NCP in [41], and the circular cone
NCP is addressed in [28]. Numerical examples have demonstrated that MMS iteration methods often
outperform state-of-the-art smooth Newton methods in practical applications. Specifically, for the
VLCP, a special case of the VNCP, the MMS iteration method was introduced in [31]. Alternatively,
an MMS iteration method without auxiliary variables based on a non-auxiliary-variable equivalent
modulus equation was presented in [23] and shown to be more efficient than the method in [31].
Accelerated techniques and improved results for MMS iteration methods in the VLCP are further
detailed in [21, 48, 49, 51]. On the other hand, Projected type methods were also used to solve the
VLCP; see [6, 33]. For the VNCP, the only literature on the MMS iteration method currently is [42].

To improve the convergence rate of the MMS iteration method for solving the VNCP, in this work,
we aim to construct a two-step MMS iteration method. The two-step splitting technique had been
successfully used in other complementarity problems, e.g., see [43–45, 52], where the main idea is to
change the iteration in the MMS to two iterations based on two matrix splittings of the system matrices,
which can make full use of the information of the matrices for acceleration.

In the following, after presenting some required preliminaries, the new two-step MMS iteration
method is established in Section 2. The convergence analysis of the proposed method is given in
Section 3, which can generalize and improve the results in [42]. Some numerical examples are
presented to illustrate the efficiency of the proposed method in Section 4, and concluding remarks
of the whole work are presented in Section 5.

2. New method

First, some notations, definitions, and existing results needed in the following discussion are
introduced.

Let M = (mi j) ∈ Rn×n and M = DM − BM, where DM and −BM are the diagonal and the nondiagonal
matrices of M, respectively. For two matrices M and N, the order in inequality M ≥ (>)N means
mi j ≥ (>)ni j for every i, j. Let |M| = (|mi j|) and the comparison matrix of M be denoted by 〈M〉 =

(〈mi j〉), where 〈mi j〉 = |mi j| if i = j and 〈mi j〉 = −|mi j| if i , j. If mi j ≤ 0 for any i , j, M is called
a Z-matrix. If M is a nonsingular Z-matrix and M−1 ≥ 0, it is called a nonsingular M-matrix. M is
called an H-matrix if 〈M〉 is a nonsingular M-matrix. If |mii| >

∑
j,i
|mi j| for all 1 ≤ i ≤ n, M is called

a strictly diagonal dominant (abbreviated as s.d.d.) matrix (see [5]). If M is an H-matrix with all its
diagonal entries positive (e.g., see [1]), it is called an H+-matrix. If M is a nonsingular M-matrix, it
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is well known that there exists a positive diagonal matrix Λ, which can make MΛ be an s.d.d. matrix
with all the diagonal entries of AΛ positive [5]. M = F − G is called an H-splitting if 〈F〉 − |G| is a
nonsingular M-matrix [19].

Let Y = {Y1,Y2, . . . ,Ys} be a set of n × n real matrices (or n × 1 real vectors). Denote a mapping ϕ
as follows:

ϕ(Y) =

s−1∑
i=1

2s−i−1Yi + Ys.

Let Ω ∈ Rn×n be a positive diagonal matrix, σ > 0 ∈ R and Mi = Fi −Gi (1 ≤ i ≤ s) be s splittings of
Mi. Denote

F = {F1, F2, . . . , Fs},G = {G1,G2, . . . ,Gs},M = {M1,M2, . . . ,Ms},

DF = {DF1 ,DF2 , . . . ,DFs},BF = {BF1 , BF2 , . . . , BFs},

and
U(z) = {u1(z), u2(z), . . . , us(z)}.

By equivalently transforming the VNCP to a fixed-point equation, the MMS iteration method for the
VNCP was given in [42].

Method 2.1. [42] (MMS) Given x(0)
1 ∈ R

n, for k = 0, 1, 2, . . ., compute x(k+1)
1 ∈ Rn by

(2s−1Ω + ϕ(F ))x(k+1)
1 = ϕ(G)x(k)

1 + (2s−1Ω − ϕ(M))|x(k)
1 | + Ω

s∑
i=2

2s−i+1|x(k)
i | − σϕ(U(z(k))),

where
z(k) =

1
σ

(x(k)
1 + |x(k)

1 |)

and x(k)
2 , . . . , x

(k)
s are computed by

x(k)
s = 1

2Ω−1[(Ms−1 − Ms)(|x
(k)
1 | + x(k)

1 ) + σus−1(z(k)) − σus(z(k))
]
,

x(k)
j = 1

2Ω−1[(M j−1 − M j)(|x
(k)
1 | + x(k)

1 ) + Ω(|x(k)
j+1| + x(k)

j+1) + σu j−1(z(k)) − σu j(z(k))
]
,

j = s − 1, s − 2, . . . , 2,
(2.1)

until the iteration is convergent.

