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Abstract: We estimated convex-structured covariance/correlation matrices by minimizing the entropy
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known Rank-one matrices with unknown Weights (W-Rank1-W) structural covariance matrices, which
appeared commonly in array signal processing tasks, e.g., direction-of-arrival (DOA) estimation. The
associated minimization problem is convex and can be solved using the primal-dual interior-point
algorithm. However, the objective functions (the entropy loss function) can be bounded above by a
sequence of separable functions—we proposed a novel estimation algorithm based on this property
under the Majorization-Minimization (MM) algorithmic framework. The proposed MM algorithm
exhibited very low computational complexity in each iteration, and its convergence was demonstrated
theoretically. Subsequently, we focused on the estimation of Toeplitz autocorrelation matrices,
which appeared frequently in time-series analysis. In particular, we considered cases in which the
autocorrelation coefficient decreased as the time lag increased. We transformed the Toeplitz structure
into a W-Rank1-W structure via special variable substitution, and proposed an MM algorithm similar to
that for the W-Rank1-W covariance estimation. However, each MM iteration involved a second-order
cone programming SOCP problem that must be resolved. Our numerical experiments demonstrated
the high computational efficiency and satisfactory estimation accuracy of the proposed MM algorithms
in DOA and autocorrelation matrix estimation.
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1. Introduction

Structural covariance/correlation matrices appear in diverse fields. For example, in array signal
processing, the covariance matrix of received array signal is noise covariance plus a weighted
sum of rank-one matrices [1–3]; in time-series analysis, a common form is the Toeplitz structural
autocovariance/autocorrelation matrix [4]; and in certain high-dimensional problems, the covariance
matrix can often be sparse or exhibit a banded structure [5]. Covariance estimation using structure
constraints is common in research articles, e.g., [5–8]. It is believed that structural estimates are more
accurate than that excluding structural information because exploiting structure information in the
estimation process usually implies a reduction in the number of parameters to be estimated. Structural
covariance/correlation estimation plays an important role in several applications, such as low-rank
signal detection [9, 10], direction-of-arrival (DOA) estimation [2, 3], and spectral analysis of time-
series data [4].

The Weighted sum of known Rank-one matrices with unknown Weights (W-Rank1-W) structural
matrices are often used to describe the covariance of received array signal [2]. In [11], a weighted
covariance fitting criterion was proposed, providing a W-Rank1-W structural covariance estimation
of the received array signals. Based on the maximum likelihood principle, [12] estimated the W-
Rank1-W structural covariance of the received array signals that were assumed to follow a circular
Gaussian distribution. The weight estimates in [11, 12] are widely known to play an important role
in DOA estimation. Subsequently, many researchers have noted that the weights of W-Rank1-W are
sparse in DOA estimation, and similar DOA estimation ideas were implemented [2, 13], where the W-
Rank1-W structural covariance estimation was addressed specifically under sparse weight constraints.
We estimate the W-Rank1-W structural covariance by minimizing the relative entropy (also known
as Kullback-Leibler divergence) between two circular Gaussian distributions [14], yielding a low-
complexity algorithm based on the Majorization-Minimization (MM) algorithm framework [15]. The
entropy loss measures the difference between pairs of distributions with two different covariance
matrices. The proposed MM algorithm is based on the result that the entropy loss function is bounded
above by a sequence of separable functions. Our numerical experiments reveal that weight estimates
based on minimizing the entropy loss are more accurate for DOA estimation than the estimates reported
in [11, 12] using the weighted covariance fitting criteria and the maximum-likelihood principle.

An auto-covariance matrix in a stationary time series always exhibits a Toeplitz structure [4].
Moreover, in certain cases, the autocorrelation coefficient is inversely related to the time lag, e.g.,
in auto-regressive time series, some moving average time series, and some auto-regressive moving
average time series. [16] approached Toeplitz covariance estimation by minimizing the F-norm loss
of the sample covariance matrix, and [6, 17] proposed maximum likelihood Toeplitz estimates under
circularly-symmetric complex normal distribution and complex elliptical distribution assumptions. [18]
provided a banded Toeplitz estimator by projecting a given positive definite matrix onto the convex
cone of nonnegative definite banded Toeplitz matrices. [19, 20] proposed Toeplitz estimates by
minimizing entropy loss and modified entropy loss, respectively. [21] proposed Toeplitz estimation
based on entropy loss, considering the possible sparsity of the covariance matrix. This study considers
the inverse relationship between the autocorrelation coefficient and time lag in time-series analysis
and proposes a Toeplitz autocorrelation matrix estimation by minimizing the entropy loss between
two normal distributions. As Toeplitz matrices can be expressed in the W-Rank1-W structure, an
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MM algorithm similar to that for the W-Rank1-W structural estimation is proposed; however, in each
iteration of the algorithm, a second-order cone programming (SOCP) problem is required to be solved.
Numerical experiments reveal that our estimates are more accurate than those that do not consider the
inverse relationship between the autocorrelation coefficient and time lag.

The remainder of this paper is organized as follows: In Section 2, we formulate the estimation
problem of interest. Section 3 presents two different algorithms for the W-Rank1-W structural
covariance estimation and Section 4 presents a MM algorithm for the autocorrelation matrix estimation
involving the inverse relationship between the autocorrelation coefficient and time lag. Finally,
Section 5 describes the results of our numerical experiments, revealing the characteristics and
applications of the proposed algorithms.

