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1. Introduction

Many researchers have studied the matrix form of differential systems due to their good applications
in biological sciences, engineering, and economics, as well as other branches of mathematics, where
the study of stability and the existence of periodic solutions was addressed (see [1–11]).

By employing Krasnoselskii’s fixed point theorem, the authors in [12] studied the following two
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functional neutral differential equations:

(x (ι) − cx (ι − γ (ι)))′ = −a (ι) x (ι) + p (ι, x (ι − γ (ι))) (1.1)

and
d
dι

[
x (ι) − c

∫ 0

−∞

G (s) x (ι + s) ds
]
= −a (ι) x (ι) +

∫ 0

−∞

G (s) p (ι, x (ι + s)) ds, (1.2)

where the positivity and periodicity of solutions were established, such that x: R → R;
a (ι) ∈ C(R, (0,∞)); p ∈ C(R × R,R); γ (ι) ∈ C(R,R) and a (ι), b (ι), γ (ι), p (ι, x) are Υ-periodic
functions, |c| < 1 and Υ > 0 are constants, G (s) ∈ C ((−∞, 0] , [0,∞)), and∫ 0

−∞

G (s) ds = 1.

However, functional differential Eqs (1.1) and (1.2) appear frequently in applications as models
of equations in many mathematical population and ecological models, the models of hematopoiesis
(see [13, 14]), Nicholson’s blowflies models (see [15, 16]), and blood cell production (see [17]).

In [2], the authors considered the following system:

(x (ι) − cx (ι − γ))′ = A (ι, x (ι)) x (ι) + p (ι, x (ι − σ1 (ι)) , ..., x (ι − σm (ι))) , (1.3)

under the condition on the matrix measure, with periodic coefficients. However, in [9], the author used
integrable dichotomy to show that the system (1.3) has periodic solutions where the matrix A depends
on ι only.

Motivated by these excellent works, the purpose of this article is to generalize and improve the
previous works to become totally nonlinear or in system form by considering the two nonlinear
differential systems with multiple delays:

(x (ι) − g (ι, x (ι − γ (ι))))′ = A (ι) x (ι) + p (ι, x (ι − σ1 (ι)) , ..., x (ι − σm (ι))) (1.4)

and (
x (ι) −

∫ 0

−∞

G (s) g (ι, x (ι + γ (s))) ds
)′

= A (ι) x (ι) +
∫ 0

−∞

G (s) p (ι, x (ι + σ1 (s)) , ..., x (ι + σm (s))) ds, (1.5)

in which x: R → Rn, γ (ι) , σi (ι) , i = 1, ...,m, are real continuous Υ-periodic functions on R, Υ > 0.
A (ι) and G (s) are n×n real matrices with the continuousΥ-periodic function defined on R and (−∞, 0],
respectively, with ∫ 0

−∞

G (s) ds = I.

The vector functions g (ι, v) and p (ι, v1, ..., vm) are real continuous functions defined on R × Rn and
R × (Rn)m, respectively, such that

p (ι + Υ, v1, v2, ..., vm) = p (ι, v1, v2, ..., vm)
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and
g (ι + Υ, v) = g (ι, v) .

The authors in [10] considered the systems (1.4) and (1.5) as a generalization of the work [9] and
proved the existence and the uniqueness under the integrable dichotomy condition. So, to the best
of our knowledge, no earlier studies have investigated the systems (1.4) and (1.5) by using matrix
measure. On the other hand, among the specific advantages and potential impact of our work over
existing results in the literature, for example, we can deduce the uniqueness of the solution of (1.1)
in [2].

To generalize them to become totally nonlinear and to study the uniqueness of solutions, which has
not been studied previously, some other research was also studied in system form.

This article is divided into five parts. Section 2 provides some background information that we will
employ to show the existence and uniqueness of solutions of (1.4) and (1.5). Section 3 is concerned
with establishing some criteria for the existence and uniqueness of periodic solutions of systems (1.4)
and (1.5), respectively. Section 4 includes two examples to demonstrate our findings, followed by a
conclusion.