Based on Method 2.1, to fully utilize the information of the entries of the matrix setM, for 1 ≤ i ≤ s,
consider two matrix splittings of Mi, e.g., Mi = F(1)

i − G(1)
i = F(2)

i − G(2)
i . Then, the two-step MMS

(abbreviated as TMMS) iteration method can be established as follows:

Method 2.2. (TMMS) Given x(0)
1 ∈ R

n, for k = 0, 1, 2, . . ., compute x(k+1)
1 ∈ Rn by

(2s−1Ω + ϕ(F (1)))x(k+ 1
2 )

1 = ϕ(G(1))x(k)
1 + (2s−1Ω − ϕ(M))|x(k)

1 | + Ω
s∑

i=2
2s−i+1|x(k)

i |

−σϕ(U(z(k))),

(2s−1Ω + ϕ(F (2)))x(k+1)
1 = ϕ(G(2))x(k+ 1

2 )
1 + (2s−1Ω − ϕ(M))|x(k+ 1

2 )
1 | + Ω

s∑
i=2

2s−i+1|x(k+ 1
2 )

i |

−σϕ(U(z(k+ 1
2 ))),

(2.2)
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where
z(k) =

1
σ

(x(k)
1 + |x(k)

1 |), z
(k+ 1

2 ) =
1
σ

(x(k+ 1
2 )

1 + |x(k+ 1
2 )

1 |),

where x(k)
2 , . . . , x

(k)
s are computed by (2.1) and

x(k+ 1
2 )

s = 1
2Ω−1[(Ms−1 − Ms)(|x

(k+ 1
2 )

1 | + x(k+ 1
2 )

1 ) + σus−1(z(k+ 1
2 )) − σus(z(k+ 1

2 ))
]
,

x(k+ 1
2 )

j = 1
2Ω−1[(M j−1 − M j)(|x

(k+ 1
2 )

1 | + x(k+ 1
2 )

1 ) + Ω(|x(k+ 1
2 )

j+1 | + x(k+ 1
2 )

j+1 )
+σu j−1(z(k)) − σu j(z(k+ 1

2 ))
]
, j = s − 1, s − 2, . . . , 2,

(2.3)

until the iteration is convergent.

Clearly, if we take F(1)
i = F(2)

i , Method 2.2 reduces to Method 2.1 immediately. Furthermore, we can
obtain a class of relaxation methods from Method 2.2 by specially choosing the two matrix splittings,
similar to those in [43–45, 49, 50, 52]. For example, for i = 1, 2, . . . , s, taking{

F(1)
i = 1

α
(D(1)

Ai
− βL(1)

Ai
),G(1)

i = F(1)
i − Ai,

F(2)
i = 1

α
(D(2)

Ai
− βU (2)

Ai
),G(2)

i = F(2)
i − Ai,

(2.4)

one can get the two-step modulus-based accelerated overrelaxation (abbreviated as TMAOR) iteration
method, which can reduce to the two-step modulus-based successive overrelaxation (abbreviated as
TMSOR) and Gauss-Seidel (abbreviated as TMGS) methods, when (α, β) = (α, α) and (α, β) = (1, 1),
respectively.

3. Convergence analysis

In this section, the convergence conditions of Method 2.2 are given under the assumption that the
VNCP has a unique solution z∗, the same as that in [42]. Furthermore, for 1 ≤ i ≤ s, ui(z) is assumed
to satisfy the locally Lipschitz smoothness conditions: Let

ui(z) =
(
ui(z1), ui(z2), . . . , ui(zn)

)T

be differentiable with
0 ≤

∂ui(z)
∂z

≤ Ui, i = 1, 2, . . . , s. (3.1)

Then, by Lagrange mean value theorem, there exists ξ j between z(k)
j and z∗j such that

ui(z(k)) − ui(z∗) = U (k)
i (z(k) − z∗) =

1
σ

U (k)
i

[
(x(k)

1 − x∗1) + (|x(k)
1 | − |x

∗
1|)