Notations: Cv(Rv) denotes the set of v-dimensional vectors in complex (real) field. Sv
+(Sv

++)
denotes the set of v × v symmetric (real field) and hermitian (complex field) positive semi-definite
(definite) matrices. 0 denotes the zero matrix and Iv denotes the v×v identity matrix. X1−X2 � 0 (� 0)
indicates that the matrix X1 − X2 is positive semi-definite (definite). x � 0(� 0) indicates that all
elements in the vector x are non-negative (positive). Xi, j denotes the (i, j)-th entry of the matrix X,
where the row and column indices begin from 0. diag(x) denotes a diagonal matrix with the vector
x defining its diagonal elements. The superscripts (·)T and (·)H represent the transpose and conjugate
transpose matrices, respectively. ‖ · ‖ denotes the l2-norm of a vector, and | · | denotes the determinant
of a scale.

2. Problem formulation

Let CN1 and CN2 denote circularly-symmetric complex normal distributions with zero mean and
Σ1 ∈ S

v
++ and Σ2 ∈ S

v
++ as covariance matrices, respectively. The probability densities of CN1 and

CN2 are

fi(z) =
1

πv det(Σi)
e−zHΣiz, i = 1, 2. (2.1)

The relative entropy from CN1 to CN2 is defined [14] as follows:

D(CN2‖CN1) = Ez∼CN1

(
log

(
f1(z)
f2(z)

))
, (2.2)

where Ez∼CN1(·) denotes the expectation operator, given that z follows the distribution, CN1. By a brief
proof (Appendix A), we have (2.2) rewritten as

D(CN2‖CN1) = Tr(Σ−1
2 Σ1)− log det(Σ−1

2 Σ1) − v. (2.3)

This relative entropy measures the difference between the distributions, CN1 and CN2.
In applications such as array signal processing and time-series analysis, the covariance is structural,

and structural covariance estimation is a common problem. Let Σ1 , Σ be an unknown structural
covariance matrix and Σ2 , S be a given covariance matrix. By minimizing the entropy loss,
D(CN2‖CN1),

min
Σ∈Ω

L0(Σ) , Tr(S−1Σ)− log det(S−1Σ) − v, (2.4)
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where Ω denotes a nonempty set that is the intersection of the closed set that characterizes covariance
structure and a positive semi-definite cone Sv

+, we achieve structural covariance estimation.
Throughout this study, we adopt the following assumptions: the loss function L0(Σk) → +∞

when the sequence {Σk} tends towards the boundary of the positive semi-definite cone, Sv
+. Under

this assumption, the case in which Σ is singular can be excluded from the algorithm analysis.

3. W-Rank1-W structural covariance matrix estimation

Estimation of the W-Rank1-W structural covariance matrix is described in this section, i.e., the
estimation of Σ in the set Ω1:

Ω1 ,

Z | Z =

m∑
i=0

piaiaH
i , pi ≥ 0

 , (3.1)

where a0, . . . , am denote the vectors known in advance. W-Rank1-W structural covariance commonly
occurs in array signal processing and can often be applied to DOA estimation.

Given a covariance matrix, which is often the sample covariance matrix, we solve the problem (2.4)
with Ω = Ω1:

min
Σ∈Ω1

Tr(S−1Σ)− log det(S−1Σ), (3.2)

yielding a W-Rank1-W structural covariance estimate. Any Σ ∈ Ω1 can be rewritten as:

Σ = A diag(p)AH, (3.3)

where A = (a0, a1, · · · , am) and p = (p0, p1, · · · , pm)T. Because Σ is a function of p (A is known in
advance), the objective function in (3.2) can be rewritten as the following function of p:

L(p) , Tr
(
S−1A diag(p)AH

)
− log det

(
S−1(A diag(p)AH)

)
. (3.4)

Using the objective function expression, L(p), the optimization problem (3.2) can be rewritten as
follows:

min
p�0

L(p). (3.5)

The objective function in (3.2) is a convex function in terms of Σ [22], and Σ is an affine map of p;
therefore, it is convex in p, i.e., L(p) is convex in p. Moreover, the constraint set {p | p � 0} is convex.
Thus, (3.5) represents a convex optimization problem.

The following algorithms for W-Rank1-W covariance estimation are used to solve problem (3.5).
When p∗ denotes the minimum point of the problem (3.5):

L(p∗) = min
p�0

L(p), (3.6)

the W-Rank1-W structural covariance estimation is given by

Σ∗ = A diag(p∗)AH. (3.7)

We present two algorithms in the following subsections—the primal-dual interior-point method
and another designed within the MM algorithm framework. These two algorithms have different
computational complexities, and we briefly discuss and compare them.
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3.1. Primal-dual interior-point algorithm

Problem (3.5) is a convex optimization problem with linear inequality constraints that can be solved
effectively using the primal-dual interior-point method [23].