2. Preliminaries

For the sake of convenience, we list some results, definitions of matrix measure, and linear systems,
which will be crucial in the proofs of our results. Let the system

x′ (ι) = A (ι) x (ι) , (2.1)

in which A (ι) is a continuous n×n matrix function. Denote by G (ι, ι0) the fundamental matrix solution
of system (2.1) with G (ι0, ι0) = I. Recall that

G (ι, ι0)G (ι0, ζ) = G (ι, ζ) , ι, ι0, ζ ∈ R,

and
G−1 (ι, ζ) = G (ζ, ι) , ι, ζ ∈ R.

Let |·|1 be the 1-norm for the real Euclidean space Rn and ∥A∥ the induced matrix norm of A
corresponding to the vector norm |·|. So, for

x = (x1, x2, ..., x3) ∈ Rn, A =
(
ai j

)
n×n
∈ Rn×n,

then

|x|1 =
n∑

i=1

|xi| , ∥A∥ = max
1≤ j≤n

n∑
i=1

∣∣∣ai j

∣∣∣ .
The matrix measure of the matrix A is the function (see [18] for more details)

µ (A) = lim
ϵ→0+

∥I + ϵA∥ − 1
ϵ

= max
1≤ j≤n

a j j +

n∑
i=1,i, j

∣∣∣ai j

∣∣∣ .
AIMS Mathematics Volume 9, Issue 6, 14274–14287.
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Lemma 2.1. [18] Let x (ι) be a solution of system (2.1), then

|x (ι0)|1 e
∫ ι
ι0
−µ(−A(ζ))dζ

≤ |x|1 ≤ |x (ι0)|1 e
∫ ι
ι0
µ(A(ζ))dζ

,

for ι ≥ ι0.

Lemma 2.2. [2] The fundamental matrix of (2.1) satisfies

∥G (ι, ζ)∥ ≤ e
∫ ι
ζ
µ(A(s))ds, ι ≥ ζ.

Lemma 2.3. [2] If
e
∫ Υ

0 µ(A(ζ))dζ < 1,

then the linear system (2.1) does not have any nontrivial Υ-periodic solution.

Lemma 2.4. [19] If the linear system (2.1) does not have any nontrivial Υ-periodic solution, then for
any Υ-periodic continuous function p (ι), the nonhomogeneous system

x′ (ι) = A (ι) x (ι) + p (ι)

has a unique Υ-periodic solution x (ι) determined by

x (ι) = G (ι, ι0) x (ι0) +
∫ ι

ι0

G (ι, ζ) p (ζ) dζ, ι ∈ R.

Now, for our study we consider the following lemma.

Lemma 2.5. Assume that
θ := e

∫ Υ
0 µ(A(ζ))dζ < 1 (2.2)

holds, then the solutions of the systems (1.4) and (1.5) are equivalent to

x (ι) =g (ι, x (ι − γ (ι))) + (I − G (ι + Υ, ι))−1

×

∫ ι+Υ

ι

G (ι + Υ, ζ) A (ζ) g (ζ, x (ζ − γ (ζ))) dζ + (I − G (ι + Υ, ι))−1

×

∫ ι+Υ

ι

G (ι + Υ, ζ) p (ζ, x (ζ − σ1 (ζ)) , ..., x (ζ − σm (ζ))) dζ (2.3)

and

x (ι) =
∫ 0

−∞

G (s) g (ι, x (ι + γ (s))) ds + (I − G (ι + Υ, ι))−1

×

∫ ι+Υ

ι

G (ι + Υ, ζ) A (ζ)
∫ 0

−∞

G (s) g (ζ, x (ζ + γ (s))) dsdζ + (I − G (ι + Υ, ι))−1

×

∫ ι+Υ

ι

G (ι + Υ, ζ)
∫ 0

−∞

G (s) p (ζ, x (ζ + σ1 (s)) , ..., x (ζ + σm (s))) dsdζ, (2.4)

respectively.
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Proof. Let
y (ι) = x (ι) − g (ι, x (ι − γ (ι))) ,

so, the system (1.4) can be written as

y′ (ι) = A (ι) y (ι) + A (ι) g (ι, x (ι − γ (ι))) + p (ι, x (ι − σ1 (ι)) , ..., x (ι − σm (ι))) .