]
, (3.2)

where U (k)
i is a nonnegative diagonal matrix with diagonal entries ∂ui(z j)

∂z j

∣∣∣∣∣
z j=ξ j

, 1 ≤ j ≤ n. Furthermore,

by (3.1), we have
0 ≤ U (k)

i ≤ Ui. (3.3)

Denote
U(k) = {U (k)

1 ,U (k)
2 , . . . ,U (k)

s },U = {U1,U2, . . . ,Us}.
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Lemma 3.1. Let Mi, 1 ≤ i ≤ s, be H+-matrices, Ω ∈ Rn×n be a positive diagonal matrix, andσ > 0 ∈ R.
For t = 1, 2, assume that:
(I) DF(t)

i
> 0, i = 1, 2, . . . , s − 1, and Ms = F(t)

s −G(t)
s be an H-splitting of Ms;

(II) 
〈F(t)

s−1〉 ≥ 〈F
(t)
s 〉,

2s− j〈F(t)
j−1〉 ≥ 〈

s−1∑
i= j

2s−i−1F(t)
i + F(t)

s 〉, 2 ≤ j ≤ s − 1; (3.4)

(III) There exists a positive diagonal matrix Λ such that (〈F(t)
s 〉 − |G

(t)
s |)Λ is an s.d.d. matrix.

Then, 2s−1Ω + ϕ(F (t)) is an H-matrix.

Proof. Let e =∈ Rn be a vector with all entries being 1. By reusing (3.4) s − 2 times, we have

〈2s−1Ω + ϕ(F (t))〉Λe

> 〈ϕ(F (t))〉Λe

≥ (〈2s−2F(t)
1 〉 + 〈

s−1∑
i=2

2s−i−1Fi + F(t)
s 〉)Λe

≥ 2〈
s−1∑
i=2

2s−i−1F(t)
i + F(t)

s 〉Λe

≥ 2(〈2s−3F(t)
2 〉 + 〈

s−1∑
i=3

2s−i−1Fi + F(t)
s 〉)Λe

≥ . . . ≥ 2s−1〈F(t)
s 〉Λe

≥ 2s−1(〈F(t)
s 〉 − |G

(t)
s |)Λe

> 0.

Hence, 〈2s−1Ω + ϕ(F (t))〉Λ is an s.d.d matrix, which implies that 2s−1Ω + ϕ(F (t)) is an H-matrix. �

Lemma 3.2. With the same notations as those in Lemma 3.1, denote x∗i , i = 1, 2, . . . , s, as the solution
of the VNCP, and let

δ(k)
i = x(k)

i − x∗i , δ̄
(k)
i = |x(k)

i | − |x
∗
i |.

Then, we have
s∑

i=2

2s−i+1Ω|δ̄(k)
i | ≤ [2(

s−2∑
j=1

2s− j−1Γ j + Γs−1) + Θ]|δ(k)
1 |, (3.5)

where

Γ j =


|Ms−1 − Ms|, if j = 1,

|2 j−1Ms− j −
s−1∑

t=s− j+1
2s−t−1Mt − Ms|, if 2 ≤ j ≤ s − 1,

and

Θ =

s−1∑
j=2

(2s − 2s− j)U j + (2s − 2)Us.
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Proof. By (2.1), we get
δ(k)

s = Ω−1[(Ms−1 − Ms) + (U (k)
s−1 − U (k)

s )
]
(δ̄(k)

1 + δ(k)
1 ),

δ(k)
j = 1

2Ω−1[(M j−1 − M j) + (U (k)
j−1 − U (k)

j )(δ̄(k)
1 + δ(k)

1 ) + Ω(δ̄(k)
j+1 + δ(k)

j+1)
]
,

j = s − 1, s − 2, . . . , 2.
(3.6)

By the first equation of (3.6), we have

21Ω|δ(k)
s |

= |[(Ms−1 − Ms) + (U (k)
s−1 − U (k)

s )](δ̄(k)
1 + δ(k)

1 )|
≤ (|Ms−1 − Ms| + Us−1 + Us)|δ

(k)
1 |

= 2(Γ1 + Us−1 + Us)|δ
(k)
1 |.