Algorithm 1 outlines the primal-dual interior-point method in the context of (3.5). In the algorithm,
the primal-dual search direction (∆p,∆λ) at the point (p, λ) is defined as the solution of the linear
equation: (

H −I
diag(λ) diag(p)

) (
∆p
∆λ

)
= −

(
h − λ

diag(λ)p − (1/τ)1

)
, (3.8)

where τ > 0 denotes a preset parameter, and h = (hi) and H = (Hi j) with i, j = 0, 1, . . . ,m denote the
gradient and Hessian matrix of L(p) at the point (p, λ), respectively. Specifically,

hi = Tr
(
aiaH

i (S−1 − (A diag(p)AH)−1)
)
, (3.9)

Hi j = Tr
(
aiaH

i (A diag(p)AH)−1a jaH
j (A diag(p)AH)−1

)
. (3.10)

Algorithm 1 The primal-dual interior-point algorithm for problem (3.5).
Given p � 0, λ � 0, µ > 1, tolerance ε0 > 0 and ε > 0.

repeat
(1) Determine τ. Set η := λTp and τ := µ(m + 1)/η.
(2) Compute prime-dual search direction (∆p,∆λ). Solve the linear Eq (3.8).
(3) Line search and update. Determine step length s > 0, and set

p := p + s∆p, λ := λ + s∆λ,

so that p � 0 and λ � 0.

until η ≤ ε0 and ‖rdual‖ ≤ ε, where rdual = h − λ denotes the dual residual and h denotes the gradient
computed using (3.9).

Return p∗ := p

3.2. MM algorithm

In each iteration of the primal-dual interior-point method given by Algorithm 1, the Hessian
matrix computation has computational complexity = O(m5). This section presents a novel method for
decreasing the computational complexity of each iteration using the MM algorithm framework [15].

In the MM algorithm framework, if a continuously differentiable function g(p | pk) satisfies the
following condition:

g(p | pk) ≥ L(p), for all p,pk � 0, (3.11)

where equality is achieved at p = pk, the sequence {pk} generated by

pk+1 = arg min
p�0

g(p | pk) (3.12)
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converges to a stationary point of problem (3.5). Because the optimization problem (3.5) is convex, its
stationary point is actually the optimal point, p∗.

log det(X) is a concave function that is bounded above by its first-order Taylor expansion at any
Xk [15]:

log det(X) ≤ log det(Xk) + Tr(X−1
k X) − v, for all X,Xk ∈ S

v
++ (3.13)

with the equality achieved at X = Xk. Let X , (A diag(p)AH)−1 and Xk , (A diag(pk)AH)−1, and then
inserting them into (3.13) achieves

log det
(
(A diag(p)AH)−1

)
≤Tr

(
A diag(pk)AH(A diag(p)AH)−1

)
+

log det
(
(A diag(pk)AH)−1

)
− v, (3.14a)

= Tr
(
A diag(pk)AH(A diag(p)AH)−1

)
+ s0, (3.14b)

where the equality in (3.14a) is achieved at p = pk and s0 is a constant. Applying the Schur complement
(a brief proof is provided in Appendix B), for any pk � 0, we obtain

Tr
(
A diag(pk)AH(A diag(p)AH)−1

)
≤ Tr(Wk(diag(p))−1), (3.15)

where

Wk = diag(pk)AH(A diag(pk)AH)−1A diag(pk). (3.16)

and equality is achieved at p = pk. By substituting (3.15) into (3.14b), we obtain

log det
(
(A diag(p)AH)−1

)
≤ Tr(Wk(diag(p))−1) + s0, (3.17)

where equality is achieved at p = pk. Because log det
(
(A diag(p)AH)−1

)
= − log det

(
(A diag(p)AH)

)
,

then by (3.17) we have

− log det
(
(A diag(p)AH)

)
≤ Tr(Wk(diag(p))−1) + s0, (3.18)

where equality is achieved at p = pk. Let us denote

g(p | pk) = Tr(M diag(p)) + Tr(Wk(diag(p))−1) (3.19)

by

M = AHS−1A. (3.20)

By substituting (3.18) into (3.4), for any pk � 0, we obtain

L(p) ≤ g(p | pk) + s0 (3.21)

with equality achieved at p = pk.
By applying (3.21) under the MM algorithm framework, we derive the following proposition:
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Proposition 3.1. For any value of p0 � 0: sequentially solving

pk+1 = arg min
p�0

g(p | pk) (3.22)

generates a sequence {pk} that converges to the global optimal point p∗ of the problem (3.5).

Proof. Because (3.21) holds only for any pk � 0, and not for any pk � 0 as necessary in (3.11), the
general convergence result of MM algorithms cannot be applied here. Therefore, we need to analyze
the convergence further.

Consider the following ε-approximation of the problem (3.5):

min
p�0

Lε(p) , L(p + ε1) (3.23)

with ε > 0.
Now, applying (3.22) to p̃ , p+ε1 � 0, we conclude that the sequence {pεk} converges to the optimal

point (pε)∗ of (3.23), and

∇Lε((pε)∗)d ≥ 0 (3.24)

for any feasible direction d, where ∇Lε((pε)∗) denotes a gradient of the objective function Lε(p) for p
in (3.23) at (pε)∗.

Let εk′ be a positive sequence, with limk′→+∞ εk′ = 0. Then, as ∇Lε((pε)∗) is continuous around (pε)∗
and ε, the limit point, p∗, of the sequence, {(pεk′ )∗}, is the optimal point for problem (3.5).

In practice, ε can be chosen as to be an arbitrarily small number. Directly applying (3.22) or
adapting it to solve the ε-approximation problem is essentially idetnical. Therefore, the sequence {pk}

in (3.22) converges to the optimal point of problem (3.5). �

Problem (3.22), which generates {pk}, is a simple optimization problem. Thus, obtaining an
analytical solution to it is easy. We denote the i-th element of pk+1 by (pk+1)i. We have

(pk+1)i =
(
(Wk)i,i/Mi,i

)1/2 , i = 0, 1, . . . ,m, (3.25)

where (Wk)i,i and Mi,i denote the i-th diagonal elements of Wk in (3.16) and M in (3.20), respectively.
We outline the MM algorithm for (3.5) in Algorithm 2.