By Lemma 2.4, for ι ∈ R, we have

y (ι) =G (ι, ι0) y (ι0) +
∫ ι

ι0

G (ι, ζ) A (ζ) g (ζ, x (ζ − γ (ζ))) dζ

+

∫ ι

ι0

G (ι, ζ) p (ζ, x (ζ − σ1 (ζ)) , ..., x (ζ − σm (ζ))) dζ,

y (ι) =y (ι + Υ)

=G (ι + Υ, ι0) y (ι0) +
∫ ι+Υ

ι0

G (ι + Υ, ζ) A (ζ) g (ζ, x (ζ − γ (ζ))) dζ

+

∫ ι+Υ

ι0

G (ι + Υ, ζ) p (ζ, x (ζ − σ1 (ζ)) , ..., x (ζ − σm (ζ))) dζ

and

G (ι + Υ, ι) y (ι) =G (ι + Υ, ι)G (ι, ι0) y (ι0) + G (ι + Υ, ι)
∫ ι

ι0

G (ι, ζ) A (ζ) g (ζ, x (ζ − γ (ζ))) dζ

+ G (ι + Υ, ι)
∫ ι

ι0

G (ι, ζ) p (ζ, x (ζ − σ1 (ζ)) , ..., x (ζ − σm (ζ))) dζ

=G (ι + Υ, ι0) y (ι0) +
∫ ι

ι0

G (ι + Υ, ζ) A (ζ) g (ζ, x (ζ − γ (ζ))) dζ

+

∫ ι

ι0

G (ι + Υ, ζ) p (ζ, x (ζ − σ1 (ζ)) , ..., x (ζ − σm (ζ))) dζ.

Thus,

(I − G (ι + Υ, ι)) y (ι) =
∫ ι+Υ

ι

G (ι + Υ, ζ) A (ζ) g (ζ, x (ζ − γ (ζ))) dζ

+

∫ ι+Υ

ι

G (ι + Υ, ζ) p (ζ, x (ζ − σ1 (ζ)) , ..., x (ζ − σm (ζ))) dζ.

Furthermore, since (2.2) holds, then (I − G (ι + Υ, ι))−1 exists for every ι ∈ R. Therefore, we have (2.3).
By the same way, we can show that (2.4) holds. □

In our study, the proofs of the existence and uniqueness of the periodic solutions to the systems (1.4)
and (1.5) utilize the fixed point theorems. So, we present them below (see [20, 21]).

Theorem 2.1. (Banach) Assume that (S , ρ) is a complete metric space and Φ: S → S . If there is a
constant τ < 1 such that for a, b ∈ S ,

ρ (Φa,Φb) ≤ τρ (a, b) ,

then there is one, and only one, point x ∈ S with Φx = x.
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Theorem 2.2. (Krasnoselskii) LetΠ be a nonempty, convex, closed, bounded subset of a Banach space
S . Assume that Φ1 and Φ2 map Π into S such that:

(i) Φ1 is a contraction mapping on Π;
(ii) Φ2 is completely continuous on Π;
(iii) a, b ∈ Π, implies Φ1a + Φ2b ∈ Π.

Thus, there exists x ∈ Π with x = Φ1x + Φ2x.

Now, we state our sufficient conditions. So, let BC (R,Rn) be the space of all bounded continuous
functions from R to Rn and assume E > 0 is a constant. Denote by

∥v∥ = max
ι∈[0,Υ]

|v (t)|1 ,

and set
Π = {v ∈ BC (R,Rn) : ∥v∥ ≤ E and v (ι + Υ) = v (ι) for all ι ∈ R} .