Then, when the subscript is s − 1, with the second equation of (3.6), we can get

22Ω|δ(k)
s−1|

= |[2(Ms−2 − Ms−1) + 2(U (k)
s−2 − U (k)

s−1)](δ̄(k)
1 + δ(k)

1 ) + 2Ω(δ̄(k)
s + δ(k)

s )|
= |[(2Ms−2 − Ms−1 − Ms) + (2U (k)

s−2 − U (k)
s−1 − U (k)

s )](δ̄(k)
1 + δ(k)

1 ) + 2Ωδ̄(k)
s |

≤ 2(Γ2 + 2Us−2 + Us−1 + Us)|δ
(k)
1 | + 2Ω|δ(k)

s |

≤ 2[Γ2 + Γ1 + 2(Us−2 + Us−1 + Us)]|δ
(k)
1 |.

By induction, for 2 ≤ i ≤ s, we have

2s−i+1Ω|δ(k)
i | ≤ (

s−i∑
j=1

2s−i− j+1Γ j + 2Γs−i+1 + 2s−i+1
s∑

j=i−1

U j)|δ
(k)
1 |. (3.7)

Then, by (3.7), we get
s∑

i=2

2s−i+1Ω|δ̄(k)
i |

≤

s∑
i=2

2s−i+1Ω|δ(k)
i |

≤

s∑
i=2

(
s−i∑
j=1

2s−i− j+1Γ j + 2Γs−i+1 + 2s−i+1
s∑

j=i−1

U j)|δ
(k)
1 |

= (
s−2∑
j=1

s− j∑
i=2

2s−i− j+1Γ j + 2
s−1∑
i=1

Γi +

s∑
i=2

2s−i+1
s∑

j=i−1

U j)|δ
(k)
1 |

= [
s−2∑
j=1

(2s− j − 2)Γ j + 2
s−1∑
j=1

Γ j +

s−1∑
j=2

(2s − 2s− j)U j + (2s − 2)Us)]|δ
(k)
1 |

= [2(
s−2∑
j=1

2s− j−1Γ j + Γs−1) + Θ]|δ(k)
1 |.

�
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Theorem 3.1. With the same notations and assumptions as those in Lemmas 3.1 and 3.2, for t = 1, 2,
assume that 

|G(t)
s−1| ≤ |G

(t)
s |,

2s− j|G(t)
j | ≤ |

s−1∑
i= j

2s−i−1G(t)
i + G(t)

s |, 2 ≤ j ≤ s − 1, (3.8)

Then, Method 2.1 converges for any initial vector x(0)
1 provided that

Ω ≥ 21−s(ϕ(DM(t)) + ϕ(U) + Θ) (3.9)

or [
21−s(ϕ(DM(t)) + ϕ(U)) + 2−sΘ − (〈F(t)

s 〉 − |G
(t)
s |)

]
Λe < ΩΛe < 21−s(ϕ(DM(t)) + Θ)Λe. (3.10)

Proof. By (3.2), we get

ui(z(k)) − ui(z∗) =
1
σ

U (k)
i (δ(k)

1 + δ̄(k)
1 ).

By the definition of ϕ, we have

ϕ(U(z(k))) − ϕ(U(z∗)) = ϕ(U(z(k)) − U(z∗)) =
1
σ
ϕ(U(k))(δ(k)

1 + δ̄(k)
1 ). (3.11)

Combining the first equation of (2.2) and (3.11), we can get

(2s−1Ω + ϕ(F (1)))δ(k+ 1
2 )

1

= ϕ(G(1))δ(k)
1 + (2s−1Ω − ϕ(M))δ̄(k)

1 + Ω

s∑
i=2

2s−i+1δ̄(k)
i − σ[ϕ(U(z(k))) − ϕ(U(z∗))]

= ϕ(G(1))δ(k)
1 + (2s−1Ω − ϕ(M))δ̄(k)

1 + Ω

s∑
i=2

2s−i+1δ̄(k)
i − ϕ(U(k))(δ(k)

i + δ̄(k)
i )

= [ϕ(G(1)) − ϕ(U(k))]δ(k)
1 + [2s−1Ω − ϕ(M) − ϕ(U(k))]δ̄(k)

1 + Ω

s∑
i=2

2s−i+1δ̄(k)
i .

Similarly, by the second equation of (2.2), we have

(2s−1Ω + ϕ(F (2)))δ(k+1)
1

= [ϕ(G(2)) − ϕ(U(k+ 1
2 ))]δ(k+ 1

2 )
1 + [2s−1Ω − ϕ(M) − ϕ(U(k+ 1

2 ))]δ̄(k+ 1
2 )

1 + Ω

s∑
i=2

2s−i+1δ̄
(k+ 1

2 )
i .