Algorithm 2 The MM algorithm for problem (3.5).
Given p0 � 0, tolerance ε > 0, k = 0.

repeat
(1) Update pk.

(pk+1)i := ((Wk)i,i/Mi,i)1/2, i = 0, . . . ,m.

(2) Set k := k + 1.

until ‖pk − pk−1‖ ≤ ε.
Return p∗ := pk.

The computational complexity of each iteration is O(m3), which is mainly generated by matrix
inversion and multiplication. To demonstrate the difference in terms of computational complexity
between Algorithms 1 and 2, we compare their iteration numbers and computation times in the
numerical experiments presented in Section 5.
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4. Real Toeplitz correlation matrix estimation

This section describes the estimation of Toeplitz matrices. Complex Toeplitz covariance matrices
appear commonly in linear array signal processing [17, 24]. During the application of sparse signal
models, the complex Toeplitz covariance matrices can always be formulated as W-Rank1-W structural
matrices that have been discussed in Section 3 [2]. Thus, in this section, we consider only real Toeplitz
matrices—specifically the Toeplitz auto-correlation matrix with decreasing correlation coefficients
with respect to increasing time lags in the time series analysis. Note that, the mentioned auto-
correlation matrix is composed of auto-correlation coefficients at different lags.

Let us denote

c , (c0, c1, . . . , cv−1)T, (4.1)

and define toep(c) to be a symmetric Toeplitz matrix with c as its first column:

toep(c) =



c0 c1 · · · cv−2 cv−1

c1 c0 c1 · · · cv−2
... c1 c0

. . .
...

cv−2
...

. . .
. . . c1

cv−1 cv−2 · · · c1 c0


. (4.2)

This section estimates the Toeplitz correlation matrix C ∈ Ω2, where

Ω2 =
{
Z | Z = toep(c) with |c0| ≥ |c1| ≥ · · · ≥ |cv−1|, c0 = 1 and toep(c) � 0

}
. (4.3)

Note that the constraint c0 = 1 can be rewritten as follows:

ec = 1, (4.4)

where e denotes a row vector with 1 as its first element, 0 as its other elements. The constraint |c0| ≥

|c1| ≥ · · · ≥ |cv−1| can be rewritten as linear constraints:

E1c � 0, E2c � 0, (4.5)

where E1 denotes a (v−1)×v matrix with diagonal elements = −1 and the first subdiagonal elements = 1,
and E2 denotes a (v−1)×v matrix with diagonal elements = −1 and the first subdiagonal elements = −1:

E1 =


−1 1 0 · · · 0

0 −1 1 . . .
...

...
. . .

. . .
. . . 0

0 · · · 0 −1 1

 , E2 =


−1 −1 0 · · · 0

0 −1 −1 . . .
...

...
. . .

. . .
. . . 0

0 · · · 0 −1 −1

 . (4.6)

We denote a normal distribution with correlation matrix R ∈ Sv
++ by N0 and a normal distribution

with Toeplitz correlation matrix C ∈ Ω2 byN . Assuming the variances to be equal, the relative entropy
from N to N0 is:

D(N0‖N) = Tr(R−1C)− log det(R−1C) − v. (4.7)

AIMS Mathematics Volume 9, Issue 6, 14253–14273.



14261

Given a correlation matrix estimate of R, such as the sample correlation matrix, minimizing D(N0‖N)
in terms of C:

min
C∈Ω2

Tr(R−1C)− log det(R−1C), (4.8)

we deduce the Toeplitz correlation estimate C∗ ∈ Ω2. The optimization problem (4.8) is convex and
can be resolved using the primal-dual interior-point algorithm with the SDT3 toolbox in Matlab. This
problem involves a nonlinear objective function and a positive-definiteness constraint of C. Application
of the primal-dual interior-point algorithm requires the computation of the Hessian matrix and the
positive-definiteness to be ensured in each iteration. In the following section, we present an estimation
algorithm that avoids these time-consuming computations.

4.1. Estimation of the real Toeplitz correlation matrix in Ω2

In this subsection, we first transform the estimate of the real Toeplitz correlation matrix to an
estimate of the W-Rank1-W structural matrix by special variable substitution and then deduce an
estimation algorithm within the MM algorithm framework for this estimation.

Given a circulant matrix T = toep(t) with

t = (c0, c1, · · · , cv−1, d1, d2, · · · , dl, cv−1, cv−2, · · · , c1)T (4.9)

and di = dl+1−i, i = 1, · · · , l (specifically, t = (c0, c1, · · · , cv−1, cv−1, cv−2, · · · , c1)T if l = 0), i.e.,

c = (Iv, 0)t, (4.10)
t = I(−1)t, (4.11)

where

I(−1) =



1 0 · · · 0 0
0 0 · · · 0 1
...

... . .
.

. .
.

0

0 0 . .
.

. .
. ...

0 1 0 · · · 0


. (4.12)

Then, the upper-left v-order matrix of T is the Toeplitz matrix:

C = toep(c) =
(

Iv 0
)

T
(

Iv 0
)T
. (4.13)

The circulant matrix T has a Fourier feature decomposition [25]:

T = FH diag(p(l))F, (4.14)

where F is ml = l + 2v − 1 order Fourier matrix and

p(l) = Ft. (4.15)
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Specifically, Fi, j = 1
√

ml
ei j 2πι

ml with ι as the imaginary unit, i, j = 0, 1, · · · ,ml − 1, and T � 0 if and only
if p(l) � 0.