Clearly, the set Π is a bounded, nonempty, closed, and convex subset of BC (R,Rn).
Assume that, for v,w ∈ Π, there exists L1 ∈ (0, 1) such that

|g (ι, v) − g (ι,w)|1 ≤ L1 |v − w|1 , for all ι ∈ R, (2.5)

and for v1, v2, ...vm,w1,w2, ...,wm ∈ Π, there exists L2 > 0 such that

|p (ι, v1, v2, ..., vm) − p (ι,w1,w2, ...,wm)|1 ≤ L2 (|v1 − w1|1 + ... + |vm − wm|1) , for all ι ∈ R.

Denote
sup
ι∈[0,Υ]

|g (ι, 0)|1 = α, sup
ι∈[0,Υ]

|p (ι, 0, ..., 0)|1 = β, sup
ι∈[0,Υ]

∥A (ι)∥ = λ,

and we assume there exists a Υ-periodic continuous function κ (ι) such that for ι ∈ [0,Υ] , µ (A (ι)) ≤
κ (ι) satisfies

sup
ζ≤s≤ι∈[0,Υ]

∫ ι+Υ

ι

e
∫ ι+Υ
ζ
κ(s)dsdζ = µ0 (2.6)

and
λ (L1E + α) + L2mE + β

1 − θ
µ0 ≤ E. (2.7)

3. Main results

We start this section by studying the periodicity of the system (1.4). For v ∈ BC (R,Rn), we define
the operators Φ1 and Φ2 by

(Φ1v) (ι) = g (ι, v (ι − γ (ι))) (3.1)

and

(Φ2v) (ι) = (I − G (ι + Υ, ι))−1
∫ ι+Υ

ι

G (ι + Υ, ζ) A (ζ) g (ζ, v (ζ − γ (ζ))) dζ

+ (I − G (ι + Υ, ι))−1
∫ ι+Υ

ι

G (ι + Υ, ζ) p (ζ, v (ζ − σ1 (ζ)) , ..., v (ζ − σm (ζ))) dζ. (3.2)

Note that if the operatorΦ1+Φ2 has a fixed point, then this fixed point is a periodic solution of (1.4).

AIMS Mathematics Volume 9, Issue 6, 14274–14287.
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Lemma 3.1. If (2.2), (2.5) and (2.6) hold, then the operators Φ1 and Φ2 defined by (3.1) and (3.2),
respectively, from Π turn into BC (R,Rn), that is, Φ1,Φ2: Π→ BC (R,Rn).

Proof. Let v ∈ Π,. By (2.5), we have

|(Φ1v) (ι)|1 = |g (ι, v (ι − γ (ι)))|1
≤ L1 |v (ι − γ (ι))|1 + |g (ι, 0)|1
≤ L1 ∥v∥ + sup

ι∈[0,Υ]
|g (ι, 0)|1

≤ L1E + α.

Second, for v ∈ Π, by (2.5) and (2.6), we get

|(Φ2v) (ι)|1 ≤
∥∥∥(I − G (ι + Υ, ι))−1

∥∥∥ ∫ ι+Υ

ι

∥G (ι + Υ, ζ)∥ ∥A (ζ)∥ |g (ζ, v (ζ − γ (ζ)))|1 dζ

+
∥∥∥(I − G (ι + Υ, ι))−1

∥∥∥ ∫ ι+Υ

ι

∥G (ι + Υ, ζ)∥ |p (ζ, v (ζ − σ1 (ζ)) , ..., v (ζ − σm (ζ)))|1 dζ.