Then we have

|δ
(k+ 1

2 )
1 | ≤ |2s−1Ω + ϕ(F (1))|−1

(
|ϕ(G(1)) − ϕ(U(k))||δ(k)

1 |

+|2s−1Ω − ϕ(M) − ϕ(U(k))||δ̄(k)
1 | +

s∑
i=2

2s−i+1Ω|δ̄(k)
i |

)
,

|δ(k+1)
1 | ≤ |2s−1Ω + ϕ(F (2))|−1

(
|ϕ(G(2)) − ϕ(U(k+ 1

2 ))||δ(k+ 1
2 )

1 |

+|2s−1Ω − ϕ(M) − ϕ(U(k+ 1
2 ))||δ̄(k+ 1

2 )
1 | +

s∑
i=2

2s−i+1Ω|δ̄
(k+ 1

2 )
i |

)
.

(3.12)
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By Lemma 3.1, we have that 2s−1Ω + ϕ(F ) is an H-matrix. By [17], with (3.5) and (3.12), we get

|δ(k+1)
1 | ≤ P(2)−1

Q(2)P(1)−1
Q(1)|δ(k)

1 |, (3.13)

where
P(1) = 〈2s−1Ω + ϕ(F (1))〉,

Q(1) = |ϕ(G(1)) − ϕ(U(k))| + |2s−1Ω − ϕ(M) − ϕ(U(k))| + 2(
s−2∑
j=1

2s− j−1Γ j + Γs−1) + Θ,

P(2) = 〈2s−1Ω + ϕ(F (2))〉,

Q(2) = |ϕ(G(2)) − ϕ(U(k))| + |2s−1Ω − ϕ(M) − ϕ(U(k))| + 2(
s−2∑
j=1

2s− j−1Γ j + Γs−1) + Θ.

First, we estimate F (1)−1
G(1). By Lemma 3.1 and [26], we have

‖Λ−1F (1)−1
G(1)Λ‖∞ = ‖(F (1)Λ)−1(G(1)Λ)‖∞ ≤ max

1≤i≤n

(G(1)Λe)i

(F (1)Λe)i
. (3.14)

Let

Γ
(1)
j =


|DF(1)

s−1
− DF(1)

s
|, if j = 1,

|2 j−1DF(1)
s− j
−

s−1∑
t=s− j+1

2s−t−1DF(1)
t
− DF(1)

s
|, if 2 ≤ j ≤ s − 1,

Γ
(2)
j =


|BF(1)

s−1
− BF(1)

s
|, if j = 1,

|2 j−1BF(1)
s− j
−

s−1∑
t=s− j+1

2s−t−1BF(1)
t
− BF(1)

s
|, if 2 ≤ j ≤ s − 1,

and

Γ
(3)
j =


|G(1)

s−1 −G(1)
s |, if j = 1,

|2 j−1G(1)
s− j −

s−1∑
t=s− j+1

2s−t−1G(1)
t −G(1)

s |, if 2 ≤ j ≤ s − 1.

Clearly, we have Γ j ≤ Γ
(1)
j + Γ

(2)
j + Γ

(3)
j . By (3.4), we can get

Γ
(1)
j =


DFs−1 − DFs , if j = 1,

2 j−1DFs− j −
s−1∑

t=s− j+1
2s−t−1DFt − DFs , if 2 ≤ j ≤ s − 1.

Then, by direct computation, we can obtain

ϕ(D(1)
M ) − 2(

s−2∑
j=1

2s− j−1Γ
(1)
j + Γ

(1)
s−1) =

s−1∑
i=1

2s−i−1DF(1)
i

+ DF(1)
s
− 2(

s−2∑
j=1

2s− j−1Γ
(1)
j + Γ

(1)
s−1)

= (2s − 1)DF(1)
s
−

s−1∑
i=1

2s−i−1DF(1)
i
. (3.15)
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Moreover, by reusing (3.4) s − 2 times, we get

2(
s−2∑
j=1

2s− j−1Γ
(2)
j + Γ

(2)
s−1) + 2|

s−1∑
j=1

2s− j−1BF(1)
j

+ BF(1)
s
|

= 2
s−2∑
j=1

2s− j−1Γ
(2)
j +

(
2|2s−2BF(1)

1
−

s−1∑
j=2

2s− j−1BF(1)
j
− BF(1)

s
|

+2|2s−2BF(1)
1

+

s−1∑
j=2

2s− j−1BF(1)
j

+ BF(1)
s
|
)