By substituting (4.14) into (4.13), we derive

C = toep(c) = Al diag(p(l))AH
l , (4.16)

where Al = (Ip, 0)FH.
The Corollary C3 in [25] states that

{C | C = toep(c), toep(c) � 0} ⊆ ∪l≥0{C | C = toep(c),p(l) � 0}, (4.17)

where p(l) is a function of t in (4.15) and t is a function of c in (4.9). Moreover, the item 2 of the Notes
in [25] states that toep(c) � 0 implies toep(c) ∈ {C | C = toep(c),p(l) � 0} for a sufficiently large l,
meaning that if l is sufficiently large,

{C | C = toep(c), toep(c) � 0} ⊆ {C | C = toep(c),p(l) � 0}. (4.18)

In the following, we simplify the constraint toep(c) � 0 in Ω2 to p(l) � 0 for certain l. If l
is sufficiently large, compared to {C | C = toep(c), toep(c) � 0} containing only positive-definite
matrices, by (4.18), the set {C | C = toep(c),p(l) � 0} contains more positive semi-definite matrices.
Moreover, as C tends toward the boundary of the positive semi-definite cone, the value of the objective
function in (4.8) tends to +∞. Thus, although we change the constraint set, if l is sufficiently large, the
modification ensures that the optimal point remains constant. The numerical experiments reported in
Section 5 demonstrate that the estimation accuracy remains good for different l, and we outline some
numerical results there.

Now, we present an algorithm for the problem with the constraint toep(c) � 0 modified to p(l) � 0
for certain l:

min
C∈Ω3

Tr(R−1C)− log det(R−1C), (4.19)

where

Ω3 = {Z | Z = Al diag(p(l))AH
l with |c0| ≥ |c1| ≥ · · · ≥ |cv−1|, c0 = 1, and p(l) � 0}. (4.20)

In particular, by applying the expressions (4.4), (4.5), (4.10), (4.11), (4.15) and (4.16), the problem to
be resolved, i.e., problem (4.19), becomes

min
C,c,t,p(l)

Tr(R−1C)− log det(R−1C) (4.21a)

s.t. C = Al diag(p(l))AH
l , (4.21b)

p(l) = Ft, (4.21c)
t = I(−1)t, (4.21d)
c = (Im, 0)t, (4.21e)
E1c � 0, (4.21f)
E2c � 0, (4.21g)
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ec = 1, (4.21h)
p(l) � 0. (4.21i)

It is easy to see FHF = I and (4.21c) can be rewritten as follows:

t = FHp(l). (4.22)

By substituting (4.22) into (4.21e), we obtain (4.21e) as follows:

c = Alp(l). (4.23)

Now, we apply the equality constraints (4.21c) and (4.21e), i.e., (4.22) and (4.23), and transform the
optimization problem (4.21) into a new optimization problem involving only the variable, p(l).

It is easy to see that I(−1)FH = FHI(−1). Then, by substituting (4.22) into (4.21d), we obtain the
constraint (4.21d) as follows:

p(l) = I(−1)p(l). (4.24)

By substituting (4.23) into (4.21f)–(4.21h), we obtain the constraints (4.21f)–(4.21h) as follows:

E1Alp(l) � 0, (4.25)
E2Alp(l) � 0, (4.26)

eAlp(l) = 1. (4.27)

Most importantly, applying (4.24)–(4.27), the optimization problem can be rewritten as a problem
involving only the variable, p(l), i.e., as an estimation problem of W-Rank-W structural matrices with
an unknown weight vector, p(l):

min
p(l)

Tr(R−1C)− log det(R−1C) (4.28a)

s.t. C = Al diag(p(l))AH
l , (4.28b)

p(l) = I(−1)p(l), (4.28c)
E1Alp(l) � 0, (4.28d)
E2Alp(l) � 0, (4.28e)
eAlp(l) = 1, (4.28f)
p(l) � 0. (4.28g)

Denoting the optimal point of (4.28) by p∗(l), we have C∗ = Al diag(p∗(l))A
H
l as an estimate of the

correlation matrix.
In the following subsection, we present an MM algorithm for problem (4.28) by applying the design

concept of Algorithm 2.

4.1.1. MM algorithm for the real Toeplitz correlation matrix estimation

By substituting (4.28b) into the objective function in (4.28a), we obtain: Applying (3.18) to the
objective function (4.28a), we obtain the following result. For any (p(l))k � 0, we have

Tr(R−1C)− log det(R−1C) ≤ Tr(Ml diag(p(l))) + Tr((Wl)k(diag(p(l)))−1) + s1, (4.29)
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=

ml−1∑
i=0

(
Mi(l)qi + (Wi(l))k

1
qi

)
+ s1, (4.30)

where s1 is a constant and

p(l) = (q0, q1, · · · , qml−1)T, (4.31)

and

Ml = AH
l R−1Al, (4.32)

(Wl)k = diag
(
(p(l))k

)
AH

l

(
Al diag((p(l))k)AH

l

)−1
Al diag((p(l))k), (4.33)

and

(Wi(l))k = ((Wl)k)i,i, Mi(l) = (Ml)i,i, i = 0, · · · ,ml − 1, (4.34)

and the equality in (4.29) is achieved at p(l) = (p(l))k.
Applying (4.30) and convergence analysis similar to that for Proposition 3.1, we have the following

proposition under the MM algorithm framework.