Since θ < 1, then

∥∥∥(I − G (ι + Υ, ι))−1
∥∥∥ = ∥∥∥∥∥∥∥

∞∑
n=0

(G (ι + Υ, ι))n

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥
∞∑

n=0

G (ι + Υ, ι)

∥∥∥∥∥∥∥
n

≤

∞∑
n=0

θn

=
1

1 − θ
,

and by Lemma 2.2, we have

∥G (ι + Υ, ζ)∥ ≤ e
∫ ι+Υ
ζ
µ(A(ζ))dζ

≤ e
∫ ι+Υ
ζ
κ(ζ)dζ ,

so

|(Φ2v) (ι)| ≤
λ (L1E + α) + L2mE + β

1 − θ

∫ ι+Υ

ι

e
∫ ι+Υ
ζ
κ(s)dsdζ

≤
λ (L1E + α) + L2mE + β

1 − θ
µ0.

Due to Lemma 2.5, Φ1 and Φ2 are periodic, then Φ1,Φ2: Π→ BC (R,Rn). □

Lemma 3.2. If (2.5) holds, then the operator Φ1: Π→ BC (R,Rn) defined by (3.1) is a contraction.
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Proof. Let v,w ∈ Π. By (2.5), we get

|(Φ1v) (ι) − (Φ1w) (ι)|1 = |g (ι, v (ι − γ (ι))) − g (ι,w (ι − γ (ι)))|1
≤ L1 |v (ι − γ (ι)) − w (ι − γ (ι))|1
≤ L1 ∥v − w∥ ,

then
∥Φ1v − Φ1w∥ ≤ L1 ∥v − w∥ .

Therefore, Φ1 is a contraction because L1 ∈ (0, 1). □

Lemma 3.3. If (2.2), (2.5) and (2.6) hold, then the operator Φ2: Π → BC (R,Rn) defined by (3.2) is
completely continuous.

Proof. To show that the operator Φ2: Π → BC (R,Rn) is completely continuous, first we must prove
the continuity of Φ2. So, for n ∈ N, let vn ∈ Π, such that vn → v as n→ ∞, then

|(Φ2vn) (ι) − (Φ2v) (ι)|1 ≤ (I − G (ι + Υ, ι))−1
∫ ι+Υ

ι

∥G (ι + Υ, ζ)∥

× ∥A (ζ)∥ |g (ζ, vn (ζ − γ (ζ))) − g (ζ, v (ζ − γ (ζ)))|1 dζ

+ (I − G (ι + Υ, ι))−1
∫ ι+Υ

ι

∥G (ι + Υ, ζ)∥

× |p (ζ, vn (ζ − σ1 (ζ)) , ..., vn (ζ − σm (ζ)))

−p (ζ, v (ζ − σ1 (ζ)) , ..., v (ζ − σm (ζ)))|1 dζ

≤
λL1 + L2m

1 − θ
µ0 ∥vn − v∥ ,

which implies
lim
n→∞
|(Φ2vn) (ι) − (Φ2v) (ι)|1 = 0,

hence, Φ2 is continuous. Now, let vn ∈ Π, where n is a positive integer, then we have

∥Φ2vn∥ ≤ µ0

[
λ (L1E + α) + L2mE + β

]
1 − θ

.

Second

(Φ2vn)′ (ι) = v′n (ι) − g′ (ι, vn (ι − γ (ι)))

= A (ι) vn (ι) + p (ι, vn (ι − σ1 (ι)) , ..., vn (ι − σm (ι))) ,

then ∥∥∥(Φ2vn)′
∥∥∥ ≤ (λ + L2m) E + β,

hence, (Φ2vn) is uniformly bounded and equicontinuous. Therefore, by Ascoli-Arzela’s theorem,
Φ2 (Π) is relatively compact. □

Next, we prove for any v,w ∈ Π that Φ1v + Φ2w ∈ Π, in the following lemma.

AIMS Mathematics Volume 9, Issue 6, 14274–14287.
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Lemma 3.4. If (2.2), (2.5)–(2.7) hold, then for any v,w ∈ Π, we have Φ1v + Φ2w ∈ Π.