= 2
s−2∑
j=1

2s− j−1Γ
(2)
j + 22|

s−1∑
j=2

2s− j−1BF(1)
j

+ BF(1)
s
|

= 2
s−3∑
j=1

2s− j−1Γ
(2)
j +

(
22|2s−3BF(1)

2
−

s−1∑
j=3

2s− j−1BF(1)
j
− BF(1)

s
|

+22|2s−3BF2 +

s−1∑
j=3

2s− j−1BF(1)
j

+ BF(1)
s
|
)

= 2
s−3∑
j=1

2s− j−1Γ
(2)
j + 23|

s−1∑
j=3

2s− j−1BF(1)
j

+ BF(1)
s
|

= . . . = 2s|BFs |. (3.16)

Analogously, by reusing (3.8) s − 2 times, we get

2(
s−2∑
j=1

2s− j−1Γ
(3)
j + Γ

(3)
s−1) + 2|ϕ(G(1))| = 2s|G(1)

s |. (3.17)

By (3.15)–(3.17), we get

P(1)Λe − Q(1)Λe

=
[
〈2s−1Ω + ϕ(F (1))〉 − |ϕ(G(1)) − ϕ(U(k))| − |2s−1Ω − ϕ(M) − ϕ(U(k))|

−2(
s−2∑
j=1

2s− j−1Γ j + Γs−1) − Θ
]
Λe

≥
[
2s−1Ω + ϕ(DM(1)) − |ϕ(BM(1))| − |ϕ(G(1)) − ϕ(U(k))| − |2s−1Ω − ϕ(DM) − ϕ(U(k))|

−|ϕ(BM(1))| − |ϕ(G(1))| − 2(
s−2∑
j=1

2s− j−1Γ
(1)
j + Γ

(1)
s−1) − 2(

s−2∑
j=1

2s− j−1Γ
(2)
j + Γ

(2)
s−1)

−2(
s−2∑
j=1

2s− j−1Γ
(3)
j + Γ

(3)
s−1) − Θ

]
Λe

≥

{
2s−1Ω +

[
ϕ(DM(1)) − 2(

s−2∑
j=1

2s− j−1Γ
(1)
j + Γ

(1)
s−1)

]
−

[
2|ϕ(BM(1))| + 2(

s−2∑
j=1

2s− j−1Γ
(2)
j + Γ

(2)
s−1)

]
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−
[
2|ϕ(G)| + 2(

s−2∑
j=1

2s− j−1Γ
(3)
j + Γ

(3)
s−1)

]
− ϕ(U(k)) − |2s−1Ω − ϕ(DM(1)) − ϕ(U(k)) − Θ|

}
Λe

=
[
2s−1Ω + (2s − 1)DF(1)

s
−

s−1∑
i=1

2s−i−1DF(1)
i
− 2s|BF(1)

s
| − 2s|G(1)

s | − ϕ(U(k))

−|2s−1Ω − ϕ(DM(1)) − ϕ(U(k)) − Θ|
]
Λe. (3.18)

Next, consider the following two cases.
Case 1. When

Ω ≥ 21−s(ϕ(DM(1)) + ϕ(U) + Θ),

by (3.18), we have

P(1)Λe − Q(1)Λe

≥
[
2s−1Ω + (2s − 1)DF(1)

s
−

s−1∑
i=1

2s−i−1DF(1)
i
− 2s|BF(1)

s
| − 2s|G(1)

s | − ϕ(U(k))

−(2s−1Ω − ϕ(DM) − ϕ(U(k)) − Θ)
]
Λe

=
[
2s(DF(1)

s
− |G(1)

s | − |BF(1)
s
|) + Θ

]
Λe

=
[
2s(〈Fs〉 − |G(1)

s |) + Θ
]
Λe

> 0.

Case 2. When[
21−s(ϕ(DM(1)) + ϕ(U)) + 2−sΘ − (〈F(1)

s 〉 − |G
(1)
s |)

]
Λe < ΩΛe < 21−s(ϕ(DM(1)) + Θ)Λe,

by (3.18), we have

P(1)Λe − Q(1)Λe

≥
[
2s−1Ω + (2s − 1)DF(1)

s
−

s−1∑
i=1

2s−i−1DF(1)
i
− 2s|BF(1)

s
| − 2s|G(1)

s | − ϕ(U(k))

−(ϕ(DM(1)) + ϕ(U(k)) + Θ − 2s−1Ω)
]
Λe

≥
[
2sΩ − 2ϕ(DM(1)) − 2ϕ(U) − Θ + 2s(DFs − |G

(1)
s | − |BF(1)

s
|)
]
Λe

=
[
2sΩ − 2ϕ(DM(1)) − 2ϕ(U) − Θ + 2s(〈F(1)

s 〉 − |G
(1)
s |)

]
Λe

> 0.