Proposition 4.1. Given (p(l))0 � 0, sequentially solving the optimization problem

(p(l))k+1 = arg min
p(l)

ml−1∑
i=0

(
Mi(l)qi + (Wi(l))k

1
qi

)
(4.35a)

s.t. p(l) = I(−1)p(l), (4.35b)
E1Alp(l) � 0, (4.35c)
E2Alp(l) � 0, (4.35d)
eAlp(l) = 1, (4.35e)
p(l) � 0, (4.35f)

generates a sequence {(p(l))k} that converges to the optimal point p∗(l) of the problem (4.28).

Denoting ri = 1/qi and using the epigraph form, we can rewrite problem (4.35) as a SOCP problem:

min
qi,ri

ml−1∑
i=0

(
Mi(l)qi + (Wi(l))kri

)
(4.36a)

s.t.
∥∥∥∥∥ (

2
qi − ri

) ∥∥∥∥∥ ≤ qi + ri, i = 0, 1, · · · ,ml − 1. (4.36b)

p(l) = I(−1)p(l), (4.36c)
E1Alp(l) � 0, (4.36d)
E2Alp(l) � 0, (4.36e)
eAlp(l) = 1, (4.36f)
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p(l) � 0. (4.36g)

This SOCP problem can be solved using the Matlab toolbox, SDPT3.
In conclusion, the MM algorithm for problem (4.28) is presented as Algorithm 3, and is referred to

as the MM-T algorithm in the following. In each iteration, Algorithm 3 involves SOCP optimization
that can be resolved using the Matlab Toolbox, SDP3.

Algorithm 3 The MM-T algorithm.
Given (p(l))0 satisfying (4.36b)-(4.36f) and (p(l))0 � 0, tolerance ε > 0, k = 0.

repeat
(1) Update (p(l))k. solve the SOCP problem (4.36).
(2) Set k := k + 1.

until ‖(p(l))k − (p(l))k−1‖ ≤ ε.
Return p∗(l) := (p(l))k, and C∗ = Al diag(p∗(l))A

H
l .

5. Numerical experiments

In this section, we evaluate the performance of Algorithms 1–3 numerically. First, Algorithms 1
and 2 are utilized for DOA estimation. Then, Algorithm 3 is used to estimate Toeplitz autocorrelation
matrices in time-series analysis and its performance is compared with those of other estimation
methods. All computations were performed using Matlab2018a on a system equipped with an Intel(R)
Xeon(R) Platinum 8372HC CPU at 3.40GHz.

5.1. DOA estimation

The observation x(t) ∈ Cv received by a uniform linear array at time t is always modeled as [2]:

x(t) =

360∑
i=0

a(θi)si(t) + n(t), (5.1)

where θi = (i/2)◦ denotes the grid point in 180-degree coverage: 0◦ v 180◦, si(t) ∈ C denotes the
source signal from direction θi, a(θi) = (1, eıπ cos(θi), · · · , e(v−1)ıπ cos(θi))T denotes the steering vector, and
n(t) ∈ Cv denotes the noise vector. In addition, let us assume that s(t) = (si(t)) is CN-distributed with
zero mean and covariance diag(pd), n(t) is CN-distributed with zero mean and covariance diag(σ), and
s(t) and n(t) are both temporally and mutually independent. In particular, the noise energy vector is
σ = σ21 with 1 as a vector with all elements being 1, and σ can be designed to vary the signal-to-noise
ratio (SNR) as follows:

SNR = 10 log10

Tr(Ad diag(pd)AH
d )

pσ2 , (5.2)

where Ad = (a(θ0), a(θ1), · · · , a(θ360)). The covariance matrix of x(t) is given by the W-Rank1-W
structure:

Σ = Ad diag(pd)AH
d + diag(σ) = A diag(p)A, (5.3)
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where A = [Ad, I] and p = ((pd)T,σT)T. We denote pd = (p′i), where p′i is the signal energy in the
direction, θi. Peak detection is performed on the energy vector, pd, where the peak energy occurs at the
source signal, enabling the DOA estimation.

In this experimental scenario, 4 source signals arrived from the directions: ξ1 = 30◦, ξ2 = 60◦,
ξ3 = 120◦, and ξ4 = 160◦, with corresponding signal energies of 15, 5, 5, and 15, respectively. Let
us consider the case in which the linear array consists of v = 15 sensors and n independent array
observations are simulated by the model (5.1) to obtain the sample covariance matrix. By applying
Algorithms 1 and 2 to estimate Σ in (5.3), we obtain an estimate of pd, denoted by p∗d. By performing
peak detection on p∗d, we obtained the DOA estimates: ξ∗1, · · · , ξ

∗
4, assuming the number of true DOAs

is known in advance.
Table 1 presents a performance comparison of Algorithms 1 and 2 in terms of computational

complexity and estimation accuracy, where

RMSE =
1

1000

1000∑
i=1

(
(p − p∗(i))

T(p − p∗(i))
)1/2

, (5.4)

where p∗(i) denotes the estimate of p in (5.3) in the i-th Monte Carlo simulation. These results
demonstrate that the MM algorithm (Algorithm 2) exhibits better computational efficiency than the
PDIP (primal-dual interior-point) algorithm (Algorithm 1), and that their computational accuracies are
comparable. In Figure 1, the DOA estimation performances of the MM method (Algorithm 2) and the
classical DOA estimation methods: Likelihood-based estimation of sparse parameters (LIKES) in [12]
and sparse iterative covariance-based estimation (SPICE) in [11], are compared, where