Proof. Let v,w ∈ Π, then ∥v∥ , ∥w∥ ≤ E. By (2.6), we have

|(Φ1v) (ι) + (Φ2w) (ι)|1 ≤ |g (ι, v (ι − γ (ι)))|1 +
∥∥∥(I − G (ι + Υ, ι))−1

∥∥∥
×

∫ ι+Υ

ι

∥G (ι + Υ, ζ)∥ ∥A (ζ)∥ |g (ζ,w (ζ − γ (ζ)))|1 dζ +
∥∥∥(I − G (ι + Υ, ι))−1

∥∥∥
×

∫ ι+Υ

ι

∥G (ι + Υ, ζ)∥ |p (ζ,w (ζ − σ1 (ζ)) , ...,w (ζ − σm (ζ)))|1 dζ

≤
λ (L1E + α) + L2mE + β

1 − θ
µ0

≤E.

It follows that
∥Φ1v + Φ2w∥ ≤ E,

for all v,w ∈ Π. Hence, Φ1v + Φ2w ∈ Π. □

The following theorem provides the periodicity of solution of (1.4).

Theorem 3.1. Suppose (2.2), (2.5)–(2.7) hold, then there exists at least one Υ-periodic solution for the
system (1.4).

Proof. Obviously, the requirements of Krasnoselskii’s theorem are satisfied due to Lemmas 3.1–3.4.
So, there exists a fixed point x ∈ Π such that x = Φ1x +Φ2x, and this fixed point is a solution of (1.4).
Hence, (1.4) has a Υ-periodic solution. □

Theorem 3.2. Assume that (2.2), (2.5) and (2.6) hold. If

L1 +
(λL1 + L2m)

1 − θ
µ0 < 1, (3.3)

then there exists a unique Υ-periodic solution for the system (1.4).

Proof. Let Φ be defined by Φ = Φ1 + Φ2. For v1, v2 ∈ BC (R,Rn), we obtain

|(Φv1) (ι) − (Φv2) (ι)|1 ≤ |g (ι, v1 (ι − γ (ι))) − g (ι, v2 (ι − γ (ι)))|1

+
∥∥∥(I − G (ι + Υ, ι))−1

∥∥∥ ∫ ι+Υ

ι

∥G (ι + Υ, ζ)∥ ∥A (ζ)∥ |g (ζ, v1 (ζ − γ (ζ)))

− g (ζ, v2 (ζ − γ (ζ)))|1 dζ +
∥∥∥(I − G (ι + Υ, ι))−1

∥∥∥ ∫ ι+Υ

ι

∥G (ι + Υ, ζ)∥

× |p (ζ, v1 (ζ − σ1 (ζ)) , ..., v1 (ζ − σm (ζ)))

− p (ζ, v2 (ζ − σ1 (ζ)) , ..., v2 (ζ − σm (ζ)))|1 dζ

=

(
L1 +

(λL1 + L2m)
1 − θ

µ0

)
∥v1 − v2∥ ,

then

∥Φv1 − Φv2∥ ≤

(
L1 +

(λL1 + L2m)
1 − θ

µ0

)
∥v1 − v2∥ .
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Since the condition (3.3) holds, system (1.4) has a unique Υ-periodic solution by the Banach fixed
point theorem. □

Now, to study the periodicity of the system (1.5), we define, for v ∈ BC (R,Rn), the operators Ψ1

and Ψ2 by

(Ψ1v) (ι) =
∫ 0

−∞

G (t) g (ι, v (ι + γ (t))) dt (3.4)

and

(Ψ2v) (ι) =
∫ 0

−∞

G (s) g (ι, v (ι + γ (s))) ds

+ (I − G (ι + Υ, ι))−1
∫ ι+Υ

ι

G (ι + Υ, ζ) A (ζ)
∫ 0

−∞

G (s) g (ζ, v (ζ + γ (s))) dsdζ

+ (I − G (ι + Υ, ι))−1

×

∫ ι+Υ

ι

G (ι + Υ, ζ)
∫ 0

−∞

G (s) p (ζ, v (ζ + σ1 (s)) , ..., v (ζ + σm (s))) dsdζ. (3.5)

We will study the fixed point of the operator Ψ1 + Ψ2.