Summarizing Cases 1 and 2, we immediately get P(1)Λe −Q(1)Λe > 0, provided that (3.9) or (3.10)
holds, which implies that

‖Λ−1P(1)−1
Q(1)Λ‖∞ < 1

by (3.14).
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By similar deductions, we can also get

‖Λ−1P(2)−1
Q(2)Λ‖∞ < 1,

when (3.9) or (3.10) is satisfied.
In summary, the spectral radius of the iteration matrix given by (3.13) can be estimated as follows:

ρ(P(2)−1
Q(2)F (1)−1

Q(1))

= ρ(Λ−1P(2)−1
Q(2)ΛΛ−1P(1)−1

Q(1)Λ)

≤ ‖Λ−1P(2)−1
Q(2)Λ‖∞‖Λ

−1P(1)−1
Q(1)Λ‖∞

< 1.

Hence, we can see that {x(k)
1 }
∞
k=0 converges by (3.13). �

Based on Theorem 3.1, we have the next theorem for the TMAOR method.

Theorem 3.2. With the same notations and assumptions as those in Theorem 3.1, for t = 1, 2, let F(t)
i

and G(t)
i be given by (2.4), 1 ≤ i ≤ s. Assume that

0 < β ≤ α <
2

1 + ρ(D−1
Ms
|BMs |)

. (3.19)

Then, the TMAOR converges to the solution of the VNCP.

Proof. By (2.4), with direct computation, we can get

〈F(1)
s 〉 − |G

(1)
s | = 〈F

(2)
s 〉 − |G

(2)
s | =

1 − |1 − α|
α

DMs − |BMs |,

if 0 < β ≤ α. Since Ms is an H+-matrix, by [5] we have ρ(D−1
Ms
|BMs |) < 1. Since (3.19) holds, we

can easily have that 1−|1−α|
α

DMs − |BMs | is a nonsingular M-matrix. Note that all the assumptions of
Theorem 3.1 hold. Hence, the TMAOR is convergent by Theorem 3.1. �

4. Numerical examples

Next, some numerical examples are given to shown the efficiency of Method 2.2 compared to
Method 2.1.

Example 4.1. [42] Consider a VNCP (s = 2), where the two system matrices are given by

M1 =



R −Im

−Im R −Im
. . .

. . .
. . .

−Im R −Im

−Im R


∈ Rn×n and M2 =



R
R

. . .

R
R


∈ Rn×n,

where

R =


4 −1

−1 4 . . .
. . .

. . . −1
−1 4

 ∈ R
m×m.
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Example 4.2. [42] Consider a VNCP (s = 2), where the two system matrices are given by

M1 =



T −0.5Im

−1.5Im T −0.5Im
. . .

. . .
. . .

−1.5Im T −0.5Im

−1.5Im T


∈ Rn×n and M2 =



T
T

. . .

T
T


∈ Rn×n,

where

T =


4 −0.5

−1.5 4 . . .
. . .

. . . −0.5
−1.5 4

 ∈ R
m×m.

Example 4.3. Consider the VNCP (s = 2) whose system matrices M1,M2 ∈ R
m2×m2

come from the
discretization of Hamilton-Jacobi-Bellman (HJB) equation [4] max

i=1,2
{Li + fi} = 0 in Γ,

z = 0 on ∂Γ,

with Γ = {(x, y) | 0 < x < 2, 0 < y < 1},{
L1 = 0.002zxx + 0.001zyy − 20u1(z), f1 = 1,
L2 = 0.001zxx + 0.001zyy − 10u2(z), f2 = 1.

Same as those in [42], all the nonlinear functions in Examples 4.1–4.3 are set to u1(z) = z
1+z and

u2(z) = arctan(z).
The programming language is MATLAB, whose codes are run on a PC with a 12th Gen Intel(R)

Core(TM) i7-12700 2.10 GHz and 32G memory. Consider the Gauss-Seidel (abbreviated as GS), SOR
and AOR splittings, where the SOR splitting is

F(t)
s =

1
α

(DM(t)
s
− αLM(t)

s
),G(t)

s = F(t)
s − M(t)

s , t = 1, 2,

with α being the relaxation parameter and starting from 0.8 to 1.2 with a step size of 0.1, while the
parameters of AOR splitting given by (2.4) satisfy α = β + 0.1, and β starts from 0.8 to 1.2 with a step
size of 0.1.