RMSEDOA =
1

1000

1000∑
i=1

4∑
j=1

|(ξ j)(i) − (ξ∗j)(i)|, (5.5)

and (ξ∗j)(i) is the estimate of ξ j in the i-th Monte Carlo simulation. It is observed that the MM
method offers higher DOA estimation accuracy. In Figure 2, the normalized spectrum is defined to
be p∗/max(p∗), where max(p∗) denotes the maximal element in the vector, p∗. The black dashed
lines represent the true DOAs and the normalized spectrum curves represent the results of a randomly
selected realization. The location of the peak spectrum lies very close to the true DOA, and a higher
SNR is observed corresponding to a higher angular resolution.

Table 1. Comparison of the performances of the MM and PDIP algorithms in terms of the
number of iterations, computation time (seconds), and Root Mean-Squared Error (RMSE)
under different SNRs. The number of iterations and computation time displayed are the
averaged results over 1000 Monte Carlo simulation repetitions. The sample size is n = 500.

SNR(dB)
Number of iterations Computation time (seconds) RMSE
MM PDIP MM PDIP MM PDIP

0 22.67 79.68 0.3900 147.54 20.69 19.69
2 24.16 87.44 0.4100 161.66 20.18 18.88
4 25.52 107.31 0.4400 198.10 19.56 17.57
6 27.03 139.78 0.4700 257.44 18.75 14.47
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Figure 1. Comparison of the MM, SPICE, and LIKES methods in terms of the RMSEDOA

(degrees) of DOA estimation. (a) SNR = 0 dB; (b) The sample size is n = 500.
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Figure 2. Normalized spectrum. The sample size is n = 500.

5.2. Toeplitz correlation matrix estimation

In a q-order moving average time series (MA(q̂)),

xt = εt + φ1εt−1 + φ2εt−2 + · · · + φqεt−q̂, (5.6)

where φi = φi, i = 1, · · · , q̂, and εt, · · · , εt−q̂ are independently and identically distributed with zero
mean and variance 1. A simple calculation yields that the v × v autocorrelation matrix C exhibits a
Toeplitz structure with decreasing autocorrelation coefficients as the time lag increases. Denote the first
column of C as c, and use q̂ = 5. This experiment assessed the performance of the MM-T algorithm in
estimating this autocorrelation matrix, focusing on its estimation accuracy and computation time, and
compared them with these of other methods:

• PDIP-T: the primal-dual interior-point algorithm solving (4.8);
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• Samp: the estimator of Toeplitz covariance matrices mentioned in [16] that minimizes the F-norm
loss between the sample covariance matrices;
• HY: the estimation of Toeplitz covariances via the entropy loss function using the alternating

direction method of multipliers algorithm given in [21].

Note that the sample autocorrelation matrix is used as the given correlation matrix R in the MM-T and
PDIP-T algorithms, and the sample autoconvariance matrix is used as the given covariance matrix in
the HY method, and that the sample size is n = 1000.

Table 2 lists the RMSEtoep corresponding to different l values under different v and φ. The RMSEtoep

is defined as

RMSEtoep =
1

1000

1000∑
i=1

(
(c − c∗(i))

T(c − c∗(i))
)1/2

, (5.7)

where c∗(i) denotes the estimate of c achieved during the i-th Monte Carlo repetition. For different l,
RMSEtoep values remain stable. Therefore, we assumed l = 10 to complete this experiment.

Table 2. Comparison of RMSEtoeps of the MM-T algorithm corresponding to different values
of l.

l 0 10 20 30 40 50

v = 30
φ = 0.25 0.0211 0.0215 0.0213 0.0213 0.0213 0.0213
φ = 0.75 0.0655 0.0650 0.0654 0.0655 0.0654 0.0654

v = 60
φ = 0.25 0.0231 0.0235 0.0234 0.0233 0.0233 0.0232
φ = 0.75 0.0753 0.0750 0.0753 0.0752 0.0753 0.0754

Figure 3(a) depicts the computation times of the MM-T and PDIP-T algorithms. The results indicate
that as the order of the autocorrelation matrix increases (i.e., the considered time lag v − 1 increases),
the rate of increase in the computational time of MM-T becomes slower than that of PDIP-T, and when
v ≥ 50, MM-T requires less time.

Figure 3(b) compares the estimation accuracies of the different methods. The MM-T and PDIP-T
algorithms exhibit lower RMSEtoep values, which is reasonable as they utilize a decreasing correlation
structure, unlike the Samp and HY methods. The estimation accuracies of the MM-T and PDIP-T
algorithms are essentially equal; however, when v is moderate to large, the computation time required
by MM-T is shorter. Therefore, the MM-T algorithm is recommended over PDIP-T.
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Figure 3. Performance comparison for varying orders v of the autocorrelation matrix C. (a)
Comparison of the MM-T and PDIP-T algorithms in terms of computation time (seconds);
(b) Comparison of the MM-T, PDIP-T, HY and Samp methods in terms of RMSEtoep.