Lemma 3.5. If (2.2), (2.5) and (2.6) hold, then the operators Ψ1 and Ψ2 defined above are operators
from Π into BC (R,Rn), that is, Ψ1,Ψ2: Π→ BC (R,Rn).

Proof. Let v ∈ Π. By (2.5), we get

|(Ψ1v) (ι)|1 =

∣∣∣∣∣∣
∫ 0

−∞

G (t) g (ι, v (ι + γ (t))) dt

∣∣∣∣∣∣
1

≤
(
L1 |v (ι − γ (ι))|1 + |g (ι, 0)|1

) ∥∥∥∥∥∥
∫ 0

−∞

G (t) dt

∥∥∥∥∥∥
≤

(
L1 ∥v∥ + sup

ι∈[0,ι]
|g (ι, 0)|1

)
∥I∥

≤ L1E + α.

Next, for v ∈ Π, by Lemma 2.2 and the conditions (2.5) and (2.6), we get

|(Ψ2v) (ι)| ≤
λ (L1E + α) + L2mE + β

1 − θ

∫ ι+Υ

ι

e
∫ ι+Υ
ζ
κ(s)ds

∥∥∥∥∥∥
∫ 0

−∞

G (s) ds

∥∥∥∥∥∥ dζ

≤ µ0
λ (L1E + α) + L2mE + β

1 − θ
. (3.6)

Due to Lemma 2.5, Ψ1 and Ψ2 are periodic, then Ψ1,Ψ2: Π→ BC (R,Rn). □

By the same technique, the proof of the following lemmas is similar to that of Lemmas 3.2–3.4.

Lemma 3.6. If (2.5) holds, then the operator Ψ1: Π→ BC (R,Rn) defined by (3.4) is a contraction.

Lemma 3.7. If (2.2), (2.5) and (2.6) hold, then the operator Ψ2: Π → BC (R,Rn) defined by (3.5) is
completely continuous.
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Lemma 3.8. If (2.2), (2.5)–(2.7), then for any v,w ∈ Π, we have Ψ1v + Ψ2w ∈ Π.

The following theorem provides the periodicity of solution of (1.5).

Theorem 3.3. Suppose (2.2), (2.5)–(2.7) hold, then there exists at least one Υ-periodic solution for the
system (1.5).

Proof. The requirements in Krasnoselskii’s theorem are satisfied due to Lemmas 3.5–3.8. Hence, (1.5)
has a Υ-periodic solution. □

Theorem 3.4. Suppose the conditions (2.2), (2.5), (2.6) and (3.3) hold, then there exists a unique
Υ-periodic solution for the system (1.5).

Proof. Le Ψ = Ψ1 + Ψ2. For v1, v2 ∈ BC (R,Rn); it is easy to see that,

∥Ψv1 − Ψv2∥ ≤

(
L1 +

(λL1 + L2m)
1 − θ

µ0

)
∥v1 − v2∥ .

The condition (3.3) confirms to us that the system (1.5) has one Υ-periodic solution. □

4. Examples

We provide in this section two examples to confirm and strengthen the previous results.

Example 4.1. Let v = (v1, v2)t, m = 2, and Υ = 2π in the system ( 1.4), where

v (ι) =
(

x1 (ι)
x2 (ι)

)
, A (ι) =

(
−1

2
1
4 sin (ι)

1
2 −1

2

)
,

g (ι, v (ι − γ (ι))) = 10−4 sin (ι)
(

v2 (ι − cos (ι)) + 1
v1 (ι − cos (ι))

)
,

p (ι, v (ι − σ1 (ι)) , v (ι − σ2 (ι))) = 10−5 cos (ι)

 v1

(
ι − 10−2

)
+ v2 (ι − sin (ι))

v2

(
ι − 10−2

)
+ v1 (ι − sin (ι))