All initial vectors are set to x(0)
1 = e. The stopping criterion in the iteration of both Methods 2.1

and 2.2 is taken as
‖min{z(k),M1z(k) + u1(z(k)),M2z(k) + u2(z(k))}‖2 < 10−10,

and Ω is chosen as
Ω =

1
2α

(DM1 + DM2) + I.

Let m = 256, 512, 1024 for the three examples. For fair comparison, when the relaxation parameters
are chosen as the experimentally optimal ones for each size of the three examples, the results of the
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MMS and TMMS methods are shown in Tables 1–3, where “IT” is the iteration steps, “CPU” is the
elapsed CPU time, and

S AVE =
CPUMMS −CPUT MMS

CPUMMS
× 100%.

It is found from the numerical results that Method 2.2 always converges faster than Method 2.1 for
all cases. Specifically, the iteration steps of Method 2.1 take almost twice as much time as those of
Method 2.2 due to the fact that there are two equations needed to solve in each iteration in Method 2.2
versus only one in Method 2.1. Focusing on the CPU time, the cost of Method 2.2 is 14%–23% less
than that of Method 2.1 for Example 4.1, while the percentages of Examples 4.2 and 4.3 are 21%–38%
and 7%–18%, respectively. It is clear that the two-step splitting technique works for accelerating the
convergence of the MMS iteration method.

Table 1. Numerical results of Example 4.1.

m splitting Method 2.1 Method 2.2
IT CPU IT CPU SAVE

256 GS 98 0.6945 50 0.5976 14%
SOR 94 0.6679 46 0.5652 15%
AOR 97 0.7469 47 0.5902 21%

512 GS 100 3.7686 51 3.1709 16%
SOR 94 3.6039 46 3.0237 16%
AOR 101 4.0266 47 3.1373 22%

1024 GS 102 22.7605 52 18.9571 17%
SOR 134 21.1283 47 17.7199 16%
AOR 97 24.4213 47 18.8083 23%

Table 2. Numerical results of Example 4.2.

m splitting Method 2.1 Method 2.2
IT CPU IT CPU SAVE

256 GS 86 0.5939 34 0.3792 36%
SOR 69 0.4937 31 0.3571 27%
AOR 71 0.5252 32 0.4136 21%

512 GS 89 3.4883 35 2.1793 38%
SOR 70 2.6886 31 1.9244 28%
AOR 71 4.5891 32 3.3323 27%

1024 GS 91 19.1887 36 12.4029 35%
SOR 70 15.3799 32 11.5026 25%
AOR 72 17.7342 33 13.3755 24%
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Table 3. Numerical results of Example 4.3.

m splitting Method 2.1 Method 2.2
IT CPU IT CPU SAVE

256 GS 76 0.6216 39 0.5478 12%
SOR 59 0.4853 30 0.4394 9%
AOR 54 0.4732 28 0.4103 13%

512 GS 288 17.4591 145 14.2667 18%
SOR 253 12.6084 101 11.6480 7%
AOR 204 14.9972 103 12.6497 16%

1024 GS 1137 172.0573 569 144.5840 16%
SOR 885 137.8101 443 116.6376 15%
AOR 805 130.3913 403 111.1060 15%

5. Conclusions

By the two-step matrix splitting technique, we have constructed the TMMS iteration method for
solving the VNCP. We also present the convergence theorems of the TMMS iteration method for an
arbitrary s, which can extend the research scope of the modulus-based methods for the VNCP.

Note that to show the effectiveness of the proposed two-step method, the choice of the two-step
splittings in Section 4 is common in existing literatures. However, since the iteration matrix in (3.13)
is essentially an extended bound containing absolute operation, it is very hard to minimize its spectral
radius. How to choose an optimal two-step splitting in general or based some special structure is still
an open question. On the other hand, it is noted that there were some other accelerated techniques for
the MMS iteration method, such as relaxation, precondition, two-sweep and so on. One can also mix a
certain technique with the two-step splittings for acceleration, e.g., [3, 22, 30, 47]. More techniques to
improve the convergence of the MMS iteration method are worth studying in the future.
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