5.3. Real data analysis

We collected the closing stock prices of 511 companies in the technology field on Fridays during
the period between 2023-9-15 and 2023-11-17 (8 weeks). We compute the volatility series as follows:

Volatilitycurrent Friday =
|Closecurrent Friday − Closeprevious Friday|

Closecurrent Friday
, (5.8)

where Closecurrent Friday and Closeprevious Friday denote the closing stock prices on current and previous
Fridays, respectively, and Volatilitycurrent Friday denotes the volatility of closing stock prices on Fridays.

Subsequently, to investigate the temporal dependencies in the volatility series, we assume that
the autocorrelation matrix of the volatility series exhibits a Toeplitz structure: We apply the MM-T
and HY algorithms to estimate the autocorrelation matrix. Table 3 presents the first column of the
autocorrelation matrix estimation; i.e., the autocorrelation coefficients corresponding to different time
lags.

Table 3 shows that the results of the MM-T and HY methods are similar. Moreover, the
autocorrelation coefficients corresponding to different lags are nearly identical, but lie around a
small value of 0.22. The small autocorrelation coefficients indicate no obvious dependency between
volatilities on different Fridays, which is consistent with the unpredictable nature of stock price
fluctuations.

Table 3. The estimation of the autocorrelation coefficients at different time lags, using the
MM-T algorithm proposed in this paper and the HY method in [21].

Time lag 1 2 3 4 5 6 7 8
MM-T 0.2480 0.2274 0.2274 0.2274 0.2274 0.2274 0.2274 0.2257
HY 0.2371 0.2033 0.1810 0.2184 0.2191 0.2684 0.2380 0.2584
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6. Conclusions

We focus on estimating of the W-Rank1-W structural covariance matrix, which appears commonly
in signal processing, and the auto-correlation matrix characterized by decreasing correlation
coefficients, which appears commonly in time-series analysis. To this end, novel algorithms are
proposed using the MM algorithm framework. Numerical experiments reveal that the proposed
MM algorithms exhibit superior computational efficiencies. The proposed strategy for dealing with
the surrogate function under the MM framework can be applied to other similar convex optimization
problems.
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Appendix

A. Proof of (2.3)

Ez∼CN1

(
log

(
f1(z)
f2(z)

))
=Ez∼CN1(log( f1(z)) − log( f2(z)))
=Ez∼CN1(− log detΣ1 − zHΣ−1

1 z + log detΣ2 + zHΣ−1
2 z)

= log det(Σ−1
1 Σ2) − Ez∼CN1

(
(zHΣ

−1/2
1 )(Σ−1/2

1 z)
)

+ Ez∼CN1

(
(zHΣ

−1/2
2 )(Σ−1/2

2 z)
)
. (A.1)

Denote z̃ = Σ
−1/2
1 z. Because z ∼ CN1, z̃ is circularly-symmetric complex normal distributed with zero

mean and covariance Σ̃ = Σ
−1/2
1 Σ1Σ

−1/2
1 . Therefore, we have

Ez∼CN1

(
(zHΣ

−1/2
1 )(Σ−1/2

1 z)
)

= Ez∼CN1

(
z̃Hz̃

)
=

v∑
i=1

Ez∼CN1(z̃
2
i )

=

v∑
i=1

Σ̃i,i

= Tr(Σ̃)

= Tr(Σ−1/2
1 Σ1Σ

−1/2
1 ), (A.2)

where z̃i is the i-th element of the vector z̃, and Σ̃i,i is the i-th diagonal element of the matrix Σ̃.
Similarly, we obtain

Ez∼CN1

(
(zHΣ

−1/2
2 )(Σ−1/2

2 z)
)

= Tr(Σ−1/2
2 Σ1Σ

−1/2
2 ). (A.3)

Inserting (A.2) and (A.3) into (A.1), we derive

Ez∼CN1

(
log

(
f1(z)
f2(z)

))
= log det(Σ−1

1 Σ2) − Tr(Σ−1/2
1 Σ1Σ

−1/2
1 ) + Tr(Σ−1/2

2 Σ1Σ
−1/2
2 ) (A.4)
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= log det(Σ2Σ
−1
1 ) − v + Tr(Σ−1

2 Σ1)
= Tr(Σ−1

2 Σ1) − log det(Σ−1
2 Σ1) − v.

B. Proof of (3.15)

By the property of the Schur completment [26, p. 34], let X be a Hermitian matrix partitioned as
follows:

X =

(
X11 X12

XH
12 X22

)
. (B.1)

Then, if X � 0 and X11 � 0, then we have X22 − XH
12X−1

11 X12 � 0.
Let p,pk � 0, and

X11 = A diag(p)AH, (B.2)
X12 = I, (B.3)
X22 = (A diag(pk)AH)−1A diag(pk)(diag(p))−1 diag(pk)AH(A diag(pk)AH)−1, (B.4)

we then have

X11 � 0, X = HHH � 0 (B.5)

with

H =

(
A(diag(p))1/2

(A diag(pk)AH)−1A diag(pk)(diag(p))−1/2

)
, (B.6)

and thus

X−1
11 � X22 (B.7)

i.e.,

(A diag(p)AH)−1 � X22, (B.8)

and then

Tr
(
A diag(pk)AH(A diag(p)AH)−1

)
≤ Tr(Wk(diag(p))−1), (B.9)

where

Wk = diag(pk)AH(A diag(pk)AH)−1A diag(pk). (B.10)

Note that because A diag(p)AH � 0, the left side of (B.9) is finite, Thus, the inequality (B.9) is also
valid for p � 0.
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