 .
Note that L1 = 10−4, L2 = 10−5, α = 10−4, β = 0, λ = 1, µ (A (ι)) ≤ −1

4 , and

θ = e
∫ 2π

0 µ(A(ζ))dζ

= e
∫ 2π

0 (− 1
2+

1
4 |sin(ζ)|)dζ

= e−π < 1,

µ0 = sup
ζ≤ι∈[0,2π]

∫ ι+2π

ι

e−
∫ ι+2π
ζ

1
4 dsdζ

= 4
(
1 − e−

π
2
)
≈ 3.16.

So, the conditions (2.2), (2.5)–(2.7) are held; hence, by Theorem 3.1, the system (1.4) has a 2π-periodic
solution. Since g (ι, x (ι − γ (ι))) is not identically zero, this solution is also nontrivial.
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Example 4.2. Let v = (v1, v2)t, m = 2, and Υ = 2π in the system ( 1.5), where

g (ι, v (ι + γ (ι))) = 10−3 cos (ι)
(

v2 (ι + sin (ι)) + 3
v1 (ι + sin (ι))

)
, v (ι) =

(
v1 (ι)
v2 (ι)

)
,

A (ι) =
(
−1

4
1
8 cos (ι)

1
4 −1

4

)
, G (ι) =

(
eι e2ι − 1

2eι

e3ι − 1
3eι eι

)
,

p (ι, v (ι − σ1 (ι)) , v (ι − σ2 (ι))) = 10−7 sin (ι)

 v1

(
ι + 10−3

)
+ v2 (ι + sin (ι))

v2

(
ι + 10−3

)
+ v1 (ι + sin (ι))

 .
Note that L1 = 10−3, L2 = 10−5, α = 3 × 10−3, β = 0, λ = 1

2 , µ (A (ι)) ≤ −1
8 , and

θ = e
∫ 2π

0 µ(A(ζ))dζ = e
∫ 2π

0 (− 1
4+

1
8 |cos(ζ)|)dζ = e

1
2−

1
2π < 1,∫ 0

−∞

G (ι) dι =
(

1 0
0 1

)
= I,

µ0 = sup
ζ≤ι∈[0,2π]

∫ ι+2π

ι

e−
∫ ι+2π
ζ

1
8 dsdζ = 8

(
1 − e−

π
4
)
≈ 4.35.

So, the conditions (2.2), (2.5) and (2.6) are held, and since

L1 +
(λL1 + L2m)

1 − θ
µ0 ≈ 4.44 × 10−3 < 1,

then the condition (3.3) is held too. Hence, by Theorem 3.4, the system (1.5) has a unique 2π-periodic
solution. Since g (ι, x (ι + γ (ι))) is not identically zero, then this solution is also nontrivial.

5. Conclusions and aspirations

This research addressed more broadly the study of the kinds of neutral equations represented in
nonlinear systems with multiple delays by using matrix measure and the fixed point technique to prove
existence and uniqueness.

The purpose of this study is to enhance and generalize various well-known studies such as [2, 12].
Indeed, our study is in the space C0; however, [2] is in the space C1. Furthermore, if

g (ι, v (ι − γ (ι))) = cv (ι − γ) ,

then our findings will be applicable to system (1.3) of [2]. Additionally, the periodic solutions of (1.1)
and (1.2) in [12] can be found by our systems (1.4) and (1.5) in n-dimensional case.

Finally, some of the concrete goals and explicit directions in the future study of this field are the
studies of periodic solutions in both advanced and delayed differential systems or impulsive systems
which means with piecewise constant arguments. For example, we can rely on the articles [22,23] in the
future works, since they provide some useful insights about both numerical and theoretical aspects in
the context of piecewise constant arguments and irregularities in delay differential equations. Another
very important area in which the study of our current systems can be considered, is the regularizations
of systems by showing the uniqueness, stability, and periodicity of the orbit like in [24].
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